首页 > 最新文献

Statistica Neerlandica最新文献

英文 中文
A gamma tail statistic and its asymptotics 一个伽马尾统计量及其渐近性
IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-06-13 DOI: 10.1111/stan.12316
Toshiya Iwashita, B. Klar
Asmussen and Lehtomaa [Distinguishing log‐concavity from heavy tails. Risks 5(10), 2017] introduced an interesting function g which is able to distinguish between log‐convex and log‐concave tail behaviour of distributions, and proposed a randomized estimator for g. In this paper, we show that g can also be seen as a tool to detect gamma distributions or distributions with gamma tail. We construct a more efficient estimator ĝn based on U‐statistics, propose several estimators of the (asymptotic) variance of ĝn, and study their performance by simulations. Finally, the methods are applied to several data sets of daily precipitation.This article is protected by copyright. All rights reserved.
Asmussen和Lehtomaa[从重尾中区分对数凹度]。Risks 5(10), 2017]引入了一个有趣的函数g,它能够区分分布的log -凸和log -凹尾行为,并提出了g的随机估计量。在本文中,我们表明g也可以被视为检测gamma分布或具有gamma尾的分布的工具。我们基于U统计构造了一个更有效的估计量ĝn,提出了ĝn的(渐近)方差的几个估计量,并通过仿真研究了它们的性能。最后,将该方法应用于多个日降水数据集。这篇文章受版权保护。版权所有。
{"title":"A gamma tail statistic and its asymptotics","authors":"Toshiya Iwashita, B. Klar","doi":"10.1111/stan.12316","DOIUrl":"https://doi.org/10.1111/stan.12316","url":null,"abstract":"Asmussen and Lehtomaa [Distinguishing log‐concavity from heavy tails. Risks 5(10), 2017] introduced an interesting function g which is able to distinguish between log‐convex and log‐concave tail behaviour of distributions, and proposed a randomized estimator for g. In this paper, we show that g can also be seen as a tool to detect gamma distributions or distributions with gamma tail. We construct a more efficient estimator ĝn based on U‐statistics, propose several estimators of the (asymptotic) variance of ĝn, and study their performance by simulations. Finally, the methods are applied to several data sets of daily precipitation.This article is protected by copyright. All rights reserved.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"55 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74111110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The analysis of semi‐competing risks data using Archimedean copula models 使用阿基米德copula模型分析半竞争风险数据
IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-06-01 DOI: 10.1111/stan.12311
Antai Wang, Ziyan Guo, Yilong Zhang, Jihua Wu
In this paper, we derive the copula‐graphic estimator (Zheng and Klein) for marginal survival functions using Archimedean copula models based on competing risks data subject to univariate right censoring and prove its uniform consistency and asymptotic properties. We then propose a novel parameter estimation method based on the semi‐competing risks data using Archimedean copula models. Based on our estimation strategy, we propose a new model selection procedure. We also describe an easy way to accommodate possible covariates in data analysis using our strategies. Simulation studies have shown that our parameter estimate outperforms the estimator proposed by Lakhal, Rivest and Abdous for the Hougaard model and the model selection procedure works quite well. We fit a leukemia dataset using our model and end our paper with some discussion.
{"title":"The analysis of semi‐competing risks data using Archimedean copula models","authors":"Antai Wang, Ziyan Guo, Yilong Zhang, Jihua Wu","doi":"10.1111/stan.12311","DOIUrl":"https://doi.org/10.1111/stan.12311","url":null,"abstract":"In this paper, we derive the copula‐graphic estimator (Zheng and Klein) for marginal survival functions using Archimedean copula models based on competing risks data subject to univariate right censoring and prove its uniform consistency and asymptotic properties. We then propose a novel parameter estimation method based on the semi‐competing risks data using Archimedean copula models. Based on our estimation strategy, we propose a new model selection procedure. We also describe an easy way to accommodate possible covariates in data analysis using our strategies. Simulation studies have shown that our parameter estimate outperforms the estimator proposed by Lakhal, Rivest and Abdous for the Hougaard model and the model selection procedure works quite well. We fit a leukemia dataset using our model and end our paper with some discussion.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"12 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73218378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Liu‐type Estimator based on GM estimator 基于GM估计的鲁棒Liu型估计
IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-05-29 DOI: 10.1111/stan.12310
Melike Işilar, Y. M. Bulut
Ordinary Least Squares Estimator (OLSE) is widely used to estimate parameters in regression analysis. In practice, the assumptions of regression analysis are often not met. The most common problems that break these assumptions are outliers and multicollinearity problems. As a result of these problems, OLSE loses efficiency. Therefore, alternative estimators to OLSE have been proposed to solve these problems. Robust estimators are often used to solve the outlier problem, and biased estimators are often used to solve the multicollinearity problem. These problems do not always occur individually in the real‐world dataset. Therefore, robust biased estimators are proposed for simultaneous solutions to these problems. The aim of this study is to propose Liu‐type Generalized M Estimator as an alternative to the robust biased estimators available in the literature to obtain more efficient results. This estimator gives effective results in the case of outlier and multicollinearity in both dependent and independent variables. The proposed estimator is theoretically compared with other estimators available in the literature. In addition, Monte Carlo simulation and real dataset example are performed to compare the performance of the estimator with existing estimators.
{"title":"Robust Liu‐type Estimator based on GM estimator","authors":"Melike Işilar, Y. M. Bulut","doi":"10.1111/stan.12310","DOIUrl":"https://doi.org/10.1111/stan.12310","url":null,"abstract":"Ordinary Least Squares Estimator (OLSE) is widely used to estimate parameters in regression analysis. In practice, the assumptions of regression analysis are often not met. The most common problems that break these assumptions are outliers and multicollinearity problems. As a result of these problems, OLSE loses efficiency. Therefore, alternative estimators to OLSE have been proposed to solve these problems. Robust estimators are often used to solve the outlier problem, and biased estimators are often used to solve the multicollinearity problem. These problems do not always occur individually in the real‐world dataset. Therefore, robust biased estimators are proposed for simultaneous solutions to these problems. The aim of this study is to propose Liu‐type Generalized M Estimator as an alternative to the robust biased estimators available in the literature to obtain more efficient results. This estimator gives effective results in the case of outlier and multicollinearity in both dependent and independent variables. The proposed estimator is theoretically compared with other estimators available in the literature. In addition, Monte Carlo simulation and real dataset example are performed to compare the performance of the estimator with existing estimators.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"31 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73854271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring 广义渐进混合滤波下Chen分布的部分观察竞争风险模型
IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-05-22 DOI: 10.1111/stan.12308
Kundan Singh, Amulya Kumar Mahto, Y. Tripathi
In this paper, we discuss the inference for the competing risks model when the failure times follow Chen distribution. With assumption of two causes of failures, which are partially observed, are considered as independent. The existence and uniqueness of maximum likelihood estimates for model parameters are obtained under generalized progressive hybrid censoring. Also, we discussed the classical and Bayesian inferences of the model parameters under the assumption of restricted and nonrestricted parameters. Performance of classical point and interval estimators are compared with Bayesian point and interval estimators by conducting extensive simulation study. In addition to that, for illustration purpose, a real life example is discussed. Finally, some concluding remarks, regarding the presented model, are made.
{"title":"On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring","authors":"Kundan Singh, Amulya Kumar Mahto, Y. Tripathi","doi":"10.1111/stan.12308","DOIUrl":"https://doi.org/10.1111/stan.12308","url":null,"abstract":"In this paper, we discuss the inference for the competing risks model when the failure times follow Chen distribution. With assumption of two causes of failures, which are partially observed, are considered as independent. The existence and uniqueness of maximum likelihood estimates for model parameters are obtained under generalized progressive hybrid censoring. Also, we discussed the classical and Bayesian inferences of the model parameters under the assumption of restricted and nonrestricted parameters. Performance of classical point and interval estimators are compared with Bayesian point and interval estimators by conducting extensive simulation study. In addition to that, for illustration purpose, a real life example is discussed. Finally, some concluding remarks, regarding the presented model, are made.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"240 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83140976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Testing for jumps with robust spot volatility estimators 用鲁棒现场波动估计器检验跳跃
IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-05-19 DOI: 10.1111/stan.12306
Yucheng Sun
Jumps in the paths of efficient asset prices have important economic implications. Motivated by the issue of testing for jumps based on noisy high‐frequency data, we develop a novel spot volatility estimator, which is obtained by minimizing the sum of some Huber loss functions, and use it as an ingredient for jump detection. This type of estimators is uniformly consistent in estimating the spot volatilities of the efficient price at numerous time points. We further demonstrate the consistency of the proposed jump test based on the property of the novel spot volatility estimator. We show that in finite samples, the proposed volatility estimator and the test perform favorably compared to some competitors through Monte Carlo simulations. We also illustrate our methodology with the stock prices of Apple and Microsoft.
{"title":"Testing for jumps with robust spot volatility estimators","authors":"Yucheng Sun","doi":"10.1111/stan.12306","DOIUrl":"https://doi.org/10.1111/stan.12306","url":null,"abstract":"Jumps in the paths of efficient asset prices have important economic implications. Motivated by the issue of testing for jumps based on noisy high‐frequency data, we develop a novel spot volatility estimator, which is obtained by minimizing the sum of some Huber loss functions, and use it as an ingredient for jump detection. This type of estimators is uniformly consistent in estimating the spot volatilities of the efficient price at numerous time points. We further demonstrate the consistency of the proposed jump test based on the property of the novel spot volatility estimator. We show that in finite samples, the proposed volatility estimator and the test perform favorably compared to some competitors through Monte Carlo simulations. We also illustrate our methodology with the stock prices of Apple and Microsoft.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"47 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89970698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orthogonal Contrasts for both Balanced and Unbalanced Designs and both Ordered and Unordered Treatments 平衡和不平衡设计以及有序和无序处理的正交对比
IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-05-16 DOI: 10.1111/stan.12305
J. Rayner, G. Livingston
We consider designs with t treatments, the ith level of which has ni observations. Four cases are examined: treatment levels both ordered and not, and the design balanced, with all ni equal, and not. A general construction is given that takes observations, typically treatment sums or treatment rank sums, constructs a simple quadratic form and expresses it as a sum of squares of orthogonal contrasts. For the case of ordered treatment levels, the Kruskal–Wallis, Friedman and Durbin tests are recovered by this construction. A dataset where the design is the supplemented balanced, which is an unbalanced design in our terminology, is analyzed. When treatment levels are not ordered the construction also applies. We then focus on Helmert contrasts.
{"title":"Orthogonal Contrasts for both Balanced and Unbalanced Designs and both Ordered and Unordered Treatments","authors":"J. Rayner, G. Livingston","doi":"10.1111/stan.12305","DOIUrl":"https://doi.org/10.1111/stan.12305","url":null,"abstract":"We consider designs with t treatments, the ith level of which has ni observations. Four cases are examined: treatment levels both ordered and not, and the design balanced, with all ni equal, and not. A general construction is given that takes observations, typically treatment sums or treatment rank sums, constructs a simple quadratic form and expresses it as a sum of squares of orthogonal contrasts. For the case of ordered treatment levels, the Kruskal–Wallis, Friedman and Durbin tests are recovered by this construction. A dataset where the design is the supplemented balanced, which is an unbalanced design in our terminology, is analyzed. When treatment levels are not ordered the construction also applies. We then focus on Helmert contrasts.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"34 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87060789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Linear Regression Models with Multiplicative Distortions under New Identifiability Conditions 新的可辨识性条件下具有乘法扭曲的线性回归模型
IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-05-11 DOI: 10.1111/stan.12304
Jun Zhang, Bingqing Lin, Yan Zhou
This paper considers linear regression models when neither the response variable nor the covariates can be directly observed, but are measured with multiplicative distortion measurement errors. We propose new identifiability conditions for the distortion functions via the varying coefficient models, then moment‐based estimators of parameters in the model are proposed by using the estimated varying coefficient functions. This method does not require the independence condition between the confounding variables and the unobserved response and variables. We establish the connections among the varying coefficient based estimators, the conditional mean calibration and the conditional absolute mean calibration. We study the asymptotic results of these proposed estimators, and discuss their asymptotic efficiencies. Lastly, we make some comparisons among the proposed estimators through the simulation. These methods are applied to analyze a real dataset for an illustration.
{"title":"Linear Regression Models with Multiplicative Distortions under New Identifiability Conditions","authors":"Jun Zhang, Bingqing Lin, Yan Zhou","doi":"10.1111/stan.12304","DOIUrl":"https://doi.org/10.1111/stan.12304","url":null,"abstract":"This paper considers linear regression models when neither the response variable nor the covariates can be directly observed, but are measured with multiplicative distortion measurement errors. We propose new identifiability conditions for the distortion functions via the varying coefficient models, then moment‐based estimators of parameters in the model are proposed by using the estimated varying coefficient functions. This method does not require the independence condition between the confounding variables and the unobserved response and variables. We establish the connections among the varying coefficient based estimators, the conditional mean calibration and the conditional absolute mean calibration. We study the asymptotic results of these proposed estimators, and discuss their asymptotic efficiencies. Lastly, we make some comparisons among the proposed estimators through the simulation. These methods are applied to analyze a real dataset for an illustration.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"39 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75687111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The optimal input‐independent baseline for binary classification: The Dutch Draw 二元分类的最佳输入无关基线:荷兰平局
3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-05-01 DOI: 10.1111/stan.12297
Joris Pries, Etienne van de Bijl, Jan Klein, Sandjai Bhulai, Rob van der Mei
Before any binary classification model is taken into practice, it is important to validate its performance on a proper test set. Without a frame of reference given by a baseline method, it is impossible to determine if a score is “good” or “bad.” The goal of this paper is to examine all baseline methods that are independent of feature values and determine which model is the “best” and why. By identifying which baseline models are optimal, a crucial selection decision in the evaluation process is simplified. We prove that the recently proposed Dutch Draw baseline is the best input‐independent classifier (independent of feature values) for all order‐invariant measures (independent of sequence order) assuming that the samples are randomly shuffled. This means that the Dutch Draw baseline is the optimal baseline under these intuitive requirements and should therefore be used in practice.
在将任何二元分类模型付诸实践之前,重要的是要在适当的测试集上验证其性能。如果没有基准方法提供的参考框架,就不可能确定分数是“好”还是“坏”。本文的目标是检查所有独立于特征值的基线方法,并确定哪个模型是“最好的”,以及为什么。通过确定哪些基线模型是最优的,可以简化评估过程中的关键选择决策。我们证明了最近提出的Dutch Draw基线是所有阶不变度量(与序列顺序无关)的最佳输入无关分类器(与特征值无关),假设样本是随机洗牌的。这意味着荷兰抽签基线是这些直观要求下的最佳基线,因此应该在实践中使用。
{"title":"The optimal input‐independent baseline for binary classification: The Dutch Draw","authors":"Joris Pries, Etienne van de Bijl, Jan Klein, Sandjai Bhulai, Rob van der Mei","doi":"10.1111/stan.12297","DOIUrl":"https://doi.org/10.1111/stan.12297","url":null,"abstract":"Before any binary classification model is taken into practice, it is important to validate its performance on a proper test set. Without a frame of reference given by a baseline method, it is impossible to determine if a score is “good” or “bad.” The goal of this paper is to examine all baseline methods that are independent of feature values and determine which model is the “best” and why. By identifying which baseline models are optimal, a crucial selection decision in the evaluation process is simplified. We prove that the recently proposed Dutch Draw baseline is the best input‐independent classifier (independent of feature values) for all order‐invariant measures (independent of sequence order) assuming that the samples are randomly shuffled. This means that the Dutch Draw baseline is the optimal baseline under these intuitive requirements and should therefore be used in practice.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136012239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New closed‐form efficient estimator for multivariate gamma distribution 多元伽玛分布的新闭形有效估计
IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-04-28 DOI: 10.1111/stan.12299
Yu-Hyeong Jang, Jun Zhao, Hyoung-Moon Kim, Kyusang Yu, Sunghoon Kwon, Sunghwan Kim
Maximum likelihood estimation is used widely in classical statistics. However, except in a few cases, it does not have a closed form. Furthermore, it takes time to derive the maximum likelihood estimator (MLE) owing to the use of iterative methods such as Newton–Raphson. Nonetheless, this estimation method has several advantages, chief among them being the invariance property and asymptotic normality. Based on the first approximation to the solution of the likelihood equation, we obtain an estimator that has the same asymptotic behavior as the MLE for multivariate gamma distribution. The newly proposed estimator, denoted as MLECE$$ {mathrm{MLE}}_{mathrm{CE}} $$ , is also in closed form as long as the n$$ sqrt{n} $$ ‐consistent initial estimator is in the closed form. Hence, we develop some closed‐form n$$ sqrt{n} $$ ‐consistent estimators for multivariate gamma distribution to improve the small‐sample property. MLECE$$ {mathrm{MLE}}_{mathrm{CE}} $$ is an alternative to MLE and performs better compared to MLE in terms of computation time, especially for large datasets, and stability. For the bivariate gamma distribution, the MLECE$$ {mathrm{MLE}}_{mathrm{CE}} $$ is over 130 times faster than the MLE, and as the sample size increasing, the MLECE$$ {mathrm{MLE}}_{mathrm{CE}} $$ is over 200 times faster than the MLE. Owing to the instant calculation of the proposed estimator, it can be used in state–space modeling or real‐time processing models.
极大似然估计在经典统计学中应用广泛。然而,除了少数情况外,它没有封闭形式。此外,由于使用Newton-Raphson等迭代方法,导出最大似然估计量(MLE)需要时间。然而,这种估计方法有几个优点,其中最主要的是不变性和渐近正态性。基于似然方程解的第一次近似,我们得到了一个与多元伽玛分布的最大似然值具有相同渐近特性的估计量。新提出的估计量,表示为MLECE $$ {mathrm{MLE}}_{mathrm{CE}} $$,只要n $$ sqrt{n} $$‐一致的初始估计量是封闭形式,它也是封闭形式。因此,我们为多元伽玛分布开发了一些封闭形式的n $$ sqrt{n} $$一致估计,以改善小样本性质。MLECE $$ {mathrm{MLE}}_{mathrm{CE}} $$是MLE的替代方案,在计算时间(特别是对于大型数据集)和稳定性方面比MLE表现更好。对于二元gamma分布,MLECE $$ {mathrm{MLE}}_{mathrm{CE}} $$比MLE快130倍以上,随着样本量的增加,MLECE $$ {mathrm{MLE}}_{mathrm{CE}} $$比MLE快200倍以上。由于所提出的估计器可即时计算,因此可用于状态空间建模或实时处理模型。
{"title":"New closed‐form efficient estimator for multivariate gamma distribution","authors":"Yu-Hyeong Jang, Jun Zhao, Hyoung-Moon Kim, Kyusang Yu, Sunghoon Kwon, Sunghwan Kim","doi":"10.1111/stan.12299","DOIUrl":"https://doi.org/10.1111/stan.12299","url":null,"abstract":"Maximum likelihood estimation is used widely in classical statistics. However, except in a few cases, it does not have a closed form. Furthermore, it takes time to derive the maximum likelihood estimator (MLE) owing to the use of iterative methods such as Newton–Raphson. Nonetheless, this estimation method has several advantages, chief among them being the invariance property and asymptotic normality. Based on the first approximation to the solution of the likelihood equation, we obtain an estimator that has the same asymptotic behavior as the MLE for multivariate gamma distribution. The newly proposed estimator, denoted as MLECE$$ {mathrm{MLE}}_{mathrm{CE}} $$ , is also in closed form as long as the n$$ sqrt{n} $$ ‐consistent initial estimator is in the closed form. Hence, we develop some closed‐form n$$ sqrt{n} $$ ‐consistent estimators for multivariate gamma distribution to improve the small‐sample property. MLECE$$ {mathrm{MLE}}_{mathrm{CE}} $$ is an alternative to MLE and performs better compared to MLE in terms of computation time, especially for large datasets, and stability. For the bivariate gamma distribution, the MLECE$$ {mathrm{MLE}}_{mathrm{CE}} $$ is over 130 times faster than the MLE, and as the sample size increasing, the MLECE$$ {mathrm{MLE}}_{mathrm{CE}} $$ is over 200 times faster than the MLE. Owing to the instant calculation of the proposed estimator, it can be used in state–space modeling or real‐time processing models.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"19 1","pages":"555 - 572"},"PeriodicalIF":1.5,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73572282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Multilateral Spatial Integer‐valued Process of order 1 1阶的多边空间整值过程
IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-04-25 DOI: 10.1111/stan.12298
D. Karlis, Azmi Chutoo, N. Mamode Khan, V. Jowaheer
In spatial count data analysis, modeling with a multilateral lattice structure presents some important challenges. They include both the model construction and the estimation of the model parameters, since the structure accommodates the left, right, top, bottom, and diagonal site effects. Thus, the multilateral spatial process unifies all the popular spatial subclasses that include the unilateral, Rook, Bishop, and Queen models and, hence, makes it suitable for a wide variety of applications. This paper introduces a first‐order multilateral integer‐valued spatial process, based on a binomial thinning mechanism and some innovation term, under both stationary and nonstationary conditions. The estimation of parameters is handled by the conditional maximum likelihood estimation (CML) approach. Simulation experiments are implemented to assess the consistency of the CML estimators in the stationary and nonstationary multilateral spatial model and its subclasses, based on different grid sizes and under both covariate and noncovariate designs. The proposed model, along with its subclasses are applied to real datasets.
{"title":"The Multilateral Spatial Integer‐valued Process of order 1","authors":"D. Karlis, Azmi Chutoo, N. Mamode Khan, V. Jowaheer","doi":"10.1111/stan.12298","DOIUrl":"https://doi.org/10.1111/stan.12298","url":null,"abstract":"In spatial count data analysis, modeling with a multilateral lattice structure presents some important challenges. They include both the model construction and the estimation of the model parameters, since the structure accommodates the left, right, top, bottom, and diagonal site effects. Thus, the multilateral spatial process unifies all the popular spatial subclasses that include the unilateral, Rook, Bishop, and Queen models and, hence, makes it suitable for a wide variety of applications. This paper introduces a first‐order multilateral integer‐valued spatial process, based on a binomial thinning mechanism and some innovation term, under both stationary and nonstationary conditions. The estimation of parameters is handled by the conditional maximum likelihood estimation (CML) approach. Simulation experiments are implemented to assess the consistency of the CML estimators in the stationary and nonstationary multilateral spatial model and its subclasses, based on different grid sizes and under both covariate and noncovariate designs. The proposed model, along with its subclasses are applied to real datasets.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"07 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85976129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistica Neerlandica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1