首页 > 最新文献

Advances in Nonlinear Analysis最新文献

英文 中文
Bounded solutions to systems of fractional discrete equations 分数阶离散方程系统的有界解
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2022-01-01 DOI: 10.1515/anona-2022-0260
J. Diblík
Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {Delta }^{alpha }xleft(n+1)={F}_{n}left(n,xleft(n),xleft(n-1),ldots ,xleft({n}_{0})),hspace{1em}n={n}_{0},{n}_{0}+1,ldots , where n 0 ∈ Z {n}_{0}in {mathbb{Z}} , n n is an independent variable, Δ α {Delta }^{alpha } is an α alpha -order fractional difference, α ∈ R alpha in {mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:left{nright}times {{mathbb{R}}}^{n-{n}_{0}+1}to {{mathbb{R}}}^{s} , s ⩾ 1 sgeqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:left{{n}_{0},{n}_{0}+1,ldots right}to {{mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 ngeqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {Delta }^{alpha }xleft(n+1)=Aleft(n)xleft(n)+delta left(n),hspace{1em}n={n}_{0},{n}_{0}+1,ldots , where A ( n ) Aleft(n) is a square matrix and δ ( n ) delta left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.
摘要本文讨论分数阶离散方程组Δαx(n+1)=Fn(n,x(n),x(n-1),…,x(n0)),n=n0,n0+1,…,{Delta}={F}_{n} left(n,xleft(n),xlift(n-1),ldots,xlef({n}_{0})), hspace{1em}n={n}_{0},{n}_{0}+1,ldots,其中n 0∈Z{n}_{0}在{mathbb{Z}}中,n n是自变量,Δα{Delta}^{alpha}是αalpha阶分数差,α∈Ralpha在{ mathbb{R}中},Fn:{n}×Rn−n0+1→ Rs{F}_{n} :left-{n}_{0}+1}to{mathbb{R}}^{s},s⩾1sgeqslant 1是一个固定整数,x:{n 0,n 0+1,…}→ R s x:left{{n}_{0},{n}_{0}+1,ldotsright}to是一个因变量(未知)。对于每个n⩾n0ngeqslant,使用收回原理来证明图保留在给定域中的解的存在性{n}_{0},然后作为进一步证明线性非齐次离散方程组Δαx(n+1)=a(n)x(n)+δ{1em}n={n}_{0},{n}_{0}+1,ldots,其中A(n)Aleft(n)是一个平方矩阵,δ(n)deltaleft是一个向量函数。举例说明了所导出的陈述,讨论了可能的概括,并提出了未来研究的悬而未决的问题。
{"title":"Bounded solutions to systems of fractional discrete equations","authors":"J. Diblík","doi":"10.1515/anona-2022-0260","DOIUrl":"https://doi.org/10.1515/anona-2022-0260","url":null,"abstract":"Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {Delta }^{alpha }xleft(n+1)={F}_{n}left(n,xleft(n),xleft(n-1),ldots ,xleft({n}_{0})),hspace{1em}n={n}_{0},{n}_{0}+1,ldots , where n 0 ∈ Z {n}_{0}in {mathbb{Z}} , n n is an independent variable, Δ α {Delta }^{alpha } is an α alpha -order fractional difference, α ∈ R alpha in {mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:left{nright}times {{mathbb{R}}}^{n-{n}_{0}+1}to {{mathbb{R}}}^{s} , s ⩾ 1 sgeqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:left{{n}_{0},{n}_{0}+1,ldots right}to {{mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 ngeqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {Delta }^{alpha }xleft(n+1)=Aleft(n)xleft(n)+delta left(n),hspace{1em}n={n}_{0},{n}_{0}+1,ldots , where A ( n ) Aleft(n) is a square matrix and δ ( n ) delta left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1614 - 1630"},"PeriodicalIF":4.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45448471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Infinitely many non-radial solutions for a Choquard equation 一个Choquard方程的无穷多个非径向解
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2022-01-01 DOI: 10.1515/anona-2022-0224
Fashun Gao, Minbo Yang
Abstract In this article, we consider the non-linear Choquard equation − Δ u + V ( ∣ x ∣ ) u = ∫ R 3 ∣ u ( y ) ∣ 2 ∣ x − y ∣ d y u in R 3 , -Delta u+Vleft(| x| )u=left(mathop{int }limits_{{{mathbb{R}}}^{3}}frac{| u(y){| }^{2}}{| x-y| }{rm{d}}yright)uhspace{1.0em}hspace{0.1em}text{in}hspace{0.1em}hspace{0.33em}{{mathbb{R}}}^{3}, where V ( r ) Vleft(r) is a positive bounded function. Under some proper assumptions on V ( r ) Vleft(r) , we are able to establish the existence of infinitely many non-radial solutions.
摘要本文考虑非线性Choquard方程- Δ u+V(∣x∣)u=∫R 3∣u (y)∣2∣x - y∣d y u在R 3中,- Delta u+V left (| x|)u= left (mathop{int }limits _ {{{mathbb{R}}} ^{3}}frac{| u(y){| }^{2}}{| x-y| }{rm{d}} y right)u hspace{1.0em}hspace{0.1em}text{in}hspace{0.1em}hspace{0.33em}{{mathbb{R}}} ^{3},其中V (R) V left (R)是一个正有界函数。在V (r) V left (r)的适当假设下,我们能够建立无穷多个非径向解的存在性。
{"title":"Infinitely many non-radial solutions for a Choquard equation","authors":"Fashun Gao, Minbo Yang","doi":"10.1515/anona-2022-0224","DOIUrl":"https://doi.org/10.1515/anona-2022-0224","url":null,"abstract":"Abstract In this article, we consider the non-linear Choquard equation − Δ u + V ( ∣ x ∣ ) u = ∫ R 3 ∣ u ( y ) ∣ 2 ∣ x − y ∣ d y u in R 3 , -Delta u+Vleft(| x| )u=left(mathop{int }limits_{{{mathbb{R}}}^{3}}frac{| u(y){| }^{2}}{| x-y| }{rm{d}}yright)uhspace{1.0em}hspace{0.1em}text{in}hspace{0.1em}hspace{0.33em}{{mathbb{R}}}^{3}, where V ( r ) Vleft(r) is a positive bounded function. Under some proper assumptions on V ( r ) Vleft(r) , we are able to establish the existence of infinitely many non-radial solutions.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1085 - 1096"},"PeriodicalIF":4.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43707346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Multiple nodal solutions of the Kirchhoff-type problem with a cubic term 三次项Kirchhoff型问题的多节点解
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2022-01-01 DOI: 10.1515/anona-2022-0225
Tao Wang, Yanling Yang, Hui Guo
Abstract In this article, we are interested in the following Kirchhoff-type problem (0.1) − a + b ∫ R N ∣ ∇ u ∣ 2 d x Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) , left{begin{array}{l}-left(a+bmathop{displaystyle int }limits_{{{mathbb{R}}}^{N}}| nabla uhspace{-0.25em}{| }^{2}{rm{d}}xright)Delta u+Vleft(| x| )u=| uhspace{-0.25em}{| }^{2}uhspace{1.0em}{rm{in}}hspace{0.33em}{{mathbb{R}}}^{N}, uin {H}^{1}left({{mathbb{R}}}^{N}),end{array}right. where a , b > 0 , N = 2 a,bgt 0,N=2 or 3, the potential function V V is radial and bounded from below by a positive number. Because the nonlocal b ∣ ∇ u ∣ L 2 ( R N ) 2 Δ u b| nabla uhspace{-0.25em}{| }_{{L}^{2}left({{mathbb{R}}}^{N})}^{2}Delta u is 3-homogeneous which is in complicated competition with the nonlinear term ∣ u ∣ 2 u | uhspace{-0.25em}{| }^{2}u . This causes that not all function in H 1 ( R N ) {H}^{1}left({{mathbb{R}}}^{N}) can be projected on the Nehari manifold and thereby the classical Nehari manifold method does not work. By introducing the Gersgorin Disk theorem and the Miranda theorem, via a limit approach and subtle analysis, we prove that for each positive integer k k , equation (0.1) admits a radial nodal solution U k , 4 b {U}_{k,4}^{b} having exactly k k nodes. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k and for any sequence { b n } left{{b}_{n}right} with b n → 0 + , {b}_{n}to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R N ) {H}^{1}left({{mathbb{R}}}^{N}) , which is a radial nodal solution with exactly k k nodes of the classical Schrödinger equation − a Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) . left{begin{array}{l}-aDelta u+Vleft(| x| )u=| uhspace{-0.25em}{| }^{2}uhspace{1.0em}{rm{in}}hspace{0.33em}{{mathbb{R}}}^{N}, uin {H}^{1}left({{mathbb{R}}}^{N}).end{array}right. Our results extend the existence result from the super-cubic case to the cubic case.
在本文中,我们对以下kirchhoff型问题(0.1)−a + b∫R N∣∇u∣2d x Δ u + V(∣x∣)u =∣u∣2u In R N, u∈h1 (R N), left {begin{array}{l}-left(a+bmathop{displaystyle int }limits_{{{mathbb{R}}}^{N}}| nabla uhspace{-0.25em}{| }^{2}{rm{d}}xright)Delta u+Vleft(| x| )u=| uhspace{-0.25em}{| }^{2}uhspace{1.0em}{rm{in}}hspace{0.33em}{{mathbb{R}}}^{N}, uin {H}^{1}left({{mathbb{R}}}^{N}),end{array}right感兴趣。其中,a,b > 0,N=2, a,b gt 0,N=2或3,势函数V V是径向的,从下面开始有一个正数。因为非局部的b∣∇u∣l2 (R N) 2 Δ u b| nabla u_Lhspace{-0.25em}{| }^{{2 }{}left ({{mathbb{R}}} ^{N})}^{2 }Delta u是3齐次的这与非线性项∣u∣2u | uhspace{-0.25em}{| }^{2u是复杂的竞争关系。这导致不是所有在h1 (rn) H}^{1}{}left ({{mathbb{R}}} ^{N})中的函数都可以投影到Nehari流形上,因此经典的Nehari流形方法不起作用。通过引入Gersgorin圆盘定理和Miranda定理,通过极限逼近和精细分析,证明了对于每一个正整数k k,方程(0.1)承认一个径向节点解U k, 4b U {k,4}^{b}恰好有k k个节点。此外,我们证明了uk, 4b {U_k},4{^}b{的能量在k k中是严格递增的,对于任意序列}b n{}{}left {{b_n}{}right},当b n→0 +,{b_n}{}to 0_{+}时,直到一个子序列,uk, 4b n {U_k},4{^}b_n{收敛于uk, 40 }U_k{{,4}^b_n在H 1 (R n) {H}}^{1}{}{}{}{}left ({{mathbb{R}}} ^ {n}),这是经典Schrödinger方程- a Δ U + V(∣x∣)U =∣U∣2u在R n, U∈H 1 (R n)中具有精确k个节点的径向节点解。left {begin{array}{l}-aDelta u+Vleft(| x| )u=| uhspace{-0.25em}{| }^{2}uhspace{1.0em}{rm{in}}hspace{0.33em}{{mathbb{R}}}^{N}, uin {H}^{1}left({{mathbb{R}}}^{N}).end{array}right。我们的结果将超三次情况下的存在性结果推广到三次情况。
{"title":"Multiple nodal solutions of the Kirchhoff-type problem with a cubic term","authors":"Tao Wang, Yanling Yang, Hui Guo","doi":"10.1515/anona-2022-0225","DOIUrl":"https://doi.org/10.1515/anona-2022-0225","url":null,"abstract":"Abstract In this article, we are interested in the following Kirchhoff-type problem (0.1) − a + b ∫ R N ∣ ∇ u ∣ 2 d x Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) , left{begin{array}{l}-left(a+bmathop{displaystyle int }limits_{{{mathbb{R}}}^{N}}| nabla uhspace{-0.25em}{| }^{2}{rm{d}}xright)Delta u+Vleft(| x| )u=| uhspace{-0.25em}{| }^{2}uhspace{1.0em}{rm{in}}hspace{0.33em}{{mathbb{R}}}^{N}, uin {H}^{1}left({{mathbb{R}}}^{N}),end{array}right. where a , b > 0 , N = 2 a,bgt 0,N=2 or 3, the potential function V V is radial and bounded from below by a positive number. Because the nonlocal b ∣ ∇ u ∣ L 2 ( R N ) 2 Δ u b| nabla uhspace{-0.25em}{| }_{{L}^{2}left({{mathbb{R}}}^{N})}^{2}Delta u is 3-homogeneous which is in complicated competition with the nonlinear term ∣ u ∣ 2 u | uhspace{-0.25em}{| }^{2}u . This causes that not all function in H 1 ( R N ) {H}^{1}left({{mathbb{R}}}^{N}) can be projected on the Nehari manifold and thereby the classical Nehari manifold method does not work. By introducing the Gersgorin Disk theorem and the Miranda theorem, via a limit approach and subtle analysis, we prove that for each positive integer k k , equation (0.1) admits a radial nodal solution U k , 4 b {U}_{k,4}^{b} having exactly k k nodes. Moreover, we show that the energy of U k , 4 b {U}_{k,4}^{b} is strictly increasing in k k and for any sequence { b n } left{{b}_{n}right} with b n → 0 + , {b}_{n}to {0}_{+}, up to a subsequence, U k , 4 b n {U}_{k,4}^{{b}_{n}} converges to U k , 4 0 {U}_{k,4}^{0} in H 1 ( R N ) {H}^{1}left({{mathbb{R}}}^{N}) , which is a radial nodal solution with exactly k k nodes of the classical Schrödinger equation − a Δ u + V ( ∣ x ∣ ) u = ∣ u ∣ 2 u in R N , u ∈ H 1 ( R N ) . left{begin{array}{l}-aDelta u+Vleft(| x| )u=| uhspace{-0.25em}{| }^{2}uhspace{1.0em}{rm{in}}hspace{0.33em}{{mathbb{R}}}^{N}, uin {H}^{1}left({{mathbb{R}}}^{N}).end{array}right. Our results extend the existence result from the super-cubic case to the cubic case.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1030 - 1047"},"PeriodicalIF":4.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48120538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity 具有一般指数非线性的非齐次椭圆型方程解存在性的阈值
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2022-01-01 DOI: 10.1515/anona-2021-0220
Kazuhiro Ishige, S. Okabe, Tokushi Sato
Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ  in  RN, u>0  in  RN, u(x)→0  as  |x|→∞, - Delta u + u = F(u) + kappa mu quad {kern 1pt} {rm in}{kern 1pt} quad {{bf R}^N},quad u > 0quad {kern 1pt} {rm in}{kern 1pt} quad {{bf R}^N},quad u(x) to 0quad {kern 1pt} {rm as}{kern 1pt} quad |x| to infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN){0} mu in L_{rm{c}}^1({{bf R}^N})backslash { 0} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.
摘要本文研究了一个非齐次非线性椭圆型问题(P)-Δu+u=F(u)+κμ解的存在性和不存在性  在里面  RN, u> 0  在里面  RN, u(x)→0  像  |x|→∞, - Δu+u=F(u)+kappamuquad{kern 1pt}→ ∞. 这里N≥2,κ>0,并且L_{rm{c}}^1({bf R}^N})反斜杠{0}中的μ∈Lc1(RN){0}mu是非负的。然后,在μ上的一个合适的可积条件下,存在一个阈值参数κ*>0,使得问题(P)在0<κ<κ*时具有解,而在κ>κ*时不具有无解。此外,在2≤N≤9的情况下,如果κ=κ*,则问题(P)具有唯一的解。
{"title":"Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity","authors":"Kazuhiro Ishige, S. Okabe, Tokushi Sato","doi":"10.1515/anona-2021-0220","DOIUrl":"https://doi.org/10.1515/anona-2021-0220","url":null,"abstract":"Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ  in  RN, u>0  in  RN, u(x)→0  as  |x|→∞, - Delta u + u = F(u) + kappa mu quad {kern 1pt} {rm in}{kern 1pt} quad {{bf R}^N},quad u > 0quad {kern 1pt} {rm in}{kern 1pt} quad {{bf R}^N},quad u(x) to 0quad {kern 1pt} {rm as}{kern 1pt} quad |x| to infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN){0} mu in L_{rm{c}}^1({{bf R}^N})backslash { 0} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"968 - 992"},"PeriodicalIF":4.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45919650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory 基于Morse理论的离散kirchhoff型问题非平凡解
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2022-01-01 DOI: 10.1515/anona-2022-0251
Y. Long
Abstract In this article, we study discrete Kirchhoff-type problems when the nonlinearity is resonant at both zero and infinity. We establish a series of results on the existence of nontrivial solutions by combining variational method with Morse theory. Several examples are provided to illustrate applications of our results.
摘要在本文中,我们研究了当非线性在零和无穷大处都谐振时的离散基尔霍夫型问题。将变分法与Morse理论相结合,得到了一系列关于非平凡解存在性的结果。提供了几个例子来说明我们的结果的应用。
{"title":"Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory","authors":"Y. Long","doi":"10.1515/anona-2022-0251","DOIUrl":"https://doi.org/10.1515/anona-2022-0251","url":null,"abstract":"Abstract In this article, we study discrete Kirchhoff-type problems when the nonlinearity is resonant at both zero and infinity. We establish a series of results on the existence of nontrivial solutions by combining variational method with Morse theory. Several examples are provided to illustrate applications of our results.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1352 - 1364"},"PeriodicalIF":4.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45001118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the L2-subcritical and L2-supercritical cases 涉及Sobolev临界指数的分数阶Schrödinger方程在l2 -亚临界和l2 -超临界情况下归一化解的存在性和多重性
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2022-01-01 DOI: 10.1515/anona-2022-0252
Quanqing Li, W. Zou
Abstract This paper is devoted to investigate the existence and multiplicity of the normalized solutions for the following fractional Schrödinger equation: (P) ( − Δ ) s u + λ u = μ ∣ u ∣ p − 2 u + ∣ u ∣ 2 s ∗ − 2 u , x ∈ R N , u > 0 , ∫ R N ∣ u ∣ 2 d x = a 2 , left{begin{array}{l}{left(-Delta )}^{s}u+lambda u=mu | u{| }^{p-2}u+| u{| }^{{2}_{s}^{ast }-2}u,hspace{1em}xin {{mathbb{R}}}^{N},hspace{1.0em} ugt 0,hspace{1em}mathop{displaystyle int }limits_{{{mathbb{R}}}^{N}}| u{| }^{2}{rm{d}}x={a}^{2},hspace{1.0em}end{array}right. where 0 < s < 1 0lt slt 1 , a a , μ > 0 mu gt 0 , N ≥ 2 Nge 2 , and 2 < p < 2 s ∗ 2lt plt {2}_{s}^{ast } . We consider the L 2 {L}^{2} -subcritical and L 2 {L}^{2} -supercritical cases. More precisely, in L 2 {L}^{2} -subcritical case, we obtain the multiplicity of the normalized solutions for problem ( P ) left(P) by using the truncation technique, concentration-compactness principle, and genus theory. In L 2 {L}^{2} -supercritical case, we obtain a couple of normalized solution for ( P ) left(P) by using a fiber map and concentration-compactness principle. To some extent, these results can be viewed as an extension of the existing results from Sobolev subcritical growth to Sobolev critical growth.
摘要本文研究了以下分数阶Schrödinger方程正规化解的存在性和多重性:(P)(−Δ)su+λu=μÜuÜP−2u+ÜuŞ2s*−2u,x∈RN,u>0,ŞRNÜu⁄2dx=a2,left{begin{array}{l}{{left(-Delta)}^{s}u+λu=mu|u{|}^{p-2}u+|u{|}^{{2}_{s} ^{sast}-2}u,space{1em}x在{mathbb{R}}^{N}, hspace{1.0em}u}gt 0, hsppace{1em}mathop{displaystyleint}limits_{{math bb{R}}}}^{N}| u{|}^}2}{rm{d}x={a}^{2},space{1.0em}end{array}right。其中0<s<1 0lt s<1,a,μ>0mu>0,N≥2 N>2 s*2lt plt{2}_{s} ^{ast}。我们考虑了L2{L}^{2}-亚临界和L2{L}^}-超临界情况。更确切地说,在L2{L}^{2}-次临界情况下,我们利用截断技术、集中紧致性原理和亏格理论,得到了问题(P)left(P)的归一化解的多重性。在L2{L}^{2}-超临界情况下,我们利用纤维图和浓度紧致性原理得到了(P)left(P)的一对归一化解。在某种程度上,这些结果可以被视为现有结果从索博列夫亚临界增长到索博列v临界增长的延伸。
{"title":"The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the L2-subcritical and L2-supercritical cases","authors":"Quanqing Li, W. Zou","doi":"10.1515/anona-2022-0252","DOIUrl":"https://doi.org/10.1515/anona-2022-0252","url":null,"abstract":"Abstract This paper is devoted to investigate the existence and multiplicity of the normalized solutions for the following fractional Schrödinger equation: (P) ( − Δ ) s u + λ u = μ ∣ u ∣ p − 2 u + ∣ u ∣ 2 s ∗ − 2 u , x ∈ R N , u > 0 , ∫ R N ∣ u ∣ 2 d x = a 2 , left{begin{array}{l}{left(-Delta )}^{s}u+lambda u=mu | u{| }^{p-2}u+| u{| }^{{2}_{s}^{ast }-2}u,hspace{1em}xin {{mathbb{R}}}^{N},hspace{1.0em} ugt 0,hspace{1em}mathop{displaystyle int }limits_{{{mathbb{R}}}^{N}}| u{| }^{2}{rm{d}}x={a}^{2},hspace{1.0em}end{array}right. where 0 < s < 1 0lt slt 1 , a a , μ > 0 mu gt 0 , N ≥ 2 Nge 2 , and 2 < p < 2 s ∗ 2lt plt {2}_{s}^{ast } . We consider the L 2 {L}^{2} -subcritical and L 2 {L}^{2} -supercritical cases. More precisely, in L 2 {L}^{2} -subcritical case, we obtain the multiplicity of the normalized solutions for problem ( P ) left(P) by using the truncation technique, concentration-compactness principle, and genus theory. In L 2 {L}^{2} -supercritical case, we obtain a couple of normalized solution for ( P ) left(P) by using a fiber map and concentration-compactness principle. To some extent, these results can be viewed as an extension of the existing results from Sobolev subcritical growth to Sobolev critical growth.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1531 - 1551"},"PeriodicalIF":4.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46463248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Infinitely many radial and non-radial sign-changing solutions for Schrödinger equations Schrödinger方程的无穷多径向和非径向变号解
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2022-01-01 DOI: 10.1515/anona-2021-0221
Gui-Dong Li, Yong-Yong Li, Chunlei Tang
Abstract In the present paper, a class of Schrödinger equations is investigated, which can be stated as −Δu+V(x)u=f(u),    x∈ℝN. - Delta u + V(x)u = f(u),;;;;x in {{rm{mathbb R}}^N}. If the external potential V is radial and coercive, then we give the local Ambrosetti-Rabinowitz super-linear condition on the nonlinearity term f ∈ C(ℝ, ℝ) which assures the problem has not only infinitely many radial sign-changing solutions, but also infinitely many non-radial sign-changing solutions.
本文研究了一类Schrödinger方程,它可以表示为-Δu+V(x)u=f(u),    x∈ℝN.-Δu+V(x)u=f(u),;;;x在{rm{mathbb R}}^N}中。如果外电势V是径向的和矫顽的,则我们给出了非线性项f∈C上的局部Ambrosetti-Rabinowitz超线性条件(ℝ, ℝ) 这保证了问题不仅有无限多个径向变符号的解,而且有无限多的非径向变符号解。
{"title":"Infinitely many radial and non-radial sign-changing solutions for Schrödinger equations","authors":"Gui-Dong Li, Yong-Yong Li, Chunlei Tang","doi":"10.1515/anona-2021-0221","DOIUrl":"https://doi.org/10.1515/anona-2021-0221","url":null,"abstract":"Abstract In the present paper, a class of Schrödinger equations is investigated, which can be stated as −Δu+V(x)u=f(u),    x∈ℝN. - Delta u + V(x)u = f(u),;;;;x in {{rm{mathbb R}}^N}. If the external potential V is radial and coercive, then we give the local Ambrosetti-Rabinowitz super-linear condition on the nonlinearity term f ∈ C(ℝ, ℝ) which assures the problem has not only infinitely many radial sign-changing solutions, but also infinitely many non-radial sign-changing solutions.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"907 - 920"},"PeriodicalIF":4.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47358939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On the solutions to p-Poisson equation with Robin boundary conditions when p goes to +∞ p趋于+∞时具有Robin边界条件的p- poisson方程的解
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2022-01-01 DOI: 10.1515/anona-2022-0258
Vincenzo Amato, Alba Lia Masiello, C. Nitsch, C. Trombetti
Abstract We study the behaviour, when p → + ∞ pto +infty , of the first p-Laplacian eigenvalues with Robin boundary conditions and the limit of the associated eigenfunctions. We prove that the limit of the eigenfunctions is a viscosity solution to an eigenvalue problem for the so-called ∞ infty -Laplacian. Moreover, in the second part of the article, we focus our attention on the p-Poisson equation when the datum f f belongs to L ∞ ( Ω ) {L}^{infty }left(Omega ) and we study the behaviour of solutions when p → ∞ pto infty .
研究了当p→+∞p to + infty时具有Robin边界条件的第一个p-拉普拉斯特征值的行为及其相关特征函数的极限。我们证明了本征函数的极限是一个本征值问题的粘滞解对于所谓的∞infty -拉普拉斯算子。此外,在文章的第二部分中,我们重点关注了当基准f f属于L∞(Ω) {L}^ {infty}left (Omega)时的p- poisson方程,并研究了p→∞p toinfty时解的行为。
{"title":"On the solutions to p-Poisson equation with Robin boundary conditions when p goes to +∞","authors":"Vincenzo Amato, Alba Lia Masiello, C. Nitsch, C. Trombetti","doi":"10.1515/anona-2022-0258","DOIUrl":"https://doi.org/10.1515/anona-2022-0258","url":null,"abstract":"Abstract We study the behaviour, when p → + ∞ pto +infty , of the first p-Laplacian eigenvalues with Robin boundary conditions and the limit of the associated eigenfunctions. We prove that the limit of the eigenfunctions is a viscosity solution to an eigenvalue problem for the so-called ∞ infty -Laplacian. Moreover, in the second part of the article, we focus our attention on the p-Poisson equation when the datum f f belongs to L ∞ ( Ω ) {L}^{infty }left(Omega ) and we study the behaviour of solutions when p → ∞ pto infty .","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1631 - 1649"},"PeriodicalIF":4.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47109412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities 临界非线性非齐次分数(p, q)-拉普拉斯系统的解
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2022-01-01 DOI: 10.1515/anona-2022-0248
Mengfei Tao, Binlin Zhang
Abstract In this article, we aimed to study a class of nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities as well as critical Hardy nonlinearities in R N {{mathbb{R}}}^{N} . By appealing to a fixed point result and fractional Hardy-Sobolev inequality, the existence of nontrivial nonnegative solutions is obtained. In particular, we also consider Choquard-type nonlinearities in the second part of this article. More precisely, with the help of Hardy-Littlewood-Sobolev inequality, we obtain the existence of nontrivial solutions for the related systems based on the same approach. Finally, we obtain the corresponding existence results for the fractional (p, q)-Laplacian systems in the case of N = s p = l q N=sp=lq . It is worth pointing out that using fixed point argument to seek solutions for a class of nonhomogeneous fractional (p, q)-Laplacian systems is the main novelty of this article.
摘要本文研究了一类具有临界非线性和临界Hardy非线性的非齐次分数(p, q)-拉普拉斯系统在R N {{mathbb{R}}}^{N}上的问题。利用不动点结果和分数阶Hardy-Sobolev不等式,得到了非平凡非负解的存在性。特别地,我们还在本文的第二部分中考虑了choquard型非线性。更准确地说,我们利用Hardy-Littlewood-Sobolev不等式,基于相同的方法,得到了相关系统非平凡解的存在性。最后,我们得到了N=sp=lq N=sp=lq情况下分数阶(p, q)-拉普拉斯系统的存在性结果。值得指出的是,利用不动点参数求一类非齐次分数(p, q)-拉普拉斯系统的解是本文的主要新颖之处。
{"title":"Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities","authors":"Mengfei Tao, Binlin Zhang","doi":"10.1515/anona-2022-0248","DOIUrl":"https://doi.org/10.1515/anona-2022-0248","url":null,"abstract":"Abstract In this article, we aimed to study a class of nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities as well as critical Hardy nonlinearities in R N {{mathbb{R}}}^{N} . By appealing to a fixed point result and fractional Hardy-Sobolev inequality, the existence of nontrivial nonnegative solutions is obtained. In particular, we also consider Choquard-type nonlinearities in the second part of this article. More precisely, with the help of Hardy-Littlewood-Sobolev inequality, we obtain the existence of nontrivial solutions for the related systems based on the same approach. Finally, we obtain the corresponding existence results for the fractional (p, q)-Laplacian systems in the case of N = s p = l q N=sp=lq . It is worth pointing out that using fixed point argument to seek solutions for a class of nonhomogeneous fractional (p, q)-Laplacian systems is the main novelty of this article.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1332 - 1351"},"PeriodicalIF":4.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46139127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Global gradient estimates for Dirichlet problems of elliptic operators with a BMO antisymmetric part 具有BMO反对称部分的椭圆算子Dirichlet问题的全局梯度估计
IF 4.2 1区 数学 Q1 MATHEMATICS Pub Date : 2022-01-01 DOI: 10.1515/anona-2022-0247
Sibei Yang, Dachun Yang, Wen Yuan
Abstract Let n ≥ 2 nge 2 and Ω ⊂ R n Omega subset {{mathbb{R}}}^{n} be a bounded nontangentially accessible domain. In this article, the authors investigate (weighted) global gradient estimates for Dirichlet boundary value problems of second-order elliptic equations of divergence form with an elliptic symmetric part and a BMO antisymmetric part in Ω Omega . More precisely, for any given p ∈ ( 2 , ∞ ) pin left(2,infty ) , the authors prove that a weak reverse Hölder inequality with exponent p p implies the global W 1 , p {W}^{1,p} estimate and the global weighted W 1 , q {W}^{1,q} estimate, with q ∈ [ 2 , p ] qin left[2,p] and some Muckenhoupt weights, of solutions to Dirichlet boundary value problems. As applications, the authors establish some global gradient estimates for solutions to Dirichlet boundary value problems of second-order elliptic equations of divergence form with small BMO {rm{BMO}} symmetric part and small BMO {rm{BMO}} antisymmetric part, respectively, on bounded Lipschitz domains, quasi-convex domains, Reifenberg flat domains, C 1 {C}^{1} domains, or (semi-)convex domains, in weighted Lebesgue spaces. Furthermore, as further applications, the authors obtain the global gradient estimate, respectively, in (weighted) Lorentz spaces, (Lorentz–)Morrey spaces, (Musielak–)Orlicz spaces, and variable Lebesgue spaces. Even on global gradient estimates in Lebesgue spaces, the results obtained in this article improve the known results via weakening the assumption on the coefficient matrix.
设n≥2nge 2和Ω∧R n Omega subset {{mathbb{R}}}^{n} 是一个有界的非切可达域。本文研究了具有椭圆对称部分和BMO反对称部分的二阶发散型椭圆方程的Dirichlet边值问题的(加权)全局梯度估计 Omega 。更准确地说,对于任意给定的p∈(2,∞)pin left(2);infty ),证明了一个指数为p p的弱逆Hölder不等式暗示了全局W 1, p {w}^{1,p} 估计和全局加权W 1, q {w}^{1、q} 估计,其中q∈[2,p] qin left[2,p] 狄利克雷边值问题解的Muckenhoupt权值。作为应用,本文建立了具有小BMO的二阶发散型椭圆方程的Dirichlet边值问题解的全局梯度估计 {rm{BMO}} 对称部分和小BMO {rm{BMO}} 分别在有界Lipschitz域、拟凸域、Reifenberg平面域、c1上的反对称部分 {c}^{1} 域,或(半)凸域,在加权勒贝格空间。此外,作为进一步的应用,作者分别在(加权)Lorentz空间、(Lorentz -)Morrey空间、(Musielak -)Orlicz空间和可变Lebesgue空间中获得了全局梯度估计。即使在Lebesgue空间的全局梯度估计上,本文的结果也通过弱化对系数矩阵的假设而改进了已知结果。
{"title":"Global gradient estimates for Dirichlet problems of elliptic operators with a BMO antisymmetric part","authors":"Sibei Yang, Dachun Yang, Wen Yuan","doi":"10.1515/anona-2022-0247","DOIUrl":"https://doi.org/10.1515/anona-2022-0247","url":null,"abstract":"Abstract Let n ≥ 2 nge 2 and Ω ⊂ R n Omega subset {{mathbb{R}}}^{n} be a bounded nontangentially accessible domain. In this article, the authors investigate (weighted) global gradient estimates for Dirichlet boundary value problems of second-order elliptic equations of divergence form with an elliptic symmetric part and a BMO antisymmetric part in Ω Omega . More precisely, for any given p ∈ ( 2 , ∞ ) pin left(2,infty ) , the authors prove that a weak reverse Hölder inequality with exponent p p implies the global W 1 , p {W}^{1,p} estimate and the global weighted W 1 , q {W}^{1,q} estimate, with q ∈ [ 2 , p ] qin left[2,p] and some Muckenhoupt weights, of solutions to Dirichlet boundary value problems. As applications, the authors establish some global gradient estimates for solutions to Dirichlet boundary value problems of second-order elliptic equations of divergence form with small BMO {rm{BMO}} symmetric part and small BMO {rm{BMO}} antisymmetric part, respectively, on bounded Lipschitz domains, quasi-convex domains, Reifenberg flat domains, C 1 {C}^{1} domains, or (semi-)convex domains, in weighted Lebesgue spaces. Furthermore, as further applications, the authors obtain the global gradient estimate, respectively, in (weighted) Lorentz spaces, (Lorentz–)Morrey spaces, (Musielak–)Orlicz spaces, and variable Lebesgue spaces. Even on global gradient estimates in Lebesgue spaces, the results obtained in this article improve the known results via weakening the assumption on the coefficient matrix.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1496 - 1530"},"PeriodicalIF":4.2,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43249751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Advances in Nonlinear Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1