Pub Date : 2024-11-13DOI: 10.1016/j.ecolmodel.2024.110906
Dorian Nothaaß , Andreas Huth
Species extinction and the resulting impact on the community composition is a pervasive threat to vegetation ecosystems today. Understanding how the extinction of one or more species affects and threatens biodiversity is challenging. Here, we study the scenario of a sudden species extinction in the colonization-competition trade-off model by assuming that a disturbance eliminates a species on a fleeting time scale. The system then returns to equilibrium, but the equilibrial abundances have changed for all inferior competitors. We use numerical and analytical calculations to show that the sudden extinction of one species results in a large increase in abundance of the next inferior competitor and subsequent additional extinction of the next-but-one inferior species. We present the changes in community composition and diversity using rank abundance distributions and the Shannon index, respectively. In addition to theoretical parameterizations, we use data for grasslands, which are exponentially distributed, where additional species extinctions occur.
{"title":"Community recomposition caused by species extinction in the colonization-competition trade-off model for vegetation","authors":"Dorian Nothaaß , Andreas Huth","doi":"10.1016/j.ecolmodel.2024.110906","DOIUrl":"10.1016/j.ecolmodel.2024.110906","url":null,"abstract":"<div><div>Species extinction and the resulting impact on the community composition is a pervasive threat to vegetation ecosystems today. Understanding how the extinction of one or more species affects and threatens biodiversity is challenging. Here, we study the scenario of a sudden species extinction in the colonization-competition trade-off model by assuming that a disturbance eliminates a species on a fleeting time scale. The system then returns to equilibrium, but the equilibrial abundances have changed for all inferior competitors. We use numerical and analytical calculations to show that the sudden extinction of one species results in a large increase in abundance of the next inferior competitor and subsequent additional extinction of the next-but-one inferior species. We present the changes in community composition and diversity using rank abundance distributions and the Shannon index, respectively. In addition to theoretical parameterizations, we use data for grasslands, which are exponentially distributed, where additional species extinctions occur.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"499 ","pages":"Article 110906"},"PeriodicalIF":2.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.ecolmodel.2024.110912
F. Bravo, C. Ordóñez, A. Vázquez-Veloso, S. Michalakopoulos
Technological progress in the last decades has driven great advances in many fields of knowledge. A wide range of tools and services are now available and constantly evolving to handle vast amounts of available data as well as the increased complexity of real-world case studies and analytical alternatives. Most sectors have embraced new methodologies to provide solutions to their problems, and the forestry sector is no exception. Important steps have been taken to update the forestry sector and introduce new large-scale experimental designs, digital tools and more extensive forestry databases. However, assimilation of this progress by forest managers remains largely pending. The more specialized technical knowledge and computing skills required to use this new generation of tools constitutes a known barrier to uptake. In this work, we present the SIMANFOR cloud-based Decision Support System service for simulating forest management alternatives. Its evolution, internal structure and potential applications are described. A case study was developed to demonstrate simulator performance under diverse management scenarios and highlight the benefits of this tool for forest managers. SIMANFOR cloud services are free and can be accessed at www.simanfor.es.
{"title":"SIMANFOR cloud Decision Support System: Structure, content, and applications","authors":"F. Bravo, C. Ordóñez, A. Vázquez-Veloso, S. Michalakopoulos","doi":"10.1016/j.ecolmodel.2024.110912","DOIUrl":"10.1016/j.ecolmodel.2024.110912","url":null,"abstract":"<div><div>Technological progress in the last decades has driven great advances in many fields of knowledge. A wide range of tools and services are now available and constantly evolving to handle vast amounts of available data as well as the increased complexity of real-world case studies and analytical alternatives. Most sectors have embraced new methodologies to provide solutions to their problems, and the forestry sector is no exception. Important steps have been taken to update the forestry sector and introduce new large-scale experimental designs, digital tools and more extensive forestry databases. However, assimilation of this progress by forest managers remains largely pending. The more specialized technical knowledge and computing skills required to use this new generation of tools constitutes a known barrier to uptake. In this work, we present the SIMANFOR cloud-based Decision Support System service for simulating forest management alternatives. Its evolution, internal structure and potential applications are described. A case study was developed to demonstrate simulator performance under diverse management scenarios and highlight the benefits of this tool for forest managers. SIMANFOR cloud services are free and can be accessed at <span><span>www.simanfor.es</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"499 ","pages":"Article 110912"},"PeriodicalIF":2.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1016/j.ecolmodel.2024.110925
Teddy Lazebnik , Orr Spiegel
Zoonotic disease transmission between animals and humans is a growing risk, and the agricultural context acts as a likely point of transition, with an important role of individual heterogeneity. Livestock often occurs at high local densities, facilitating spread within sites (e.g. among cows in a dairy farm), while wildlife is often more mobile, potentially connecting spatially isolated sites. Thus, understanding the dynamics of disease spread in the wildlife-livestock interface is crucial for mitigating these risks of transmission. Specifically, the interactions between pigeons (Columba livia, also known as ‘rock doves’) and in-door cows at dairy farms can lead to significant disease transmission and economic losses for farmers; putting livestock, adjacent human populations, and other wildlife species at risk. In this paper, we propose a novel spatio-temporal multi-pathogen model with continuous spatial movement. The model expands on the SEIRD framework and accounts for both within-species and cross-species transmission of pathogens, as well as the exploration–exploitation movement dynamics of pigeons, which play a critical role in the spread of infectious agents. In addition to model formulation, we also implement it as an agent-based simulation approach and use empirical field data to investigate different biologically realistic scenarios, evaluating the effect of various parameters on the epidemic spread. Namely, in agreement with theoretical expectations, the model predicts that the heterogeneity of the movement dynamics of pigeons (on top and beyond the obvious effect of an increase of mean level movement itself) can drastically affect both the magnitude and stability of outbreaks. In addition, joint infection by multiple pathogens can have an interactive effect, reflecting a non-intuitive inhibition of the outbreak compared to predictions from single-pathogen SIR models. Our findings highlight the impact of heterogeneity in host behavior on their pathogens and allow realistic predictions of outbreak dynamics in the multi-pathogen wildlife-livestock interface with consequences to zoonotic diseases in various systems.
人畜共患病在动物之间传播的风险越来越大,农业环境可能是一个过渡点,个体的异质性起着重要作用。牲畜在当地的密度通常很高,有利于在当地(如奶牛场的奶牛之间)传播,而野生动物的流动性通常更大,有可能将空间上孤立的地点连接起来。因此,了解野生动物与家畜之间的疾病传播动态对于降低这些传播风险至关重要。具体来说,奶牛场的鸽子(Columba livia,又称 "岩鸽")与室内奶牛之间的互动可能会导致重大疾病传播,给农民造成经济损失,并危及牲畜、邻近人类和其他野生动物物种。在本文中,我们提出了一种具有连续空间移动的新型时空多病原体模型。该模型在 SEIRD 框架的基础上进行了扩展,考虑了病原体的种内和跨种传播,以及在传染源传播中起关键作用的鸽子的探索-利用运动动态。除了模型的建立,我们还将其作为一种基于代理的模拟方法来实施,并利用经验性的现场数据来研究不同的生物现实场景,评估各种参数对流行病传播的影响。也就是说,与理论预期一致,模型预测鸽子运动动态的异质性(除了平均水平运动本身增加的明显影响之外)会极大地影响疫情爆发的规模和稳定性。此外,多种病原体的联合感染也会产生交互影响,与单病原体 SIR 模型的预测相比,会对疫情爆发产生非直观的抑制作用。我们的研究结果强调了宿主行为的异质性对其病原体的影响,并可对多种病原体的野生动物-家畜界面的爆发动态进行现实预测,从而对各种系统中的人畜共患疾病产生影响。
{"title":"Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms","authors":"Teddy Lazebnik , Orr Spiegel","doi":"10.1016/j.ecolmodel.2024.110925","DOIUrl":"10.1016/j.ecolmodel.2024.110925","url":null,"abstract":"<div><div>Zoonotic disease transmission between animals and humans is a growing risk, and the agricultural context acts as a likely point of transition, with an important role of individual heterogeneity. Livestock often occurs at high local densities, facilitating spread within sites (<em>e.g.</em> among cows in a dairy farm), while wildlife is often more mobile, potentially connecting spatially isolated sites. Thus, understanding the dynamics of disease spread in the wildlife-livestock interface is crucial for mitigating these risks of transmission. Specifically, the interactions between pigeons (<em>Columba livia</em>, also known as ‘rock doves’) and in-door cows at dairy farms can lead to significant disease transmission and economic losses for farmers; putting livestock, adjacent human populations, and other wildlife species at risk. In this paper, we propose a novel spatio-temporal multi-pathogen model with continuous spatial movement. The model expands on the SEIRD framework and accounts for both within-species and cross-species transmission of pathogens, as well as the exploration–exploitation movement dynamics of pigeons, which play a critical role in the spread of infectious agents. In addition to model formulation, we also implement it as an agent-based simulation approach and use empirical field data to investigate different biologically realistic scenarios, evaluating the effect of various parameters on the epidemic spread. Namely, in agreement with theoretical expectations, the model predicts that the heterogeneity of the movement dynamics of pigeons (on top and beyond the obvious effect of an increase of mean level movement itself) can drastically affect both the magnitude and stability of outbreaks. In addition, joint infection by multiple pathogens can have an interactive effect, reflecting a non-intuitive inhibition of the outbreak compared to predictions from single-pathogen SIR models. Our findings highlight the impact of heterogeneity in host behavior on their pathogens and allow realistic predictions of outbreak dynamics in the multi-pathogen wildlife-livestock interface with consequences to zoonotic diseases in various systems.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"499 ","pages":"Article 110925"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.ecolmodel.2024.110918
{"title":"Erratum: One-dimensional oxygen diffusion into soil with exponential respiration: analytical and numerical solutions. F. J. Cook, Ecological Modelling 78: 277–283.","authors":"","doi":"10.1016/j.ecolmodel.2024.110918","DOIUrl":"10.1016/j.ecolmodel.2024.110918","url":null,"abstract":"","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"499 ","pages":"Article 110918"},"PeriodicalIF":2.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.ecolmodel.2024.110926
Todd M. Swannack , Kiara C. Cushway , Carra C. Carrillo , Clementina Calvo , Kierra R. Determan , Caroline M. Mierzejewski , Vanessa M. Quintana , Christopher L. Riggins , Miranda D. Sams , Waverly E. Wadsworth
Good modeling practices are essential for producing reliable and reproducible ecological models. Inherent to good modeling practices are fundamental coding and documentation skills, which not only implement the desired modeling capabilities but also clearly outline the goals, methods, and components of a model that are necessary to reproduce the desired results. One of the largest challenges for new ecological modelers can be implementing a model into computer code. In fact, coding represents a significant barrier for entry into ecological modeling, since most ecologists have not had formal training in computer science or software development. While software packages do exist that facilitate model development, we have observed that newer modelers still struggle with developing good coding practice throughout the modeling process. During a series of agent-based modeling short-courses and full semester graduate courses, both taught in NetLogo, we identified some common challenges encountered by graduate students and environmental professionals as they learn to code an ecological model, many for the first time. We were able to categorize and provide examples of the main challenges and obstacles, which fell into three main groups that follow the steps of good modeling practice: problem scoping and conceptualization, formulation, and evaluation. We then provide guidance on how to overcome these obstacles while developing good coding and modeling practices that will result in more scientifically defensible models.
{"title":"Cracking the code: Linking good modeling and coding practices for new ecological modelers","authors":"Todd M. Swannack , Kiara C. Cushway , Carra C. Carrillo , Clementina Calvo , Kierra R. Determan , Caroline M. Mierzejewski , Vanessa M. Quintana , Christopher L. Riggins , Miranda D. Sams , Waverly E. Wadsworth","doi":"10.1016/j.ecolmodel.2024.110926","DOIUrl":"10.1016/j.ecolmodel.2024.110926","url":null,"abstract":"<div><div>Good modeling practices are essential for producing reliable and reproducible ecological models. Inherent to good modeling practices are fundamental coding and documentation skills, which not only implement the desired modeling capabilities but also clearly outline the goals, methods, and components of a model that are necessary to reproduce the desired results. One of the largest challenges for new ecological modelers can be implementing a model into computer code. In fact, coding represents a significant barrier for entry into ecological modeling, since most ecologists have not had formal training in computer science or software development. While software packages do exist that facilitate model development, we have observed that newer modelers still struggle with developing good coding practice throughout the modeling process. During a series of agent-based modeling short-courses and full semester graduate courses, both taught in NetLogo, we identified some common challenges encountered by graduate students and environmental professionals as they learn to code an ecological model, many for the first time. We were able to categorize and provide examples of the main challenges and obstacles, which fell into three main groups that follow the steps of good modeling practice: problem scoping and conceptualization, formulation, and evaluation. We then provide guidance on how to overcome these obstacles while developing good coding and modeling practices that will result in more scientifically defensible models.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"499 ","pages":"Article 110926"},"PeriodicalIF":2.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.ecolmodel.2024.110917
Mahesh L. Maskey , Amanda M. Nelson , Daniel N. Moriasi , Brian K. Northup
Researchers in hydrological sciences have developed agro-hydrological models to study water quantity and quality in small-scale watersheds. These models, however, often exhibit significant uncertainty in both parameters and response variables. The study aims to address limited research on the uncertainty range of runoff-related parameters in watershed models, particularly those analyzing the impact of grazing operations. It also seeks to improve existing uncertainty analysis protocols because these protocols rely on parameter distributions, which are often difficult to determine. A generalized uncertainty analysis protocol that statistically considers multiple acceptable solutions from calibrated agro-hydrological models was developed. This approach employed a variant of the Agricultural Policy eXtender (APEX) model with an expanded grazing module called APEXgraze to perform uncertainty analysis of runoff and sediment-related parameters. Four small-scale watershed models were developed for calibration: a) native prairie, b) native prairie under grazing operations, c) cereals (winter wheat and one season of oats), and d) the same cereals under grazing operations in a semi-arid region of Oklahoma, United States. This work demonstrated that a simplified uncertainty analysis approach effectively captured the internal dynamics of hydrological processes within a statistically significant range of parameters. This observation was evidenced by a small range of water balance in both magnitude and percentage. The procedure also helped identify redundant parameters in sensitivity and uncertainty analyses. The proposed generalized uncertainty analysis protocol offers a reliable method for assessing hydrological models' internal dynamics and identifying critical parameters. This approach can enhance the accuracy of watershed models, particularly in regions with grazing operations.
{"title":"Uncertainty analysis of hydrological parameters of the APEXgraze model for grazing activities","authors":"Mahesh L. Maskey , Amanda M. Nelson , Daniel N. Moriasi , Brian K. Northup","doi":"10.1016/j.ecolmodel.2024.110917","DOIUrl":"10.1016/j.ecolmodel.2024.110917","url":null,"abstract":"<div><div>Researchers in hydrological sciences have developed agro-hydrological models to study water quantity and quality in small-scale watersheds. These models, however, often exhibit significant uncertainty in both parameters and response variables. The study aims to address limited research on the uncertainty range of runoff-related parameters in watershed models, particularly those analyzing the impact of grazing operations. It also seeks to improve existing uncertainty analysis protocols because these protocols rely on parameter distributions, which are often difficult to determine. A generalized uncertainty analysis protocol that statistically considers multiple acceptable solutions from calibrated agro-hydrological models was developed. This approach employed a variant of the Agricultural Policy eXtender (APEX) model with an expanded grazing module called APEXgraze to perform uncertainty analysis of runoff and sediment-related parameters. Four small-scale watershed models were developed for calibration: a) native prairie, b) native prairie under grazing operations, c) cereals (winter wheat and one season of oats), and d) the same cereals under grazing operations in a semi-arid region of Oklahoma, United States. This work demonstrated that a simplified uncertainty analysis approach effectively captured the internal dynamics of hydrological processes within a statistically significant range of parameters. This observation was evidenced by a small range of water balance in both magnitude and percentage. The procedure also helped identify redundant parameters in sensitivity and uncertainty analyses. The proposed generalized uncertainty analysis protocol offers a reliable method for assessing hydrological models' internal dynamics and identifying critical parameters. This approach can enhance the accuracy of watershed models, particularly in regions with grazing operations.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"499 ","pages":"Article 110917"},"PeriodicalIF":2.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.ecolmodel.2024.110919
Aggeliki Doxa , Christos Adam , Nikolaos Nagkoulis , Antonios D. Mazaris , Stelios Katsanevakis
Systematic conservation planning (SCP) is essential for meeting global conservation goals and mitigating anthropogenic impacts on biodiversity. Effective conservation planning should incorporate the three-dimensional nature of ecosystems, including species distribution by depth. Recent advancements, like the 3D prioritization approach, address this by considering multiple depth zones. The R package prior3D is an open-source tool designed for prioritizing conservation efforts across different depth zones in a unified framework. Starting from the deepest zone and moving upwards, it optimizes conservation priorities and allows flexible allocation of protection levels per depth. This approach strategically prioritizes areas with higher species gains, while ensuring minimum representation of all depth zones in the final prioritization solution. While conceived for marine conservation, prior3D is applicable to any 3D ecosystem making it a critical tool for multi-realm conservation efforts.
{"title":"prior3D: An R package for three-dimensional conservation prioritization","authors":"Aggeliki Doxa , Christos Adam , Nikolaos Nagkoulis , Antonios D. Mazaris , Stelios Katsanevakis","doi":"10.1016/j.ecolmodel.2024.110919","DOIUrl":"10.1016/j.ecolmodel.2024.110919","url":null,"abstract":"<div><div>Systematic conservation planning (SCP) is essential for meeting global conservation goals and mitigating anthropogenic impacts on biodiversity. Effective conservation planning should incorporate the three-dimensional nature of ecosystems, including species distribution by depth. Recent advancements, like the 3D prioritization approach, address this by considering multiple depth zones. The R package prior3D is an open-source tool designed for prioritizing conservation efforts across different depth zones in a unified framework. Starting from the deepest zone and moving upwards, it optimizes conservation priorities and allows flexible allocation of protection levels per depth. This approach strategically prioritizes areas with higher species gains, while ensuring minimum representation of all depth zones in the final prioritization solution. While conceived for marine conservation, prior3D is applicable to any 3D ecosystem making it a critical tool for multi-realm conservation efforts.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"499 ","pages":"Article 110919"},"PeriodicalIF":2.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.ecolmodel.2024.110915
Wei Wang , Mengjie Wang , Hao Wang
Elucidating the benthic stage growth and reproductive mechanisms of Aurelia aurita contributes to understanding irregular jellyfish blooms. This paper establishes a four-stage life history model of A. aurita (Polyp–Strobila–Ephyra–Medusa) to investigate the influence of seasonal temperature variations on the abundance of A. aurita. Sensitivity analyses indicate that jellyfish are most sensitive to bottom-up supplementation, with strobilation identified as an essential process in their life cycle. We explore the effects of parameters directly associated with strobilation in the Jiaozhou Bay area on population size, summarizing the interannual variations across the four stages of A. aurita, which aligns with empirical data. The investigation reveals that (i) consistent with recent biological literature, strobilation of A. aurita in temperate regions primarily occurs during periods of increasing spring sea surface temperatures rather than during autumn temperature declines, leading to summer jellyfish blooms; (ii) regression and subsequent strobilation favor an increase in the pelagic medusae population; (iii) the influence of rising sea surface temperatures due to climate change on the growth and reproduction of A. aurita manifests as initial stimulation followed by inhibition; (iv) earlier strobilation in spring may lead to more extensive A. aurita outbreaks in summer, providing insights for early warning of jellyfish blooms.
阐明 Aurelia aurita 底栖阶段的生长和繁殖机制有助于了解不规则水母水华。本文建立了 A. aurita(多孔体-Strobila-Ephyra-Medusa)的四阶段生命史模型,以研究季节性温度变化对 A. aurita 数量的影响。敏感性分析表明,水母对自下而上的补充最为敏感,而strobilation被认为是其生命周期中的一个重要过程。我们探讨了胶州湾海域与频变直接相关的参数对种群数量的影响,总结了海蜇四个阶段的年际变化,这与经验数据一致。调查发现:(i) 与最近的生物学文献一致,温带地区 A. aurita 的频变主要发生在春季海面温度上升期间,而不是秋季温度下降期间,这将导致夏季水母的大量繁殖;(ii) 回归和随后的频变有利于中上层介体种群的增加;(iii) 气候变化导致的海面温度上升对 A. aurita 生长和繁殖的影响表现为初始刺激和随后的频变。aurita 的影响表现为先刺激后抑制;(iv) 春季较早的频变可能会导致夏季 A. aurita 的大面积爆发,为水母水华的预警提供启示。
{"title":"Effects of temperature on asexual reproduction and jellyfish booms of Aurelia aurita: Insights from mathematical modeling","authors":"Wei Wang , Mengjie Wang , Hao Wang","doi":"10.1016/j.ecolmodel.2024.110915","DOIUrl":"10.1016/j.ecolmodel.2024.110915","url":null,"abstract":"<div><div>Elucidating the benthic stage growth and reproductive mechanisms of <em>Aurelia aurita</em> contributes to understanding irregular jellyfish blooms. This paper establishes a four-stage life history model of <em>A. aurita</em> (Polyp–Strobila–Ephyra–Medusa) to investigate the influence of seasonal temperature variations on the abundance of <em>A. aurita</em>. Sensitivity analyses indicate that jellyfish are most sensitive to bottom-up supplementation, with strobilation identified as an essential process in their life cycle. We explore the effects of parameters directly associated with strobilation in the Jiaozhou Bay area on population size, summarizing the interannual variations across the four stages of <em>A. aurita</em>, which aligns with empirical data. The investigation reveals that (i) consistent with recent biological literature, strobilation of <em>A. aurita</em> in temperate regions primarily occurs during periods of increasing spring sea surface temperatures rather than during autumn temperature declines, leading to summer jellyfish blooms; (ii) regression and subsequent strobilation favor an increase in the pelagic medusae population; (iii) the influence of rising sea surface temperatures due to climate change on the growth and reproduction of <em>A. aurita</em> manifests as initial stimulation followed by inhibition; (iv) earlier strobilation in spring may lead to more extensive <em>A. aurita</em> outbreaks in summer, providing insights for early warning of jellyfish blooms.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"499 ","pages":"Article 110915"},"PeriodicalIF":2.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.ecolmodel.2024.110924
Mohsin Khan , Tarteel Abdalgader , Michael Pedersen , Lai Zhang
The global escalation of vector-borne epidemics, particularly flaviviruses like dengue fever, presents a growing challenge. Contributing factors such as climate change and increased human mobility have expanded the vulnerability to dengue fever worldwide, yet the underlying mechanisms remain elusive. In this paper, we extend a two-patch dengue transmission model by incorporating the aquatic stage of mosquitoes and integrating the movement of host individuals between patches via a residence-time matrix. Through this approach, we derive the basic reproduction number and directly link it to climate change and human mobility. Our findings reveal bidirectional impacts of human mobility on dengue transmission: an increase in mobility from climatically unsuitable to suitable patches heightens the basic reproduction number, while the reverse pattern diminishes it. Moreover, an asymmetric mobility rate proves potentially more conducive to dengue spread than a symmetric pattern. When coupled with climate changes, asymmetric human mobility further exacerbates dengue fever transmission. These insights offer novel perspectives on the role of human mobility in dengue transmission dynamics and inform intervention strategies, particularly in urban settings where dengue epidemics are driven by human mobility.
{"title":"Interactive effects of climate change and human mobility on dengue transmission","authors":"Mohsin Khan , Tarteel Abdalgader , Michael Pedersen , Lai Zhang","doi":"10.1016/j.ecolmodel.2024.110924","DOIUrl":"10.1016/j.ecolmodel.2024.110924","url":null,"abstract":"<div><div>The global escalation of vector-borne epidemics, particularly flaviviruses like dengue fever, presents a growing challenge. Contributing factors such as climate change and increased human mobility have expanded the vulnerability to dengue fever worldwide, yet the underlying mechanisms remain elusive. In this paper, we extend a two-patch dengue transmission model by incorporating the aquatic stage of mosquitoes and integrating the movement of host individuals between patches via a residence-time matrix. Through this approach, we derive the basic reproduction number and directly link it to climate change and human mobility. Our findings reveal bidirectional impacts of human mobility on dengue transmission: an increase in mobility from climatically unsuitable to suitable patches heightens the basic reproduction number, while the reverse pattern diminishes it. Moreover, an asymmetric mobility rate proves potentially more conducive to dengue spread than a symmetric pattern. When coupled with climate changes, asymmetric human mobility further exacerbates dengue fever transmission. These insights offer novel perspectives on the role of human mobility in dengue transmission dynamics and inform intervention strategies, particularly in urban settings where dengue epidemics are driven by human mobility.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"499 ","pages":"Article 110924"},"PeriodicalIF":2.6,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.ecolmodel.2024.110923
Georgii A. Alexandrov
Sixteen years ago, Sven Jørgensen, a founder of Ecological Modelling, wrote that artificial neural networks could be very useful in most cases but cannot replace biogeochemical models based on conservation principles. The literature study shows no sign that artificial neural networks are replacing any process-based models in ecological modelling, although the recent efforts in developing the methods for solving differential equations by using neural networks enable turning the process-based models into neural networks without loss of their theoretical rigor. It seems that a well-orchestrated research program is needed to promote turning existing process-based models into neural networks aimed at taking advantage of opportunities offered by the big data revolution.
{"title":"When does artificial intelligence replace process-based models in ecological modelling?","authors":"Georgii A. Alexandrov","doi":"10.1016/j.ecolmodel.2024.110923","DOIUrl":"10.1016/j.ecolmodel.2024.110923","url":null,"abstract":"<div><div>Sixteen years ago, Sven Jørgensen, a founder of Ecological Modelling, wrote that artificial neural networks could be very useful in most cases but cannot replace biogeochemical models based on conservation principles. The literature study shows no sign that artificial neural networks are replacing any process-based models in ecological modelling, although the recent efforts in developing the methods for solving differential equations by using neural networks enable turning the process-based models into neural networks without loss of their theoretical rigor. It seems that a well-orchestrated research program is needed to promote turning existing process-based models into neural networks aimed at taking advantage of opportunities offered by the big data revolution.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"499 ","pages":"Article 110923"},"PeriodicalIF":2.6,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}