首页 > 最新文献

Coastal Engineering最新文献

英文 中文
Remote sensing of wave-orbital velocities in the surfzone 冲浪区波速轨道遥感
IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-11-02 DOI: 10.1016/j.coastaleng.2024.104631
Tyler McCormack , Julia Hopkins , Britt Raubenheimer , Steve Elgar , Katherine L. Brodie
Wave-orbital velocities are estimated with particle image velocimetry (PIV) applied to rapid sequences of images of the surfzone surface obtained with a low-cost camera mounted on an amphibious tripod. Time series and spectra of the remotely sensed cross-shore wave-orbital velocities are converted to the depth of colocated acoustic Doppler velocimeters (ADVs), using linear finite depth theory. These converted velocities are similar to the velocities measured in situ (mean nRMSE for time series = 16% and for spectra = 10%). Small discrepancies between depth-attenuated surface and in situ currents may be owing to errors in the surface velocity measurements, uncertainties in the water depth, the vertical elevation of the ADVs, and the neglect of nonlinear effects when using linear finite depth theory. These results show the potential to obtain spatially dense estimates of wave velocities using optical near-field remote methods during field campaigns and continuous monitoring operations.
利用安装在水陆两栖三脚架上的低成本相机获得的冲浪区表面快速图像序列,通过粒子图像测速仪(PIV)估算波轨速度。利用线性有限深度理论,将遥感跨岸波速的时间序列和光谱转换为同位声学多普勒测速仪(ADV)的深度。这些转换后的速度与现场测量的速度相似(时间序列的平均 nRMSE = 16%,频谱的平均 nRMSE = 10%)。深度衰减后的表层水流与现场水流之间的微小差异可能是由于表层流速测量误差、水深的不确定性、ADV 的垂直高度以及使用线性有限深度理论时忽略了非线性效应造成的。这些结果表明,在野外活动和连续监测行动中,利用光学近场遥感方法获得波速空间密度估算值是很有潜力的。
{"title":"Remote sensing of wave-orbital velocities in the surfzone","authors":"Tyler McCormack ,&nbsp;Julia Hopkins ,&nbsp;Britt Raubenheimer ,&nbsp;Steve Elgar ,&nbsp;Katherine L. Brodie","doi":"10.1016/j.coastaleng.2024.104631","DOIUrl":"10.1016/j.coastaleng.2024.104631","url":null,"abstract":"<div><div>Wave-orbital velocities are estimated with particle image velocimetry (PIV) applied to rapid sequences of images of the surfzone surface obtained with a low-cost camera mounted on an amphibious tripod. Time series and spectra of the remotely sensed cross-shore wave-orbital velocities are converted to the depth of colocated acoustic Doppler velocimeters (ADVs), using linear finite depth theory. These converted velocities are similar to the velocities measured in situ (mean nRMSE for time series = 16% and for spectra = 10%). Small discrepancies between depth-attenuated surface and in situ currents may be owing to errors in the surface velocity measurements, uncertainties in the water depth, the vertical elevation of the ADVs, and the neglect of nonlinear effects when using linear finite depth theory. These results show the potential to obtain spatially dense estimates of wave velocities using optical near-field remote methods during field campaigns and continuous monitoring operations.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104631"},"PeriodicalIF":4.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a decision tree model to forecast runup and assess uncertainty in empirical formulations 开发决策树模型以预测运行和评估经验公式的不确定性
IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-29 DOI: 10.1016/j.coastaleng.2024.104641
Michael Itzkin, Margaret L. Palmsten, Mark L. Buckley, Justin J. Birchler, Legna M. Torres-Garcia
The coastal zone is a dynamic region that can change rapidly and significantly with respect to the morphology of the beach and incoming wave conditions. Runup forecasts may be improved by adapting a dynamic approach that allows for different runup models to be implemented in response to changes in beach state. Accurately forecasting wave runup is critical to characterize exposure to coastal hazards and provide an early warning against potential erosion and inundation. Here, we developed a decision tree model to produce a weighted ensemble of existing runup models to predict 1.25 years of runup at Duck, North Carolina, USA. We then applied the calibrated decision tree model to reproduce observed runup during the DUNEX experiment in Pea Island, North Carolina, USA. We found that the decision tree approach yielded a prediction that was comparable or greater in accuracy (i.e. higher r2, lower RMSE) than the individual runup models. We also interrogated the decision tree predictions to determine how the individual models perform relative to each other and why certain models perform better than others under the same observed wave and beach conditions. We found that the decision tree approach drew on the processes represented in the individual models in the ensemble to produce a forecast that is accurate and explainable without relying on prior knowledge of the study site(s) or requiring manual adjustments beyond the initial model training.
沿岸带是一个动态区域,会因海滩形态和海浪条件的变化而迅速发生重大变化。通过采用动态方法,可以根据海滩状态的变化采用不同的径流模式,从而改进径流预报。准确预报波浪上升对确定海岸灾害的暴露特征以及对潜在的侵蚀和淹没提供早期预警至关重要。在这里,我们开发了一个决策树模型,对现有的径流模型进行加权组合,以预测美国北卡罗来纳州达克 1.25 年的径流。然后,我们将校准后的决策树模型用于再现美国北卡罗来纳州豌豆岛 DUNEX 试验期间观测到的径流。我们发现,与单个径流模型相比,决策树方法得出的预测精度相当或更高(即 r2 较高、RMSE 较低)。我们还对决策树预测进行了分析,以确定各个模型之间的相对性能,以及在相同的观测波浪和海滩条件下,某些模型比其他模型性能更好的原因。我们发现,决策树方法借鉴了集合中单个模型所代表的过程,产生了准确且可解释的预测结果,而无需依赖研究地点的先验知识,也无需在初始模型训练之外进行人工调整。
{"title":"Developing a decision tree model to forecast runup and assess uncertainty in empirical formulations","authors":"Michael Itzkin,&nbsp;Margaret L. Palmsten,&nbsp;Mark L. Buckley,&nbsp;Justin J. Birchler,&nbsp;Legna M. Torres-Garcia","doi":"10.1016/j.coastaleng.2024.104641","DOIUrl":"10.1016/j.coastaleng.2024.104641","url":null,"abstract":"<div><div>The coastal zone is a dynamic region that can change rapidly and significantly with respect to the morphology of the beach and incoming wave conditions. Runup forecasts may be improved by adapting a dynamic approach that allows for different runup models to be implemented in response to changes in beach state. Accurately forecasting wave runup is critical to characterize exposure to coastal hazards and provide an early warning against potential erosion and inundation. Here, we developed a decision tree model to produce a weighted ensemble of existing runup models to predict 1.25 years of runup at Duck, North Carolina, USA. We then applied the calibrated decision tree model to reproduce observed runup during the DUNEX experiment in Pea Island, North Carolina, USA. We found that the decision tree approach yielded a prediction that was comparable or greater in accuracy (i.e. higher r<sup>2</sup>, lower RMSE) than the individual runup models. We also interrogated the decision tree predictions to determine how the individual models perform relative to each other and why certain models perform better than others under the same observed wave and beach conditions. We found that the decision tree approach drew on the processes represented in the individual models in the ensemble to produce a forecast that is accurate and explainable without relying on prior knowledge of the study site(s) or requiring manual adjustments beyond the initial model training.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104641"},"PeriodicalIF":4.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison of eight weakly dispersive Boussinesq-type models for non-breaking long-wave propagation in variable water depth 变水深非断裂长波传播的八种弱色散布森斯克模型比较
IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-29 DOI: 10.1016/j.coastaleng.2024.104645
Guillaume Coulaud , Maria Teles , Michel Benoit
Weakly dispersive Boussinesq-type models are extensively used to model long-wave propagation in coastal areas and their interaction with coastal infrastructures. Many equations falling in this category have been formulated during the last decades, but few detailed comparisons between them can be found in the literature. In this work, we investigate theoretically and with computational experiments eight variants of the most popular models used by the coastal engineering community. Both weakly nonlinear and fully nonlinear models are considered, hoping to understand better when the additional complexity of the latter class of models is necessary or justified. We provide an overview and discuss the properties of these models, including the linear dispersion relation in uniform water depth, the second-order nonlinear coupling coefficient, the shoaling gradient, and the sensitivity to wave trough instabilities. The models are then numerically discretised using the same general strategy in a single numerical code, using fourth-order methods for time and space discretisation. Their capacity to simulate coastal wave propagation and their transformation when approaching the shore is assessed on three challenging one-dimensional benchmarks. It appears that fully nonlinear models are more consistent than their weakly nonlinear counterparts, which can occasionally perform better but show different behaviours depending on the case.
弱色散布森斯克模型被广泛用于模拟长波在沿岸地区的传播及其与沿岸基础设施 的相互作用。在过去的几十年中,已经提出了许多属于这一类的方程,但在文献中很少能找到它们之间的详细比较。在这项工作中,我们从理论上并通过计算实验研究了沿岸工程界最常用模型的八个变体。我们考虑了弱非线性和全非线性模型,希望能更好地理解后一类模型的额外复杂性是 必要的或合理的。我们概述并讨论了这些模型的特性,包括均匀水深下的线性弥散关系、二阶非线性耦合 系数、滩涂梯度以及对波谷不稳定性的敏感性。然后,在单个数值代码中采用相同的一般策略对模型进行数值离散化,使用四阶方法进行时间和空间离散化。在三个具有挑战性的一维基准上,评估了它们模拟沿岸波浪传播及其接近海岸时的变 化的能力。与弱非线性模型相比,全非线性模型的一致性更强。
{"title":"A comparison of eight weakly dispersive Boussinesq-type models for non-breaking long-wave propagation in variable water depth","authors":"Guillaume Coulaud ,&nbsp;Maria Teles ,&nbsp;Michel Benoit","doi":"10.1016/j.coastaleng.2024.104645","DOIUrl":"10.1016/j.coastaleng.2024.104645","url":null,"abstract":"<div><div>Weakly dispersive Boussinesq-type models are extensively used to model long-wave propagation in coastal areas and their interaction with coastal infrastructures. Many equations falling in this category have been formulated during the last decades, but few detailed comparisons between them can be found in the literature. In this work, we investigate theoretically and with computational experiments eight variants of the most popular models used by the coastal engineering community. Both weakly nonlinear and fully nonlinear models are considered, hoping to understand better when the additional complexity of the latter class of models is necessary or justified. We provide an overview and discuss the properties of these models, including the linear dispersion relation in uniform water depth, the second-order nonlinear coupling coefficient, the shoaling gradient, and the sensitivity to wave trough instabilities. The models are then numerically discretised using the same general strategy in a single numerical code, using fourth-order methods for time and space discretisation. Their capacity to simulate coastal wave propagation and their transformation when approaching the shore is assessed on three challenging one-dimensional benchmarks. It appears that fully nonlinear models are more consistent than their weakly nonlinear counterparts, which can occasionally perform better but show different behaviours depending on the case.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104645"},"PeriodicalIF":4.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group interaction effect on breaking wave forces on a vertical pile: Experimental tests and predictive models 垂直桩上破浪力的群体相互作用效应:实验测试和预测模型
IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-29 DOI: 10.1016/j.coastaleng.2024.104651
Xiutao Jiang , Zegao Yin , Yanxu Wang , Rengong Zhang
Pile groups are extensively utilized as supports for many coastal structures, such as bridges, jetties, and oil production platforms. The problem of understanding the interaction effects within pile groups and predicting the breaking wave forces on them is considered in this paper, using experimental tests and machine learning-based predictive modeling. The restriction of previous studies on this important engineering problem is that the pile group arrangements considered are limited. Prediction methods are therefore developed only for specific pile group arrangements and do not incorporate the effect of the incident wave direction. In this study, to partially overcome this limitation, an extensive experimental investigation is conducted on 70 different pile group arrangements under six breaking wave conditions. Three pile group coefficients, characterized by the total, quasi-static, and dynamic forces, are introduced for a thorough assessment of the interaction effects within the pile group. First, the pile group coefficients for three basic arrangements (tandem, side-by-side, and staggered) are evaluated. The results reveal a sheltering effect in the tandem arrangement and an amplification effect in the side-by-side arrangement. However, the forces on the measured pile in the staggered arrangement resemble those on the isolated pile, with neither significant sheltering nor amplification effects observed. Then, the results for all arrangements highlight the significant effect of wave direction on the pile group coefficients for small inter-pile spacing. Finally, different machine learning algorithms are adopted to develop predictive models for the group coefficients. The XGBoost model demonstrates superior accuracy for predicting the total and quasi-static force coefficients, while the dynamic force coefficient remains challenging to predict accurately due to its stochastic nature.
桩群被广泛用作桥梁、防波堤和采油平台等许多海岸结构的支撑。本文利用实验测试和基于机器学习的预测建模,探讨了如何理解桩群内部的相互作用效应并预测桩群的破浪力。以往对这一重要工程问题的研究存在局限性,即考虑的桩群布置有限。因此,只能针对特定的桩群布置开发预测方法,而没有考虑入射波方向的影响。在本研究中,为了部分克服这一局限性,我们在六种破浪条件下对 70 种不同的桩群布置进行了广泛的实验研究。为了全面评估桩群内部的相互作用效应,引入了以总力、准静力和动力为特征的三个桩群系数。首先,评估了三种基本布置(串联、并排和交错)的桩群系数。结果显示,串联布置有遮挡效应,并排布置有放大效应。然而,在交错布置中,测量桩上的力与孤立桩上的力相似,既没有观察到明显的遮挡效应,也没有观察到放大效应。然后,所有布置的结果都突出表明,在桩间距较小的情况下,波浪方向对桩群系数有显著影响。最后,我们采用了不同的机器学习算法来开发桩群系数预测模型。XGBoost 模型在预测总力系数和准静力系数方面表现出更高的准确性,而动态力系数由于其随机性,准确预测仍具有挑战性。
{"title":"Group interaction effect on breaking wave forces on a vertical pile: Experimental tests and predictive models","authors":"Xiutao Jiang ,&nbsp;Zegao Yin ,&nbsp;Yanxu Wang ,&nbsp;Rengong Zhang","doi":"10.1016/j.coastaleng.2024.104651","DOIUrl":"10.1016/j.coastaleng.2024.104651","url":null,"abstract":"<div><div>Pile groups are extensively utilized as supports for many coastal structures, such as bridges, jetties, and oil production platforms. The problem of understanding the interaction effects within pile groups and predicting the breaking wave forces on them is considered in this paper, using experimental tests and machine learning-based predictive modeling. The restriction of previous studies on this important engineering problem is that the pile group arrangements considered are limited. Prediction methods are therefore developed only for specific pile group arrangements and do not incorporate the effect of the incident wave direction. In this study, to partially overcome this limitation, an extensive experimental investigation is conducted on 70 different pile group arrangements under six breaking wave conditions. Three pile group coefficients, characterized by the total, quasi-static, and dynamic forces, are introduced for a thorough assessment of the interaction effects within the pile group. First, the pile group coefficients for three basic arrangements (tandem, side-by-side, and staggered) are evaluated. The results reveal a sheltering effect in the tandem arrangement and an amplification effect in the side-by-side arrangement. However, the forces on the measured pile in the staggered arrangement resemble those on the isolated pile, with neither significant sheltering nor amplification effects observed. Then, the results for all arrangements highlight the significant effect of wave direction on the pile group coefficients for small inter-pile spacing. Finally, different machine learning algorithms are adopted to develop predictive models for the group coefficients. The XGBoost model demonstrates superior accuracy for predicting the total and quasi-static force coefficients, while the dynamic force coefficient remains challenging to predict accurately due to its stochastic nature.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104651"},"PeriodicalIF":4.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on whitecapping dissipation process for wave modelling during tropical cyclones 用于热带气旋期间波浪建模的白浪消散过程研究
IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-28 DOI: 10.1016/j.coastaleng.2024.104650
Wenxuan Sun , Zhuxiao Shao , Bingchen Liang , Huijun Gao
The atmosphere-wave interaction is an important physical process during tropical cyclones. Understanding and modelling of this process are of great significance for the technical and functional design of coastal and harbor structures. At the high wind velocities of tropical cyclones, foams and sprays that are blown away from the sea form a slip layer between the atmosphere and the sea surface. This slip layer makes the atmosphere-wave interaction exhibit different characteristics compared with that at low wind velocities. The significant effect of this layer on the atmosphere is the reduction of aero-dynamical surface roughness, which has been used to improve the expression of the drag coefficient. On this basis, the effect of the slip layer on the sea surface is further explored in this study. The whitecap coverage may reach a low limit at high wind velocities, and a modified numerical method of whitcapping dissipation for the wave spectrum model is proposed based on the classic field observations of whitecaps. According to these observations, when developing waves appear, the variation characteristics of whitecap coverage are different from those of developed waves with low wind velocities. Thus, the critical friction velocity of wave states should be defined, which can be expressed by the threshold steepness of developed waves due to the negative correlation between wave age and wave steepness. The dissipation mode is then modified to gradually reach the limit with the increase of friction velocities, which is validated during 24 tropical cyclones measured with 26 buoys. The negative Bias of the default mode generally decreases with the increase of friction velocity, even reaching −0.8 m, while the Bias of the modified mode is mostly maintained between 0.2 m and −0.2 m.
大气-波浪相互作用是热带气旋期间的一个重要物理过程。对这一过程的了解和模拟对海岸和港口结构的技术和功能设计具有重要意义。在热带气旋的高风速下,被吹离海面的泡沫和喷雾在大气和海面之间形成滑动层。与低风速时相比,该滑动层使大气与波的相互作用表现出不同的特征。该滑动层对大气的重要影响是降低了空气动力表面粗糙度,从而改善了阻力系数的表达。在此基础上,本研究进一步探讨了滑动层对海面的影响。在高风速下,白帽覆盖率可能会达到一个较低的极限,根据白帽的经典现场观测结果,提出了一种改进的波谱模型白帽耗散数值方法。根据这些观测结果,当出现发展波时,白帽覆盖率的变化特征不同于低风速下的发展波。因此,应定义波浪状态的临界摩擦速度,由于波龄和波陡之间的负相关关系,该临界摩擦速度可以用发育波的阈值陡度来表示。然后修改消散模式,使其随着摩擦速度的增加逐渐达到临界值,这在用 26 个浮标测量的 24 个热带气旋中得到了验证。默认模式的负偏差一般随着摩擦速度的增加而减小,甚至达到-0.8 米,而修正模式的偏差大多维持在 0.2 米至-0.2 米之间。
{"title":"Study on whitecapping dissipation process for wave modelling during tropical cyclones","authors":"Wenxuan Sun ,&nbsp;Zhuxiao Shao ,&nbsp;Bingchen Liang ,&nbsp;Huijun Gao","doi":"10.1016/j.coastaleng.2024.104650","DOIUrl":"10.1016/j.coastaleng.2024.104650","url":null,"abstract":"<div><div>The atmosphere-wave interaction is an important physical process during tropical cyclones. Understanding and modelling of this process are of great significance for the technical and functional design of coastal and harbor structures. At the high wind velocities of tropical cyclones, foams and sprays that are blown away from the sea form a slip layer between the atmosphere and the sea surface. This slip layer makes the atmosphere-wave interaction exhibit different characteristics compared with that at low wind velocities. The significant effect of this layer on the atmosphere is the reduction of aero-dynamical surface roughness, which has been used to improve the expression of the drag coefficient. On this basis, the effect of the slip layer on the sea surface is further explored in this study. The whitecap coverage may reach a low limit at high wind velocities, and a modified numerical method of whitcapping dissipation for the wave spectrum model is proposed based on the classic field observations of whitecaps. According to these observations, when developing waves appear, the variation characteristics of whitecap coverage are different from those of developed waves with low wind velocities. Thus, the critical friction velocity of wave states should be defined, which can be expressed by the threshold steepness of developed waves due to the negative correlation between wave age and wave steepness. The dissipation mode is then modified to gradually reach the limit with the increase of friction velocities, which is validated during 24 tropical cyclones measured with 26 buoys. The negative Bias of the default mode generally decreases with the increase of friction velocity, even reaching −0.8 m, while the Bias of the modified mode is mostly maintained between 0.2 m and −0.2 m.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104650"},"PeriodicalIF":4.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave attenuation by cultivated seaweeds: A linearized analytical model 栽培海藻的波浪衰减:线性化分析模型
IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-28 DOI: 10.1016/j.coastaleng.2024.104642
Zhilong Wei , Morgane Weiss , Trygve Kristiansen , David Kristiansen , Yanlin Shao
An analytical framework is presented to describe the attenuation of regular and irregular waves propagating over floating seaweed farms. Kelp blades suspended on longlines are modelled, as a first approximation, as rigid bars rotating around their upper ends. Assuming small-amplitude blade motions under low to moderate sea conditions, the frequency-dependent transfer function of the rotations can be obtained, with quadratic drag loads linearized. Subsequently, the hydrodynamic problem with regular waves propagating over suspended seaweed canopies is formulated using the continuity equation and linearized momentum equations with additional source terms in the vegetation region. Analytical solutions are obtained for attenuated regular waves with their heights decaying exponentially as they propagate over the canopy. These solutions are utilized as the basis for predicting wave attenuation of irregular waves while stochastic linearization of the quadratic drag loads is employed. In contrast to energy-conservation-based models, which assume the velocity profile follows linear wave theory, the present solution can predict the reduced velocity inside the canopy. The analytical solutions are validated against experimental data and verified against a numerical flow solver. The model is capable of resolving the wave attenuation, along with velocity profiles and phase lag. Drag and inertial force exhibit cancellation effects on wave decay and both affect phase lag.
本文提出了一个分析框架,用于描述在漂浮海藻养殖场上空传播的规则波和不规则波的衰减。悬挂在延绳上的海藻叶片被模拟为围绕其上端旋转的刚性条,这是第一种近似方法。假定叶片在中低海况下做小振幅运动,则可获得旋转的频率传递函数,并将二次阻力载荷线性化。随后,利用连续性方程和线性化动量方程以及植被区域的附加源项,提出了规则波在悬浮海藻冠上传播的流体力学问题。得到了衰减的规则波的解析解,这些波在冠层上传播时高度呈指数衰减。这些解法被用作预测不规则波浪衰减的基础,同时对二次阻力载荷进行随机线性化。与假定速度曲线遵循线性波理论的基于能量守恒的模型相比,本解决方案可以预测冠层内的减弱速度。分析解决方案与实验数据进行了验证,并与数值流求解器进行了验证。该模型能够解决波衰减、速度剖面和相位滞后问题。阻力和惯性力对波浪衰减有抵消作用,并且都会影响相位滞后。
{"title":"Wave attenuation by cultivated seaweeds: A linearized analytical model","authors":"Zhilong Wei ,&nbsp;Morgane Weiss ,&nbsp;Trygve Kristiansen ,&nbsp;David Kristiansen ,&nbsp;Yanlin Shao","doi":"10.1016/j.coastaleng.2024.104642","DOIUrl":"10.1016/j.coastaleng.2024.104642","url":null,"abstract":"<div><div>An analytical framework is presented to describe the attenuation of regular and irregular waves propagating over floating seaweed farms. Kelp blades suspended on longlines are modelled, as a first approximation, as rigid bars rotating around their upper ends. Assuming small-amplitude blade motions under low to moderate sea conditions, the frequency-dependent transfer function of the rotations can be obtained, with quadratic drag loads linearized. Subsequently, the hydrodynamic problem with regular waves propagating over suspended seaweed canopies is formulated using the continuity equation and linearized momentum equations with additional source terms in the vegetation region. Analytical solutions are obtained for attenuated regular waves with their heights decaying exponentially as they propagate over the canopy. These solutions are utilized as the basis for predicting wave attenuation of irregular waves while stochastic linearization of the quadratic drag loads is employed. In contrast to energy-conservation-based models, which assume the velocity profile follows linear wave theory, the present solution can predict the reduced velocity inside the canopy. The analytical solutions are validated against experimental data and verified against a numerical flow solver. The model is capable of resolving the wave attenuation, along with velocity profiles and phase lag. Drag and inertial force exhibit cancellation effects on wave decay and both affect phase lag.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104642"},"PeriodicalIF":4.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring wind flow dynamics in foredune notches using Computational Fluid Dynamics (CFD) 利用计算流体动力学(CFD)探索前沙丘缺口处的风流动力学
IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-26 DOI: 10.1016/j.coastaleng.2024.104646
Thomas A.G. Smyth , Thomas Pagon , Ian J. Walker
Coastal dunes offer a wide range of valuable ecosystem services such as protection from erosion, flooding, sea-level rise, and provision of specialised habitat for endangered, endemic, or migratory species. Foredune blowouts and landward migrating parabolic dunes play an important role in many coastal dune settings creating ecological heterogeneity associated with inland sand transport, nutrient supply, and geomorphic disturbance processes. However, as coastal dunes globally are being increasingly stabilised by vegetation and declining in their ecological resilience and functionality, anthropogenic interventions, such as the removal of invasive species and excavation of foredune notches, have emerged to simulate and restore critical aeolian processes required to maintain dune morphodynamics and onshore sediment transport between the beach and inland dunes. This study employed computational fluid dynamics (CFD) modelling to investigate key controls on the wind flow dynamics and sand transport potential within idealised foredune notches of varying widths, slopes, and planform shape (rectangular vs. trapezoidal) for perpendicular and oblique incident wind directions. Compared with empirical findings from similarly engineered notches, our results show that notch width significantly influences shear velocity in the excavated notch ‘slot’, with narrower notches (25 m wide) enhancing wind flow acceleration and inland sediment transport potential. Spatial patterns of shear velocity throughout notches were also sensitive to incident wind direction, with maximum shear velocities, and consequent inland sand transport potential, occurring when winds were parallel to the orientation of the notch. On the lobes of the notches, shear velocity and sand transport potential were greatest during oblique winds. Our results suggest that a relatively narrow notch (e.g. 25 m as opposed to 50 m or 100 m), aligned with the prevailing wind direction, creates the most favourable conditions for transporting sediment from the beach to the dune behind. These findings underscore the importance of notch design in coastal dune restoration, offering critical insights for optimising interventions aimed at sustaining aeolian sediment transport from the beach to the hinterdune.
沿海沙丘提供了多种宝贵的生态系统服务,如防止侵蚀、洪水、海平面上升,以及为 濒危、特有或迁徙物种提供专门的栖息地。前冲沙丘和向陆地迁移的抛物面沙丘在许多沿岸沙丘环境中发挥着重要作用,它们与内陆沙的输送、养分供应和地貌扰动过程有关,形成了生态异质性。然而,随着全球沿海沙丘越来越多地被植被所稳定,其生态复原力和功能也在下降,因此出现了一些人为干预措施,如清除入侵物种和挖掘前沙丘缺口,以模拟和恢复维持沙丘形态动力学以及海滩和内陆沙丘之间陆上沉积物运输所需的关键风化过程。本研究采用计算流体动力学(CFD)建模,研究了在不同宽度、坡度和平面形状(矩形与梯形)的理想前沙丘缺口内,垂直和倾斜入射风向的风流动力学和输沙潜力的关键控制因素。与类似工程缺口的经验研究结果相比,我们的研究结果表明,缺口宽度对挖掘缺口 "槽 "中的剪切速度有显著影响,较窄的缺口(25 米宽)可提高风流加速度和内陆沉积物迁移潜力。整个切口剪切速度的空间模式对入射风向也很敏感,当风向与切口方向平行时,剪切速度最大,因此内陆泥沙输运潜力也最大。在切口的叶片上,斜风时的剪切速度和输沙潜力最大。我们的研究结果表明,与盛行风向一致的相对较窄的凹口(如 25 米,而不是 50 米或 100 米),为将沉积物从海滩输送到后面的沙丘创造了最有利的条件。这些发现强调了缺口设计在沿海沙丘恢复中的重要性,为优化旨在维持从海滩到沙丘腹地的风化沉积物迁移的干预措施提供了重要启示。
{"title":"Exploring wind flow dynamics in foredune notches using Computational Fluid Dynamics (CFD)","authors":"Thomas A.G. Smyth ,&nbsp;Thomas Pagon ,&nbsp;Ian J. Walker","doi":"10.1016/j.coastaleng.2024.104646","DOIUrl":"10.1016/j.coastaleng.2024.104646","url":null,"abstract":"<div><div>Coastal dunes offer a wide range of valuable ecosystem services such as protection from erosion, flooding, sea-level rise, and provision of specialised habitat for endangered, endemic, or migratory species. Foredune blowouts and landward migrating parabolic dunes play an important role in many coastal dune settings creating ecological heterogeneity associated with inland sand transport, nutrient supply, and geomorphic disturbance processes. However, as coastal dunes globally are being increasingly stabilised by vegetation and declining in their ecological resilience and functionality, anthropogenic interventions, such as the removal of invasive species and excavation of foredune notches, have emerged to simulate and restore critical aeolian processes required to maintain dune morphodynamics and onshore sediment transport between the beach and inland dunes. This study employed computational fluid dynamics (CFD) modelling to investigate key controls on the wind flow dynamics and sand transport potential within idealised foredune notches of varying widths, slopes, and planform shape (rectangular vs. trapezoidal) for perpendicular and oblique incident wind directions. Compared with empirical findings from similarly engineered notches, our results show that notch width significantly influences shear velocity in the excavated notch ‘slot’, with narrower notches (25 m wide) enhancing wind flow acceleration and inland sediment transport potential. Spatial patterns of shear velocity throughout notches were also sensitive to incident wind direction, with maximum shear velocities, and consequent inland sand transport potential, occurring when winds were parallel to the orientation of the notch. On the lobes of the notches, shear velocity and sand transport potential were greatest during oblique winds. Our results suggest that a relatively narrow notch (e.g. 25 m as opposed to 50 m or 100 m), aligned with the prevailing wind direction, creates the most favourable conditions for transporting sediment from the beach to the dune behind. These findings underscore the importance of notch design in coastal dune restoration, offering critical insights for optimising interventions aimed at sustaining aeolian sediment transport from the beach to the hinterdune.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104646"},"PeriodicalIF":4.2,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical modelling study on wave damping induced by an idealized floating kelp farm 理想化浮动海藻养殖场引起的波浪阻尼物理模型研究
IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-25 DOI: 10.1016/j.coastaleng.2024.104648
Filipe Miranda , Diogo Mendes , José Miguel Castro , Paulo Rosa-Santos , Francisco Taveira-Pinto , Tiago Fazeres-Ferradosa
A physical modelling study was carried out to investigate random wave damping promoted by an idealized floating kelp farm. The experimental conditions spanned intermediate water depths and both linear and nonlinear water waves. Unlike previous studies of wave damping promoted by vegetation, the floating kelp farm was placed close to the water surface with a ratio between vegetation height and water depth close to 0.25. The wave transmission coefficient induced by the floating kelp farm ranged between 0.56 and 0.96. This coefficient decreased for longer floating kelp farms and it was a function of the ratio between kelp farm length and incident wavelength and of the relative wave depth. Spectral analysis showed that wave damping was not frequency-dependent for wave frequencies close to the peak frequency. The wave transmission coefficients of a floating kelp farm with about 100 culture lines and with an extension of approximately 200 m were similar to those of submerged detached breakwaters with a relative crest freeboard smaller than −0.4. Furthermore, the bulk drag coefficient of near-surface idealized floating kelp farms can be modelled as a function of the Keulegan-Carpenter number. This study highlights the potential viability of nature-based solutions such as floating kelp farms for coastal protection.
为研究理想化浮动海藻养殖场所产生的随机波浪阻尼,进行了一项物理建模研究。实验条件跨越了中间水深以及线性和非线性水波。与以往研究植被对波浪的阻尼作用不同的是,浮动海藻养殖场靠近水面,植被高度与水深之比接近 0.25。浮动海藻养殖场引起的波浪传播系数介于 0.56 和 0.96 之间。浮动海藻养殖场越长,该系数越小,它是海藻养殖场长度与入射波长之比以及相对波深的函数。频谱分析表明,在波峰频率附近,波浪阻尼与频率无关。约有 100 条养殖线、延伸长度约为 200 米的浮动海藻养殖场的波浪传播系数与相对波峰自由板小于-0.4 的水下分离式防波堤的波浪传播系数相似。此外,近水面理想化浮动海藻养殖场的体积阻力系数可模拟为 Keulegan-Carpenter 数的函数。这项研究强调了浮动海藻养殖场等基于自然的海岸保护解决方案的潜在可行性。
{"title":"Physical modelling study on wave damping induced by an idealized floating kelp farm","authors":"Filipe Miranda ,&nbsp;Diogo Mendes ,&nbsp;José Miguel Castro ,&nbsp;Paulo Rosa-Santos ,&nbsp;Francisco Taveira-Pinto ,&nbsp;Tiago Fazeres-Ferradosa","doi":"10.1016/j.coastaleng.2024.104648","DOIUrl":"10.1016/j.coastaleng.2024.104648","url":null,"abstract":"<div><div>A physical modelling study was carried out to investigate random wave damping promoted by an idealized floating kelp farm. The experimental conditions spanned intermediate water depths and both linear and nonlinear water waves. Unlike previous studies of wave damping promoted by vegetation, the floating kelp farm was placed close to the water surface with a ratio between vegetation height and water depth close to 0.25. The wave transmission coefficient induced by the floating kelp farm ranged between 0.56 and 0.96. This coefficient decreased for longer floating kelp farms and it was a function of the ratio between kelp farm length and incident wavelength and of the relative wave depth. Spectral analysis showed that wave damping was not frequency-dependent for wave frequencies close to the peak frequency. The wave transmission coefficients of a floating kelp farm with about 100 culture lines and with an extension of approximately 200 m were similar to those of submerged detached breakwaters with a relative crest freeboard smaller than −0.4. Furthermore, the bulk drag coefficient of near-surface idealized floating kelp farms can be modelled as a function of the Keulegan-Carpenter number. This study highlights the potential viability of nature-based solutions such as floating kelp farms for coastal protection.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104648"},"PeriodicalIF":4.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and hydrodynamic modelling of the probability of breakage of branching and plate coral colonies 分枝珊瑚和板状珊瑚群断裂概率的结构和流体力学模型
IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-24 DOI: 10.1016/j.coastaleng.2024.104647
Wen Deng , Tania Kenyon , Karen Eigeland , David P. Callaghan , Tom E. Baldock
Climate change is amplifying the intensity of severe weather events, with coastal regions such as coral reefs facing heightened vulnerability to cyclonic wave forces. Structural models to predict bending stress and breakage of corals have been developed for coral colonies to enhance comprehension and prediction of the effects of hydrodynamic disturbances on coral reefs. However, there is scope for improving these predictions by evolving the methodology for quantifying complicated and variable coral morphologies. This study aims to predict breakage thresholds for two of the most prevalent coral morphologies: branching and plate corals (using Acropora muricata and Acropora hyacinthus as study species). Laboratory and field measurements were taken to assess coral morphologies and material characteristics. Morphological features of 47 branching colonies and 100 plate colonies were surveyed at the study site (Heron Reef, southern GBR) and the tensile strength of 80 coral samples was obtained by in situ and laboratory testing. Three-dimensional structural models of branching and plate coral colonies were developed, encompassing multiple coral colonies with varying morphological patterns from relatively shallow (5–7 m) to deep (9–12 m) zones. Model results were calibrated and verified with existing data, revealing that velocity thresholds of 1.7 m/s and 5.0 m/s would destroy 90% of the simulated branching coral structures growing in the deep and shallow parts of the forereef zone, respectively. In contrast, the plate corals have sufficient margins of safety even in extreme flow conditions (7 m/s). Additionally, skeletal strength and structural performance were adjusted based on varying degrees of bioerosion inside the coral skeleton. A higher probability of breakage was observed as the extent of bioerosion increased. The laboratory experiments of hydrodynamic loads on coral colony show that the sheltering effect due to one or two neighbouring colonies in the upwave direction is negligible. These models can be easily adjusted to provide predictions for other coral species, shapes, levels of bioerosion, and locations (e.g., sheltered or exposed areas). Comprehensive predictions about the level of expected damage and rubble generation in different areas can be used in reef management planning and restoration prioritization.
气候变化正在加大恶劣天气事件的强度,珊瑚礁等沿海地区更容易受到气旋波的影响。为了更好地理解和预测水动力扰动对珊瑚礁的影响,已经为珊瑚群建立了预测弯曲应力和珊瑚破损的结构模型。然而,通过改进量化复杂多变的珊瑚形态的方法,这些预测还有改进的余地。本研究旨在预测两种最普遍的珊瑚形态:枝状珊瑚和板状珊瑚(以 Acropora muricata 和 Acropora hyacinthus 为研究物种)的断裂阈值。通过实验室和实地测量来评估珊瑚的形态和材料特征。在研究地点(英国大堡礁南部的苍鹭礁)调查了 47 个分支珊瑚群和 100 个板状珊瑚群的形态特征,并通过现场和实验室测试获得了 80 个珊瑚样本的抗拉强度。建立了分支珊瑚群和板珊瑚群的三维结构模型,包括从相对较浅(5-7 米)到较深(9-12 米)区域形态各异的多个珊瑚群。根据现有数据对模型结果进行了校准和验证,结果表明,1.7 米/秒和 5.0 米/秒的速度阈值将分别摧毁 90% 生长在前礁区深部和浅部的模拟分支珊瑚结构。相比之下,板珊瑚即使在极端流速条件下(7 米/秒)也有足够的安全系数。此外,根据珊瑚骨架内部不同程度的生物侵蚀,对骨架强度和结构性能进行了调整。随着生物侵蚀程度的增加,珊瑚断裂的几率也随之增加。对珊瑚群的流体动力负荷的实验室实验表明,在上升波方向上,一个或两个相邻珊瑚群的遮蔽效应可以忽略不计。这些模型可以很容易地进行调整,以便为其他珊瑚物种、形状、生物侵蚀程度和地点(如遮蔽区或暴露区)提供预测。对不同区域的预期破坏和碎石产生水平的综合预测,可用于珊瑚礁管理规划和确定修复的优先次序。
{"title":"Structural and hydrodynamic modelling of the probability of breakage of branching and plate coral colonies","authors":"Wen Deng ,&nbsp;Tania Kenyon ,&nbsp;Karen Eigeland ,&nbsp;David P. Callaghan ,&nbsp;Tom E. Baldock","doi":"10.1016/j.coastaleng.2024.104647","DOIUrl":"10.1016/j.coastaleng.2024.104647","url":null,"abstract":"<div><div>Climate change is amplifying the intensity of severe weather events, with coastal regions such as coral reefs facing heightened vulnerability to cyclonic wave forces. Structural models to predict bending stress and breakage of corals have been developed for coral colonies to enhance comprehension and prediction of the effects of hydrodynamic disturbances on coral reefs. However, there is scope for improving these predictions by evolving the methodology for quantifying complicated and variable coral morphologies. This study aims to predict breakage thresholds for two of the most prevalent coral morphologies: branching and plate corals (using <em>Acropora muricata</em> and <em>Acropora hyacinthus</em> as study species). Laboratory and field measurements were taken to assess coral morphologies and material characteristics. Morphological features of 47 branching colonies and 100 plate colonies were surveyed at the study site (Heron Reef, southern GBR) and the tensile strength of 80 coral samples was obtained by <em>in situ</em> and laboratory testing. Three-dimensional structural models of branching and plate coral colonies were developed, encompassing multiple coral colonies with varying morphological patterns from relatively shallow (5–7 m) to deep (9–12 m) zones. Model results were calibrated and verified with existing data, revealing that velocity thresholds of 1.7 m/s and 5.0 m/s would destroy 90% of the simulated branching coral structures growing in the deep and shallow parts of the forereef zone, respectively. In contrast, the plate corals have sufficient margins of safety even in extreme flow conditions (7 m/s). Additionally, skeletal strength and structural performance were adjusted based on varying degrees of bioerosion inside the coral skeleton. A higher probability of breakage was observed as the extent of bioerosion increased. The laboratory experiments of hydrodynamic loads on coral colony show that the sheltering effect due to one or two neighbouring colonies in the upwave direction is negligible. These models can be easily adjusted to provide predictions for other coral species, shapes, levels of bioerosion, and locations (e.g., sheltered or exposed areas). Comprehensive predictions about the level of expected damage and rubble generation in different areas can be used in reef management planning and restoration prioritization.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104647"},"PeriodicalIF":4.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Satellite-derived bathymetry using Sentinel-2 in mesotidal coasts 利用哨兵-2 号卫星在潮间带海岸进行卫星水深测量
IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-23 DOI: 10.1016/j.coastaleng.2024.104644
S.P. Viaña-Borja , R. González-Villanueva , I. Alejo , R.P. Stumpf , G. Navarro , I. Caballero
Coastal zones are strategic environments of high socioeconomic, political, and ecological value, with over half of the world's population residing within 200 km of the coast. This proximity highlights their vulnerability to extreme events, which are exacerbated by global changes, leading to significant coastal impacts such as erosion, flooding, and ecosystem services deterioration. Consequently, efficient and operational methodologies for continuous monitoring are urgently needed to face these challenges. Bathymetric data are essential for understanding coastal dynamics, yet traditional data collection methods are often constrained by logistical challenges and high costs. Spaceborne remote sensing techniques offer significant advantages over traditional ground-based methods, particularly in terms of cost-effectiveness and operational efficiency. Over the last half-century, different Satellite-derived bathymetry (SDB) methodologies have been developed; however, challenges still persist. In this research, we applied a robust SDB methodology to three different study sites: Cíes Islands, Baiona Bay, and Vao beach within the Ría de Vigo, Galicia (NW Spain). These areas offer diverse and complex mesotidal environments to test for the very first time the methodology's efficacy. SDB was retrieved with a median absolute error (MedAE) ranging from 0.35 m to 1.55 m for depths up to 14 m. Results with different data source were evaluated, obtaining MedAE for nautical charts ranging from 0.46 m to 1.55 m. The precision between the data sources were quite close. In addition, multi-image composite was generated using images coinciding with both low tide (LT) and high tide (HT) conditions across the three zones. The lowest MedAE values were consistently obtained in images classified as LT (0.46 m) corresponding to Vao area. The results highlight the potential of nautical charts as a reliable source of calibration data for SDB, confirm the effectiveness of multi-image and switching models to correct artifacts and turbidity, considering tidal effects, improving single image approaches, and leverage visible bands for precise depth retrieval under varying conditions.
沿海地区是具有高度社会经济、政治和生态价值的战略环境,全球一半以上的人口居住在距海岸 200 公里以内的地区。这种邻近性凸显了它们在极端事件面前的脆弱性,而全球变化又加剧了这种脆弱性,导致侵蚀、洪水和生态系统服务退化等重大沿海影响。因此,迫切需要高效、可操作的持续监测方法来应对这些挑战。水深数据对了解沿岸动态至关重要,但传统的数据收集方法往往受到后勤挑战和高成本的制约。与传统的地面方法相比,空间遥感技术具有明显的优势,特别是在成本效益和作业效率方面。在过去的半个世纪中,已经开发出了不同的卫星水深测量(SDB)方法,但挑战依然存在。在这项研究中,我们在三个不同的研究地点应用了强大的 SDB 方法:这三个不同的研究地点分别是:西班牙西北部加利西亚维哥河内的 Cíes 群岛、Baiona 海湾和 Vao 海滩。这些地区提供了多样而复杂的潮间带环境,首次检验了该方法的有效性。对不同数据源的结果进行了评估,海图的中位绝对误差(MedAE)为 0.46 米至 1.55 米。此外,利用三个区域的低潮(LT)和高潮(HT)条件下的图像生成了多图像合成。与瓦澳地区相对应的被归类为 LT(0.46 米)的图像的 MedAE 值一直最低。这些结果凸显了海图作为 SDB 校准数据可靠来源的潜力,证实了多图像和切换模型在校正伪影和浊度、考虑潮汐效应、改进单图像方法以及利用可见光波段在不同条件下进行精确深度检索方面的有效性。
{"title":"Satellite-derived bathymetry using Sentinel-2 in mesotidal coasts","authors":"S.P. Viaña-Borja ,&nbsp;R. González-Villanueva ,&nbsp;I. Alejo ,&nbsp;R.P. Stumpf ,&nbsp;G. Navarro ,&nbsp;I. Caballero","doi":"10.1016/j.coastaleng.2024.104644","DOIUrl":"10.1016/j.coastaleng.2024.104644","url":null,"abstract":"<div><div>Coastal zones are strategic environments of high socioeconomic, political, and ecological value, with over half of the world's population residing within 200 km of the coast. This proximity highlights their vulnerability to extreme events, which are exacerbated by global changes, leading to significant coastal impacts such as erosion, flooding, and ecosystem services deterioration. Consequently, efficient and operational methodologies for continuous monitoring are urgently needed to face these challenges. Bathymetric data are essential for understanding coastal dynamics, yet traditional data collection methods are often constrained by logistical challenges and high costs. Spaceborne remote sensing techniques offer significant advantages over traditional ground-based methods, particularly in terms of cost-effectiveness and operational efficiency. Over the last half-century, different Satellite-derived bathymetry (SDB) methodologies have been developed; however, challenges still persist. In this research, we applied a robust SDB methodology to three different study sites: Cíes Islands, Baiona Bay, and Vao beach within the Ría de Vigo, Galicia (NW Spain). These areas offer diverse and complex mesotidal environments to test for the very first time the methodology's efficacy. SDB was retrieved with a median absolute error (MedAE) ranging from 0.35 m to 1.55 m for depths up to 14 m. Results with different data source were evaluated, obtaining MedAE for nautical charts ranging from 0.46 m to 1.55 m. The precision between the data sources were quite close. In addition, multi-image composite was generated using images coinciding with both low tide (LT) and high tide (HT) conditions across the three zones. The lowest MedAE values were consistently obtained in images classified as LT (0.46 m) corresponding to Vao area. The results highlight the potential of nautical charts as a reliable source of calibration data for SDB, confirm the effectiveness of multi-image and switching models to correct artifacts and turbidity, considering tidal effects, improving single image approaches, and leverage visible bands for precise depth retrieval under varying conditions.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104644"},"PeriodicalIF":4.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Coastal Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1