首页 > 最新文献

Evolutionary Computation最新文献

英文 中文
Characterizing Permutation-Based Combinatorial Optimization Problems in Fourier Space 傅立叶空间中基于置换的组合优化问题的表征
IF 6.8 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-09-01 DOI: 10.1162/evco_a_00315
Anne Elorza;Leticia Hernando;Jose A. Lozano
Comparing combinatorial optimization problems is a difficult task. They are defined using different criteria and terms: weights, flows, distances, etc. In spite of this apparent discrepancy, on many occasions, they tend to produce problem instances with similar properties. One avenue to compare different problems is to project them onto the same space, in order to have homogeneous representations. Expressing the problems in a unified framework could also lead to the discovery of theoretical properties or the design of new algorithms. This article proposes the use of the Fourier transform over the symmetric group as the tool to project different permutation-based combinatorial optimization problems onto the same space. Based on a previous study (Kondor, 2010), which characterized the Fourier coefficients of the quadratic assignment problem, we describe the Fourier coefficients of three other well-known problems: the symmetric and nonsymmetric traveling salesperson problem and the linear ordering problem. This transformation allows us to gain a better understanding of the intersection between the problems, as well as to bound their intrinsic dimension.
比较组合优化问题是一项艰巨的任务。它们使用不同的标准和术语来定义:重量、流量、距离等。尽管存在这种明显的差异,但在许多情况下,它们往往会产生具有类似性质的问题实例。比较不同问题的一种方法是将它们投射到同一空间,以获得齐次表示。在一个统一的框架中表达问题也可能导致发现理论性质或设计新的算法。本文提出使用对称群上的傅里叶变换作为工具,将不同的基于排列的组合优化问题投影到同一空间上。基于先前的研究(Kondor, 2010),该研究表征了二次分配问题的傅里叶系数,我们描述了其他三个著名问题的傅里叶系数:对称和非对称旅行销售人员问题以及线性排序问题。这种转换使我们能够更好地理解问题之间的交集,并限定它们的内在维度。
{"title":"Characterizing Permutation-Based Combinatorial Optimization Problems in Fourier Space","authors":"Anne Elorza;Leticia Hernando;Jose A. Lozano","doi":"10.1162/evco_a_00315","DOIUrl":"10.1162/evco_a_00315","url":null,"abstract":"Comparing combinatorial optimization problems is a difficult task. They are defined using different criteria and terms: weights, flows, distances, etc. In spite of this apparent discrepancy, on many occasions, they tend to produce problem instances with similar properties. One avenue to compare different problems is to project them onto the same space, in order to have homogeneous representations. Expressing the problems in a unified framework could also lead to the discovery of theoretical properties or the design of new algorithms. This article proposes the use of the Fourier transform over the symmetric group as the tool to project different permutation-based combinatorial optimization problems onto the same space. Based on a previous study (Kondor, 2010), which characterized the Fourier coefficients of the quadratic assignment problem, we describe the Fourier coefficients of three other well-known problems: the symmetric and nonsymmetric traveling salesperson problem and the linear ordering problem. This transformation allows us to gain a better understanding of the intersection between the problems, as well as to bound their intrinsic dimension.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"31 3","pages":"163-199"},"PeriodicalIF":6.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10141954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evolutionary and Estimation of Distribution Algorithms for Unconstrained, Constrained, and Multiobjective Noisy Combinatorial Optimisation Problems 无约束、约束和多目标噪声组合优化问题的分布算法的进化和估计
IF 6.8 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-09-01 DOI: 10.1162/evco_a_00320
Aishwaryaprajna;Jonathan E. Rowe
We present an empirical study of a range of evolutionary algorithms applied to various noisy combinatorial optimisation problems. There are three sets of experiments. The first looks at several toy problems, such as OneMax and other linear problems. We find that UMDA and the Paired-Crossover Evolutionary Algorithm (PCEA) are the only ones able to cope robustly with noise, within a reasonable fixed time budget. In the second stage, UMDA and PCEA are then tested on more complex noisy problems: SubsetSum, Knapsack, and SetCover. Both perform well under increasing levels of noise, with UMDA being the better of the two. In the third stage, we consider two noisy multiobjective problems (CountingOnesCountingZeros and a multiobjective formulation of SetCover). We compare several adaptations of UMDA for multiobjective problems with the Simple Evolutionary Multiobjective Optimiser (SEMO) and NSGA-II. We conclude that UMDA, and its variants, can be highly effective on a variety of noisy combinatorial optimisation, outperforming many other evolutionary algorithms.
我们提出了一系列应用于各种噪声组合优化问题的进化算法的实证研究。有三组实验。首先看几个玩具问题,如OneMax和其他线性问题。我们发现UMDA和配对交叉进化算法(PCEA)是唯一能够在合理的固定时间预算内鲁棒地处理噪声的算法。在第二阶段,UMDA和PCEA然后在更复杂的噪声问题上进行测试:SubsetSum, backpack和SetCover。两者在噪声水平增加的情况下都表现良好,其中UMDA表现较好。在第三阶段,我们考虑了两个有噪声的多目标问题(CountingOnesCountingZeros和SetCover的多目标公式)。我们比较了UMDA与简单进化多目标优化器(SEMO)和NSGA-II在多目标问题上的几种适应性。我们得出结论,UMDA及其变体可以在各种噪声组合优化中非常有效,优于许多其他进化算法。
{"title":"Evolutionary and Estimation of Distribution Algorithms for Unconstrained, Constrained, and Multiobjective Noisy Combinatorial Optimisation Problems","authors":"Aishwaryaprajna;Jonathan E. Rowe","doi":"10.1162/evco_a_00320","DOIUrl":"10.1162/evco_a_00320","url":null,"abstract":"We present an empirical study of a range of evolutionary algorithms applied to various noisy combinatorial optimisation problems. There are three sets of experiments. The first looks at several toy problems, such as OneMax and other linear problems. We find that UMDA and the Paired-Crossover Evolutionary Algorithm (PCEA) are the only ones able to cope robustly with noise, within a reasonable fixed time budget. In the second stage, UMDA and PCEA are then tested on more complex noisy problems: SubsetSum, Knapsack, and SetCover. Both perform well under increasing levels of noise, with UMDA being the better of the two. In the third stage, we consider two noisy multiobjective problems (CountingOnesCountingZeros and a multiobjective formulation of SetCover). We compare several adaptations of UMDA for multiobjective problems with the Simple Evolutionary Multiobjective Optimiser (SEMO) and NSGA-II. We conclude that UMDA, and its variants, can be highly effective on a variety of noisy combinatorial optimisation, outperforming many other evolutionary algorithms.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"31 3","pages":"259-285"},"PeriodicalIF":6.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10141100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Contributions to Dynamic Analysis of Differential Evolution Algorithms 差分进化算法动态分析的贡献
IF 6.8 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-09-01 DOI: 10.1162/evco_a_00318
Lucas Resende;Ricardo H. C. Takahashi
The Differential Evolution (DE) algorithm is one of the most successful evolutionary computation techniques. However, its structure is not trivially translatable in terms of mathematical transformations that describe its population dynamics. In this work, analytical expressions are developed for the probability of enhancement of individuals after each application of a mutation operator followed by a crossover operation, assuming a population distributed radially around the optimum for the sphere objective function, considering the DE/rand/1/bin and the DE/rand/1/exp algorithm versions. These expressions are validated by numerical experiments. Considering quadratic functions given by f(x)=xTDTDx and populations distributed according to the linear transformation D-1 of a radially distributed population, it is also shown that the expressions still hold in the cases when f(x) is separable (D is diagonal) and when D is any nonsingular matrix and the crossover rate is Cr=1.0. The expressions are employed for the analysis of DE population dynamics. The analysis is extended to more complex situations, reaching rather precise predictions of the effect of problem dimension and of the choice of algorithm parameters.
差分进化(DE)算法是最成功的进化计算技术之一。然而,它的结构在描述其人口动态的数学转换方面并不是简单的可翻译的。在这项工作中,考虑到DE/rand/1/bin和DE/rand/1/exp算法版本,假设种群分布在球体目标函数的最优点周围,在每次应用突变算子和交叉操作后,开发了个体增强概率的解析表达式。数值实验验证了这些表达式的正确性。考虑由f(x)=xTDTDx给出的二次函数和根据径向分布总体的线性变换D-1分布的总体,还证明了当f(x)可分(D为对角)和D为任意非奇异矩阵且交叉率为Cr=1.0时,表达式仍然成立。这些表达式用于DE种群动态分析。将分析扩展到更复杂的情况,对问题维数和算法参数选择的影响进行了相当精确的预测。
{"title":"Contributions to Dynamic Analysis of Differential Evolution Algorithms","authors":"Lucas Resende;Ricardo H. C. Takahashi","doi":"10.1162/evco_a_00318","DOIUrl":"10.1162/evco_a_00318","url":null,"abstract":"The Differential Evolution (DE) algorithm is one of the most successful evolutionary computation techniques. However, its structure is not trivially translatable in terms of mathematical transformations that describe its population dynamics. In this work, analytical expressions are developed for the probability of enhancement of individuals after each application of a mutation operator followed by a crossover operation, assuming a population distributed radially around the optimum for the sphere objective function, considering the DE/rand/1/bin and the DE/rand/1/exp algorithm versions. These expressions are validated by numerical experiments. Considering quadratic functions given by f(x)=xTDTDx and populations distributed according to the linear transformation D-1 of a radially distributed population, it is also shown that the expressions still hold in the cases when f(x) is separable (D is diagonal) and when D is any nonsingular matrix and the crossover rate is Cr=1.0. The expressions are employed for the analysis of DE population dynamics. The analysis is extended to more complex situations, reaching rather precise predictions of the effect of problem dimension and of the choice of algorithm parameters.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"31 3","pages":"201-232"},"PeriodicalIF":6.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10144079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Personal Perspective on Evolutionary Computation: A 35-Year Journey 个人对进化计算的看法:35年的历程
IF 6.8 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-01 DOI: 10.1162/evco_a_00323
Zbigniew Michalewicz
This paper presents a personal account of the author's 35 years “adventure” with Evolutionary Computation—from the first encounter in 1988 and many years of academic research through to working full-time in business—successfully implementing evolutionary algorithms for some of the world's largest corporations. The paper concludes with some observations and insights.
本文介绍了作者在进化计算领域35年的个人经历——从1988年第一次接触到多年的学术研究,一直到在商业领域全职工作——成功地为一些世界上最大的公司实现了进化算法。文章最后提出了一些观察和见解。
{"title":"A Personal Perspective on Evolutionary Computation: A 35-Year Journey","authors":"Zbigniew Michalewicz","doi":"10.1162/evco_a_00323","DOIUrl":"10.1162/evco_a_00323","url":null,"abstract":"This paper presents a personal account of the author's 35 years “adventure” with Evolutionary Computation—from the first encounter in 1988 and many years of academic research through to working full-time in business—successfully implementing evolutionary algorithms for some of the world's largest corporations. The paper concludes with some observations and insights.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"31 2","pages":"123-155"},"PeriodicalIF":6.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9662509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evolutionary Algorithms for Parameter Optimization—Thirty Years Later 参数优化的进化算法-三十年后
IF 6.8 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-01 DOI: 10.1162/evco_a_00325
Thomas H. W. Bäck;Anna V. Kononova;Bas van Stein;Hao Wang;Kirill A. Antonov;Roman T. Kalkreuth;Jacob de Nobel;Diederick Vermetten;Roy de Winter;Furong Ye
Thirty years, 1993–2023, is a huge time frame in science. We address some major developments in the field of evolutionary algorithms, with applications in parameter optimization, over these 30 years. These include the covariance matrix adaptation evolution strategy and some fast-growing fields such as multimodal optimization, surrogate-assisted optimization, multiobjective optimization, and automated algorithm design. Moreover, we also discuss particle swarm optimization and differential evolution, which did not exist 30 years ago, either. One of the key arguments made in the paper is that we need fewer algorithms, not more, which, however, is the current trend through continuously claiming paradigms from nature that are suggested to be useful as new optimization algorithms. Moreover, we argue that we need proper benchmarking procedures to sort out whether a newly proposed algorithm is useful or not. We also briefly discuss automated algorithm design approaches, including configurable algorithm design frameworks, as the proposed next step toward designing optimization algorithms automatically, rather than by hand.
从1993年到2023年的30年,在科学上是一个很长的时间框架。我们讨论了进化算法领域的一些主要发展,以及在参数优化方面的应用,在这30年里。其中包括协方差矩阵自适应进化策略以及多模态优化、代理辅助优化、多目标优化和自动化算法设计等一些快速发展的领域。此外,我们还讨论了30年前不存在的粒子群优化和差分进化。论文中提出的一个关键论点是,我们需要更少的算法,而不是更多的算法,然而,这是当前的趋势,通过不断地从自然界中获得范式,这些范式被认为是有用的新优化算法。此外,我们认为,我们需要适当的基准程序来整理新提出的算法是否有用。我们还简要讨论了自动算法设计方法,包括可配置算法设计框架,作为自动设计优化算法的下一步,而不是手工设计。
{"title":"Evolutionary Algorithms for Parameter Optimization—Thirty Years Later","authors":"Thomas H. W. Bäck;Anna V. Kononova;Bas van Stein;Hao Wang;Kirill A. Antonov;Roman T. Kalkreuth;Jacob de Nobel;Diederick Vermetten;Roy de Winter;Furong Ye","doi":"10.1162/evco_a_00325","DOIUrl":"10.1162/evco_a_00325","url":null,"abstract":"Thirty years, 1993–2023, is a huge time frame in science. We address some major developments in the field of evolutionary algorithms, with applications in parameter optimization, over these 30 years. These include the covariance matrix adaptation evolution strategy and some fast-growing fields such as multimodal optimization, surrogate-assisted optimization, multiobjective optimization, and automated algorithm design. Moreover, we also discuss particle swarm optimization and differential evolution, which did not exist 30 years ago, either. One of the key arguments made in the paper is that we need fewer algorithms, not more, which, however, is the current trend through continuously claiming paradigms from nature that are suggested to be useful as new optimization algorithms. Moreover, we argue that we need proper benchmarking procedures to sort out whether a newly proposed algorithm is useful or not. We also briefly discuss automated algorithm design approaches, including configurable algorithm design frameworks, as the proposed next step toward designing optimization algorithms automatically, rather than by hand.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"31 2","pages":"81-122"},"PeriodicalIF":6.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9664596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Editorial: Reflecting on Thirty Years of ECJ 社论:欧洲法院三十年的反思
IF 6.8 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-01 DOI: 10.1162/evco_e_00324
Kenneth De Jong;Emma Hart
We reflect on 30 years of the journal Evolutionary Computation. Taking the papers published in the first volume in 1993 as a springboard, as the founding and current Editors-in-Chief, we comment on the beginnings of the field, evaluate the extent to which the field has both grown and itself evolved, and provide our own perpectives on where the future lies.
我们回顾了《进化计算》杂志30年的历史。以1993年第一卷中发表的论文为跳板,作为创始和现任主编,我们评论了该领域的开端,评估了该领域的发展和自身演变的程度,并就未来的方向提供了我们自己的观点。
{"title":"Editorial: Reflecting on Thirty Years of ECJ","authors":"Kenneth De Jong;Emma Hart","doi":"10.1162/evco_e_00324","DOIUrl":"10.1162/evco_e_00324","url":null,"abstract":"We reflect on 30 years of the journal Evolutionary Computation. Taking the papers published in the first volume in 1993 as a springboard, as the founding and current Editors-in-Chief, we comment on the beginnings of the field, evaluate the extent to which the field has both grown and itself evolved, and provide our own perpectives on where the future lies.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"31 2","pages":"73-79"},"PeriodicalIF":6.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9670242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personal Reflections on Some Early Work in Evolving Strategies in the Iterated Prisoner's Dilemma 对囚徒困境演化策略早期研究的个人思考
IF 6.8 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-01 DOI: 10.1162/evco_a_00322
David B. Fogel
On the occasion of the 30-year anniversary of the Evolutionary Computation journal, I was invited by Professor Hart to offer some reflections on the article on evolving behaviors in the iterated prisoner's dilemma that I contributed to its first issue in 1993. It's an honor to do so. I would like to thank Professor Ken De Jong, the journal's first editor-in-chief, for his vision in creating the journal, and the editors who have followed and maintained that vision. This article contains some personal reflections on the topic and the field as a whole.
在《进化计算》杂志创刊30周年之际,Hart教授邀请我就我在1993年创刊的那篇关于反复囚徒困境中的进化行为的文章发表一些感想。我很荣幸能这样做。我要感谢该杂志的首任主编Ken De Jong教授,感谢他在创办该杂志时的远见卓识,以及追随并保持这一远见卓识的编辑们。这篇文章包含了对这个话题和整个领域的一些个人思考。
{"title":"Personal Reflections on Some Early Work in Evolving Strategies in the Iterated Prisoner's Dilemma","authors":"David B. Fogel","doi":"10.1162/evco_a_00322","DOIUrl":"10.1162/evco_a_00322","url":null,"abstract":"On the occasion of the 30-year anniversary of the Evolutionary Computation journal, I was invited by Professor Hart to offer some reflections on the article on evolving behaviors in the iterated prisoner's dilemma that I contributed to its first issue in 1993. It's an honor to do so. I would like to thank Professor Ken De Jong, the journal's first editor-in-chief, for his vision in creating the journal, and the editors who have followed and maintained that vision. This article contains some personal reflections on the topic and the field as a whole.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"31 2","pages":"157-161"},"PeriodicalIF":6.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9670243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Stagnation Detection with Randomized Local Search* 基于随机局部搜索的停滞检测*
IF 6.8 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-03-01 DOI: 10.1162/evco_a_00313
Amirhossein Rajabi;Carsten Witt
Recently a mechanism called stagnation detection was proposed that automatically adjusts the mutation rate of evolutionary algorithms when they encounter local optima. The so-called SD-(1+1) EA introduced by Rajabi and Witt (2022) adds stagnation detection to the classical (1+1) EA with standard bit mutation. This algorithm flips each bit independently with some mutation rate, and stagnation detection raises the rate when the algorithm is likely to have encountered a local optimum. In this article, we investigate stagnation detection in the context of the k-bit flip operator of randomized local search that flips k bits chosen uniformly at random and let stagnation detection adjust the parameter k. We obtain improved runtime results compared with the SD-(1+1) EA amounting to a speedup of at least (1-o(1))2πm, where m is the so-called gap size, that is, the distance to the next improvement. Moreover, we propose additional schemes that prevent infinite optimization times even if the algorithm misses a working choice of k due to unlucky events. Finally, we present an example where standard bit mutation still outperforms the k-bit flip operator with stagnation detection.
最近提出了一种称为停滞检测的机制,当进化算法遇到局部最优时,它会自动调整突变率。Rajabi和Witt(2022)引入的所谓SD-(1+1) EA在具有标准位突变的经典(1+1)EA的基础上增加了停滞检测。该算法以一定的突变率独立翻转每个比特,当算法可能遇到局部最优时,停滞检测提高了速率。在本文中,我们研究了随机局部搜索的k位翻转算子的停滞检测,该算子随机选择k位均匀翻转,并让停滞检测调整参数k。与SD-(1+1) EA相比,我们获得了改进的运行结果,相当于至少(1-o(1))2πm,其中m是所谓的间隙大小,即到下一个改进的距离。此外,我们提出了额外的方案,即使算法由于不幸事件而错过k的工作选择,也可以防止无限的优化时间。最后,我们给出了一个例子,其中标准位突变仍然优于具有停滞检测的k位翻转算子。
{"title":"Stagnation Detection with Randomized Local Search*","authors":"Amirhossein Rajabi;Carsten Witt","doi":"10.1162/evco_a_00313","DOIUrl":"10.1162/evco_a_00313","url":null,"abstract":"Recently a mechanism called stagnation detection was proposed that automatically adjusts the mutation rate of evolutionary algorithms when they encounter local optima. The so-called SD-(1+1) EA introduced by Rajabi and Witt (2022) adds stagnation detection to the classical (1+1) EA with standard bit mutation. This algorithm flips each bit independently with some mutation rate, and stagnation detection raises the rate when the algorithm is likely to have encountered a local optimum. In this article, we investigate stagnation detection in the context of the k-bit flip operator of randomized local search that flips k bits chosen uniformly at random and let stagnation detection adjust the parameter k. We obtain improved runtime results compared with the SD-(1+1) EA amounting to a speedup of at least (1-o(1))2πm, where m is the so-called gap size, that is, the distance to the next improvement. Moreover, we propose additional schemes that prevent infinite optimization times even if the algorithm misses a working choice of k due to unlucky events. Finally, we present an example where standard bit mutation still outperforms the k-bit flip operator with stagnation detection.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"31 1","pages":"1-29"},"PeriodicalIF":6.8,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9359552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
An Uncertainty Measure for Prediction of Non-Gaussian Process Surrogates 非高斯过程替代物预测的不确定度度量
IF 6.8 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-03-01 DOI: 10.1162/evco_a_00316
Caie Hu;Sanyou Zeng;Changhe Li
Model management is an essential component in data-driven surrogate-assisted evolutionary optimization. In model management, the solutions with a large degree of uncertainty in approximation play an important role. They can strengthen the exploration ability of algorithms and improve the accuracy of surrogates. However, there is no theoretical method to measure the uncertainty of prediction of Non-Gaussian process surrogates. To address this issue, this article proposes a method to measure the uncertainty. In this method, a stationary random field with a known zero mean is used to measure the uncertainty of prediction of Non-Gaussian process surrogates. Based on experimental analyses, this method is able to measure the uncertainty of prediction of Non-Gaussian process surrogates. The method's effectiveness is demonstrated on a set of benchmark problems in single surrogate and ensemble surrogates cases.
模型管理是数据驱动的代理辅助进化优化的重要组成部分。在模型管理中,具有较大近似不确定性的解起着重要的作用。它们可以增强算法的探索能力,提高代理的准确性。然而,目前尚无理论方法来测量非高斯过程的预测不确定度。为了解决这一问题,本文提出了一种测量不确定度的方法。该方法利用一个已知均值为零的平稳随机场来测量非高斯过程替代物预测的不确定性。实验分析表明,该方法能够测量非高斯过程的预测不确定度。在单代理和集成代理两种情况下的一组基准问题上验证了该方法的有效性。
{"title":"An Uncertainty Measure for Prediction of Non-Gaussian Process Surrogates","authors":"Caie Hu;Sanyou Zeng;Changhe Li","doi":"10.1162/evco_a_00316","DOIUrl":"10.1162/evco_a_00316","url":null,"abstract":"Model management is an essential component in data-driven surrogate-assisted evolutionary optimization. In model management, the solutions with a large degree of uncertainty in approximation play an important role. They can strengthen the exploration ability of algorithms and improve the accuracy of surrogates. However, there is no theoretical method to measure the uncertainty of prediction of Non-Gaussian process surrogates. To address this issue, this article proposes a method to measure the uncertainty. In this method, a stationary random field with a known zero mean is used to measure the uncertainty of prediction of Non-Gaussian process surrogates. Based on experimental analyses, this method is able to measure the uncertainty of prediction of Non-Gaussian process surrogates. The method's effectiveness is demonstrated on a set of benchmark problems in single surrogate and ensemble surrogates cases.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"31 1","pages":"53-71"},"PeriodicalIF":6.8,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10801408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hybridization of Evolutionary Operators with Elitist Iterated Racing for the Simulation Optimization of Traffic Lights Programs 混合进化算子与精英迭代竞速的交通信号灯仿真优化
IF 6.8 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-03-01 DOI: 10.1162/evco_a_00314
Christian Cintrano;Javier Ferrer;Manuel López-Ibáñez;Enrique Alba
In the traffic light scheduling problem, the evaluation of candidate solutions requires the simulation of a process under various (traffic) scenarios. Thus, good solutions should not only achieve good objective function values, but they must be robust (low variance) across all different scenarios. Previous work has shown that combining IRACE with evolutionary operators is effective for this task due to the power of evolutionary operators in numerical optimization. In this article, we further explore the hybridization of evolutionary operators and the elitist iterated racing of IRACE for the simulation–optimization of traffic light programs. We review previous works from the literature to find the evolutionary operators performing the best when facing this problem to propose new hybrid algorithms. We evaluate our approach over a realistic case study derived from the traffic network of Málaga (Spain) with 275 traffic lights that should be scheduled optimally. The experimental analysis reveals that the hybrid algorithm comprising IRACE plus differential evolution offers statistically better results than the other algorithms when the budget of simulations is low. In contrast, IRACE performs better than the hybrids for a high simulations budget, although the optimization time is much longer.
在交通灯调度问题中,候选方案的评价需要模拟各种交通场景下的过程。因此,好的解决方案不仅应该实现好的目标函数值,而且必须在所有不同的场景中都具有鲁棒性(低方差)。先前的研究表明,由于进化算子在数值优化中的强大功能,将IRACE与进化算子相结合是有效的。在本文中,我们进一步探讨了进化算子和IRACE的精英迭代赛车的杂交,用于红绿灯程序的模拟优化。我们回顾了以往的文献,找到了在面对这一问题时表现最好的进化算子,并提出了新的混合算法。我们通过一个现实的案例研究来评估我们的方法,该案例研究来源于Málaga(西班牙)的交通网络,其中有275个交通信号灯应该被优化安排。实验分析表明,当模拟预算较低时,由IRACE和差分进化组成的混合算法在统计上优于其他算法。相比之下,尽管优化时间更长,但在高模拟预算下,IRACE的性能优于混合动力车。
{"title":"Hybridization of Evolutionary Operators with Elitist Iterated Racing for the Simulation Optimization of Traffic Lights Programs","authors":"Christian Cintrano;Javier Ferrer;Manuel López-Ibáñez;Enrique Alba","doi":"10.1162/evco_a_00314","DOIUrl":"10.1162/evco_a_00314","url":null,"abstract":"In the traffic light scheduling problem, the evaluation of candidate solutions requires the simulation of a process under various (traffic) scenarios. Thus, good solutions should not only achieve good objective function values, but they must be robust (low variance) across all different scenarios. Previous work has shown that combining IRACE with evolutionary operators is effective for this task due to the power of evolutionary operators in numerical optimization. In this article, we further explore the hybridization of evolutionary operators and the elitist iterated racing of IRACE for the simulation–optimization of traffic light programs. We review previous works from the literature to find the evolutionary operators performing the best when facing this problem to propose new hybrid algorithms. We evaluate our approach over a realistic case study derived from the traffic network of Málaga (Spain) with 275 traffic lights that should be scheduled optimally. The experimental analysis reveals that the hybrid algorithm comprising IRACE plus differential evolution offers statistically better results than the other algorithms when the budget of simulations is low. In contrast, IRACE performs better than the hybrids for a high simulations budget, although the optimization time is much longer.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"31 1","pages":"31-51"},"PeriodicalIF":6.8,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10814046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Evolutionary Computation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1