Pub Date : 2024-02-05DOI: 10.15376/biores.19.2.2017-2028
Ş. S. Yaşar, O. Komut, Mehmet Yaşar, M. S. Fidan
This study aimed to determine the risk level of noise, which is an important physical risk, in small and medium-sized furniture industry enterprises. The noise levels of the circular sawing machines, edge banding machines, and mitre cutting machines, which are among the main processing machines of the sector, were measured. The study was carried out in 32 furniture businesses. The possible risks of noise on the operators of the machines in question and other employees were evaluated. Noise level measurements were made with the help of TESTO 815 measuring device. Dunnett’s T3 test was used to detect differences in noise levels for machine operators and other employees. It was determined that the edge banding machine does not pose an occupational health and safety risk in terms of noise risk factors. However, the mitre cutting machine and the circular sawing machine pose a risk for the machine operator in active production by creating noise above the established exposure limit value. The mitre cutting machine carries the same risk for the machine operator when it is in operation but in passive production. The results revealed the need for personal protective equipment for machine operators for mitre cutting and circular sawing machine.
本研究旨在确定作为重要物理风险的噪声在中小型家具企业中的风险水平。测量了该行业主要加工机器中的圆锯机、封边机和斜切机的噪音水平。研究在 32 家家具企业中进行。评估了噪声对相关机器操作员和其他员工可能造成的风险。噪声水平的测量借助 TESTO 815 测量设备进行。采用邓尼特 T3 检验来检测机器操作员和其他员工噪音水平的差异。结果表明,就噪声风险因素而言,封边机不会造成职业健康和安全风险。但是,斜切机和圆锯机产生的噪音超过了规定的接触限值,对正在生产的机器操作员构成风险。斜切机在被动生产时对机器操作员也有同样的风险。结果表明,斜切机和圆锯机的机器操作员需要个人防护设备。
{"title":"Noise as a physical risk factor in furniture industry machines","authors":"Ş. S. Yaşar, O. Komut, Mehmet Yaşar, M. S. Fidan","doi":"10.15376/biores.19.2.2017-2028","DOIUrl":"https://doi.org/10.15376/biores.19.2.2017-2028","url":null,"abstract":"This study aimed to determine the risk level of noise, which is an important physical risk, in small and medium-sized furniture industry enterprises. The noise levels of the circular sawing machines, edge banding machines, and mitre cutting machines, which are among the main processing machines of the sector, were measured. The study was carried out in 32 furniture businesses. The possible risks of noise on the operators of the machines in question and other employees were evaluated. Noise level measurements were made with the help of TESTO 815 measuring device. Dunnett’s T3 test was used to detect differences in noise levels for machine operators and other employees. It was determined that the edge banding machine does not pose an occupational health and safety risk in terms of noise risk factors. However, the mitre cutting machine and the circular sawing machine pose a risk for the machine operator in active production by creating noise above the established exposure limit value. The mitre cutting machine carries the same risk for the machine operator when it is in operation but in passive production. The results revealed the need for personal protective equipment for machine operators for mitre cutting and circular sawing machine.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"31 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139866041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.15376/biores.19.2.2029-2044
Seongwoo Myeong, Jeonghee Yun
Biochar (BC) was used in Trichoderma sp. culture to produce high-activity cellulase on a laboratory scale. The biochar was added into the flask before being applied to the fermenter to identify the enhancement effect and to determine the best amount of addition and the most suitable incubation period. Cellulase production was performed with a working volume of 4 L, and enzymatic hydrolysis was conducted to evaluate the saccharification ability of the enzyme. During incubation, the activities of three enzymes (Endoglucanase (EG), β-glucosidase (BGL), and cellobiohydrolase (CBH)) were measured for three days, and the cellulase activity was determined using a filter paper unit (FPU). In flask scale, EG, BGL, and CBH activities were increased by 1.4, 2.1, and 1.8 folds, respectively, and the incubation period was shortened by adding BC. In the fermenter scale, EG, BGL, and CBH activities were noticeably enhanced by 12.1, 5.8, and 7.2 folds, respectively, and FPU was 42.1 (9.8 folds). Additionally, the conversion rates of cellulose and steam exploded softwood and hardwood were 109.4%, 75.4%, and 87.3%, which were similar to a commercial enzyme (Cellic CTecⅡ). This study demonstrated that biochar could be used to produce high-activity cellulase in a shorter period and suggests a novel method for effective cellulase production.
{"title":"Culture of Trichoderma sp. with biochar to produce high-activity cellulase in a laboratory","authors":"Seongwoo Myeong, Jeonghee Yun","doi":"10.15376/biores.19.2.2029-2044","DOIUrl":"https://doi.org/10.15376/biores.19.2.2029-2044","url":null,"abstract":"Biochar (BC) was used in Trichoderma sp. culture to produce high-activity cellulase on a laboratory scale. The biochar was added into the flask before being applied to the fermenter to identify the enhancement effect and to determine the best amount of addition and the most suitable incubation period. Cellulase production was performed with a working volume of 4 L, and enzymatic hydrolysis was conducted to evaluate the saccharification ability of the enzyme. During incubation, the activities of three enzymes (Endoglucanase (EG), β-glucosidase (BGL), and cellobiohydrolase (CBH)) were measured for three days, and the cellulase activity was determined using a filter paper unit (FPU). In flask scale, EG, BGL, and CBH activities were increased by 1.4, 2.1, and 1.8 folds, respectively, and the incubation period was shortened by adding BC. In the fermenter scale, EG, BGL, and CBH activities were noticeably enhanced by 12.1, 5.8, and 7.2 folds, respectively, and FPU was 42.1 (9.8 folds). Additionally, the conversion rates of cellulose and steam exploded softwood and hardwood were 109.4%, 75.4%, and 87.3%, which were similar to a commercial enzyme (Cellic CTecⅡ). This study demonstrated that biochar could be used to produce high-activity cellulase in a shorter period and suggests a novel method for effective cellulase production.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"5 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139804045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.15376/biores.19.2.2017-2028
Ş. S. Yaşar, O. Komut, Mehmet Yaşar, M. S. Fidan
This study aimed to determine the risk level of noise, which is an important physical risk, in small and medium-sized furniture industry enterprises. The noise levels of the circular sawing machines, edge banding machines, and mitre cutting machines, which are among the main processing machines of the sector, were measured. The study was carried out in 32 furniture businesses. The possible risks of noise on the operators of the machines in question and other employees were evaluated. Noise level measurements were made with the help of TESTO 815 measuring device. Dunnett’s T3 test was used to detect differences in noise levels for machine operators and other employees. It was determined that the edge banding machine does not pose an occupational health and safety risk in terms of noise risk factors. However, the mitre cutting machine and the circular sawing machine pose a risk for the machine operator in active production by creating noise above the established exposure limit value. The mitre cutting machine carries the same risk for the machine operator when it is in operation but in passive production. The results revealed the need for personal protective equipment for machine operators for mitre cutting and circular sawing machine.
本研究旨在确定作为重要物理风险的噪声在中小型家具企业中的风险水平。测量了该行业主要加工机器中的圆锯机、封边机和斜切机的噪音水平。研究在 32 家家具企业中进行。评估了噪声对相关机器操作员和其他员工可能造成的风险。噪声水平的测量借助 TESTO 815 测量设备进行。采用邓尼特 T3 检验来检测机器操作员和其他员工噪音水平的差异。结果表明,就噪声风险因素而言,封边机不会造成职业健康和安全风险。但是,斜切机和圆锯机产生的噪音超过了规定的接触限值,对正在生产的机器操作员构成风险。斜切机在被动生产时对机器操作员也有同样的风险。结果表明,斜切机和圆锯机的机器操作员需要个人防护设备。
{"title":"Noise as a physical risk factor in furniture industry machines","authors":"Ş. S. Yaşar, O. Komut, Mehmet Yaşar, M. S. Fidan","doi":"10.15376/biores.19.2.2017-2028","DOIUrl":"https://doi.org/10.15376/biores.19.2.2017-2028","url":null,"abstract":"This study aimed to determine the risk level of noise, which is an important physical risk, in small and medium-sized furniture industry enterprises. The noise levels of the circular sawing machines, edge banding machines, and mitre cutting machines, which are among the main processing machines of the sector, were measured. The study was carried out in 32 furniture businesses. The possible risks of noise on the operators of the machines in question and other employees were evaluated. Noise level measurements were made with the help of TESTO 815 measuring device. Dunnett’s T3 test was used to detect differences in noise levels for machine operators and other employees. It was determined that the edge banding machine does not pose an occupational health and safety risk in terms of noise risk factors. However, the mitre cutting machine and the circular sawing machine pose a risk for the machine operator in active production by creating noise above the established exposure limit value. The mitre cutting machine carries the same risk for the machine operator when it is in operation but in passive production. The results revealed the need for personal protective equipment for machine operators for mitre cutting and circular sawing machine.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139806178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-02DOI: 10.15376/biores.19.2.2013-2016
Angeles Blanco
This editorial considers Open Science, what it is, what are its potential benefits, what are the pillars of engagement upon which it rests, and what are some of the main challenges facing its further adoption by research communities. At its core, Open Science involves sharing not only the contents of a traditional research article, but also of any source data and methodologies upon which the reported findings are based. Though some extra work may be required, usually without anyone providing additional resources to do that work, continuous developments in digital technology are making Open Science easier to implement. While not all data is suitable to be shared, Open Science practices are widely supported within the wider research community and funding organizations.
{"title":"The role of Open Science in our research","authors":"Angeles Blanco","doi":"10.15376/biores.19.2.2013-2016","DOIUrl":"https://doi.org/10.15376/biores.19.2.2013-2016","url":null,"abstract":"This editorial considers Open Science, what it is, what are its potential benefits, what are the pillars of engagement upon which it rests, and what are some of the main challenges facing its further adoption by research communities. At its core, Open Science involves sharing not only the contents of a traditional research article, but also of any source data and methodologies upon which the reported findings are based. Though some extra work may be required, usually without anyone providing additional resources to do that work, continuous developments in digital technology are making Open Science easier to implement. While not all data is suitable to be shared, Open Science practices are widely supported within the wider research community and funding organizations.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"38 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139811053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-02DOI: 10.15376/biores.19.2.2013-2016
Angeles Blanco
This editorial considers Open Science, what it is, what are its potential benefits, what are the pillars of engagement upon which it rests, and what are some of the main challenges facing its further adoption by research communities. At its core, Open Science involves sharing not only the contents of a traditional research article, but also of any source data and methodologies upon which the reported findings are based. Though some extra work may be required, usually without anyone providing additional resources to do that work, continuous developments in digital technology are making Open Science easier to implement. While not all data is suitable to be shared, Open Science practices are widely supported within the wider research community and funding organizations.
{"title":"The role of Open Science in our research","authors":"Angeles Blanco","doi":"10.15376/biores.19.2.2013-2016","DOIUrl":"https://doi.org/10.15376/biores.19.2.2013-2016","url":null,"abstract":"This editorial considers Open Science, what it is, what are its potential benefits, what are the pillars of engagement upon which it rests, and what are some of the main challenges facing its further adoption by research communities. At its core, Open Science involves sharing not only the contents of a traditional research article, but also of any source data and methodologies upon which the reported findings are based. Though some extra work may be required, usually without anyone providing additional resources to do that work, continuous developments in digital technology are making Open Science easier to implement. While not all data is suitable to be shared, Open Science practices are widely supported within the wider research community and funding organizations.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"18 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139870748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.15376/10.15376/biores.19.1.hubbe
M. Hubbe
Size presses on paper machines are used to apply a solution of a polymer – usually starch – to the surface of the sheet and thereby to increase the stiffness, surface strength, and printing quality of the product. This article reviews publications dealing with the size press equipment, the materials, and factors affecting both the operating efficiency and attributes of the resulting paper. The emergence of film-press equipment (e.g. blade-metering size presses) in the 1980s has greatly decreased the frequency of web breaks and increased productivity. Starch technology at the size press, though relatively mature, continues to evolve. By adjustment of starch attributes, solids levels, and incorporating other additives, modern papermakers can tune size press outcomes to meet a range of paper product requirements, including strength, hydrophobicity, and the reduction of air permeability. By application of various synthetic polymers, mineral particles, and even nanocellulose in combination with starch or other base polymers, there is potential to extend the technology to meet a range of future needs for paper products.
{"title":"Size press practices and formulations affecting paper properties and process efficiency: A Review","authors":"M. Hubbe","doi":"10.15376/10.15376/biores.19.1.hubbe","DOIUrl":"https://doi.org/10.15376/10.15376/biores.19.1.hubbe","url":null,"abstract":"Size presses on paper machines are used to apply a solution of a polymer – usually starch – to the surface of the sheet and thereby to increase the stiffness, surface strength, and printing quality of the product. This article reviews publications dealing with the size press equipment, the materials, and factors affecting both the operating efficiency and attributes of the resulting paper. The emergence of film-press equipment (e.g. blade-metering size presses) in the 1980s has greatly decreased the frequency of web breaks and increased productivity. Starch technology at the size press, though relatively mature, continues to evolve. By adjustment of starch attributes, solids levels, and incorporating other additives, modern papermakers can tune size press outcomes to meet a range of paper product requirements, including strength, hydrophobicity, and the reduction of air permeability. By application of various synthetic polymers, mineral particles, and even nanocellulose in combination with starch or other base polymers, there is potential to extend the technology to meet a range of future needs for paper products.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"8 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139815310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.15376/biores.19.2.2007-2009
M. Hubbe, Dhanalekshmi Savithri
Picking up a discarded can or bottle and placing it in a recycling bin may seem like a very small step to take in the direction of making a better world. The scope of benefits that might accrue, by combining many such steps, and making careful plans, was highlighted in a recent Waste to Advanced Resources Matter (WARM) workshop hosted at this university. As shown during the discussions at the workshop, those who are deeply involved with issues of waste management, climate change issues, and care for our planet already know the “broad brush” answers regarding what needs to be done. Now is the time for action in implementing efficient and widespread recovery of valuable materials and energy from what we presently throw away.
{"title":"Cellulose fibers as a trendsetter for the circular economy that we urgently need","authors":"M. Hubbe, Dhanalekshmi Savithri","doi":"10.15376/biores.19.2.2007-2009","DOIUrl":"https://doi.org/10.15376/biores.19.2.2007-2009","url":null,"abstract":"Picking up a discarded can or bottle and placing it in a recycling bin may seem like a very small step to take in the direction of making a better world. The scope of benefits that might accrue, by combining many such steps, and making careful plans, was highlighted in a recent Waste to Advanced Resources Matter (WARM) workshop hosted at this university. As shown during the discussions at the workshop, those who are deeply involved with issues of waste management, climate change issues, and care for our planet already know the “broad brush” answers regarding what needs to be done. Now is the time for action in implementing efficient and widespread recovery of valuable materials and energy from what we presently throw away.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"20 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139818617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.15376/biores.19.2.2003-2006
Tomasz Garbowski
In the field of corrugated board production and packaging optimization, the advent of Artificial Intelligence (AI) has initiated a paradigm shift. This paper presents a brief analysis of AI’s role in revolutionizing both the production of corrugated board and the design of corrugated packaging. It explores the integration of AI in the homogenization process of complex corrugated board structures into single-layer, shallow shell-based computational models, aiming to improve and accelerate load-bearing calculations. This work presents also how AI’s predictive and analytical capabilities are pivotal in achieving efficiency, sustainability, and cost-effectiveness in the corrugated board industry.
{"title":"Revolutionizing corrugated board production and optimization with artificial intelligence","authors":"Tomasz Garbowski","doi":"10.15376/biores.19.2.2003-2006","DOIUrl":"https://doi.org/10.15376/biores.19.2.2003-2006","url":null,"abstract":"In the field of corrugated board production and packaging optimization, the advent of Artificial Intelligence (AI) has initiated a paradigm shift. This paper presents a brief analysis of AI’s role in revolutionizing both the production of corrugated board and the design of corrugated packaging. It explores the integration of AI in the homogenization process of complex corrugated board structures into single-layer, shallow shell-based computational models, aiming to improve and accelerate load-bearing calculations. This work presents also how AI’s predictive and analytical capabilities are pivotal in achieving efficiency, sustainability, and cost-effectiveness in the corrugated board industry.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"846 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139831512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.15376/biores.19.2.2010-2012
Qian Wang, Xin Feng
Engineered biomaterials play a crucial role in the construction industry. The study and development of engineered biomaterials with high-strength are necessary to fulfill the construction requirements for medium and high-rise buildings and long-span bridges. Further promoting the localization of high-strength engineered biomaterials is crucial in terms of reducing CO2 emissions, effectively utilizing land resources, and taking into account the unique structure of forest resources in China. The goal of this modification is to satisfy the rising demand for eco-friendly living spaces.
{"title":"High-strength engineered biomaterials study and development needs in China","authors":"Qian Wang, Xin Feng","doi":"10.15376/biores.19.2.2010-2012","DOIUrl":"https://doi.org/10.15376/biores.19.2.2010-2012","url":null,"abstract":"Engineered biomaterials play a crucial role in the construction industry. The study and development of engineered biomaterials with high-strength are necessary to fulfill the construction requirements for medium and high-rise buildings and long-span bridges. Further promoting the localization of high-strength engineered biomaterials is crucial in terms of reducing CO2 emissions, effectively utilizing land resources, and taking into account the unique structure of forest resources in China. The goal of this modification is to satisfy the rising demand for eco-friendly living spaces.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"26 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139881412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.15376/biores.19.2.2007-2009
M. Hubbe, Dhanalekshmi Savithri
Picking up a discarded can or bottle and placing it in a recycling bin may seem like a very small step to take in the direction of making a better world. The scope of benefits that might accrue, by combining many such steps, and making careful plans, was highlighted in a recent Waste to Advanced Resources Matter (WARM) workshop hosted at this university. As shown during the discussions at the workshop, those who are deeply involved with issues of waste management, climate change issues, and care for our planet already know the “broad brush” answers regarding what needs to be done. Now is the time for action in implementing efficient and widespread recovery of valuable materials and energy from what we presently throw away.
{"title":"Cellulose fibers as a trendsetter for the circular economy that we urgently need","authors":"M. Hubbe, Dhanalekshmi Savithri","doi":"10.15376/biores.19.2.2007-2009","DOIUrl":"https://doi.org/10.15376/biores.19.2.2007-2009","url":null,"abstract":"Picking up a discarded can or bottle and placing it in a recycling bin may seem like a very small step to take in the direction of making a better world. The scope of benefits that might accrue, by combining many such steps, and making careful plans, was highlighted in a recent Waste to Advanced Resources Matter (WARM) workshop hosted at this university. As shown during the discussions at the workshop, those who are deeply involved with issues of waste management, climate change issues, and care for our planet already know the “broad brush” answers regarding what needs to be done. Now is the time for action in implementing efficient and widespread recovery of valuable materials and energy from what we presently throw away.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"17 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139878272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}