首页 > 最新文献

Electrocatalysis最新文献

英文 中文
Simultaneous Electrocatalytic Measurement of Dopamine and Acetaminophen by Nanosensor Based on Ag@Polyoxometalate@Reduced Graphene Oxide and Ionic Liquid 基于纳米传感器的多巴胺和对乙酰氨基酚同时电催化测定Ag@Polyoxometalate@还原氧化石墨烯和离子液体
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-08-12 DOI: 10.1007/s12678-023-00838-7
Haniyeh Shafiei, Seyed Karim Hassaninejad-Darzi

A novel electrochemical nanosensor was established for the simultaneous measurement of dopamine (DA) and acetaminophen (AC). The nanosensor was achieved by modification of carbon paste electrode (CPE) by Ag nanoparticle, polyoxometalate, reduced graphene oxide (Ag@POM@rGO), and ionic liquid (IL). The electrochemical behaviors of DA and AC were evaluated by Ag@POM@rGO-IL/CPE and various electrochemical methods. Design-Expert software by response surface methodology (RSM) approach was utilized to consider the interaction between the different factors. The best electrochemical response was attained with 0.01 g of IL and 0.04 g of Ag@POM@rGO in the modified electrode, phosphate buffer solution (0.1 M, pH 7.0), and a sweep rate of 0.07 V s−1. In the optimum situation, the calibration curves for DA and AC were achieved in a square wave voltammetry (SWV) manner, and linear dynamic ranges (LDR) were obtained to be 0.05–115.04 µM and 0.1–137.90 µM for DA and AC, respectively. The limit of detection (LOD) was attained to be 17.0 for DA and 37.0 nM for AC. The Ag@POM@rGO-IL/CPE showed good stability, productivity and repeatability, and advanced recovery, and it has a little price and low background current. Also, the usage of this nanosensor was studied by measuring the DA and AC in the human plasma by means of worthy recovery. This technique is easy, rapid, and cheap and can be utilized as a significant device in the quantitative analysis of the medicinal product.

Graphical abstract

建立了一种新型的电化学纳米传感器,用于同时测量多巴胺(DA)和对乙酰氨基酚(AC)。该纳米传感器采用银纳米粒子、多金属氧酸盐、还原氧化石墨烯(Ag@POM@rGO)和离子液体(IL)对碳糊电极(CPE)进行改性而制成。通过Ag@POM@rGO-IL/CPE和各种电化学方法对DA和AC的电化学行为进行了评价。采用响应面法(RSM)设计专家软件来考虑不同因素之间的相互作用。在磷酸缓冲溶液(0.1 M, pH 7.0)中加入0.01 g IL和0.04 g Ag@POM@rGO,扫描速率为0.07 V s−1时,电化学响应最佳。在最佳条件下,DA和AC的标定曲线采用方波伏安法(SWV)得到,DA和AC的线性动态范围LDR分别为0.05 ~ 115.04µM和0.1 ~ 137.90µM。样品的检出限(LOD)为17.0 nM, AC为37.0 nM。Ag@POM@rGO-IL/CPE具有良好的稳定性、生产效率和重复性,回收率高,价格便宜,背景电流小。并通过对人体血浆中DA和AC的有价值回收,研究了该纳米传感器的应用。该方法简便、快速、廉价,可作为药品定量分析的重要手段。图形抽象
{"title":"Simultaneous Electrocatalytic Measurement of Dopamine and Acetaminophen by Nanosensor Based on Ag@Polyoxometalate@Reduced Graphene Oxide and Ionic Liquid","authors":"Haniyeh Shafiei,&nbsp;Seyed Karim Hassaninejad-Darzi","doi":"10.1007/s12678-023-00838-7","DOIUrl":"10.1007/s12678-023-00838-7","url":null,"abstract":"<div><p>A novel electrochemical nanosensor was established for the simultaneous measurement of dopamine (DA) and acetaminophen (AC). The nanosensor was achieved by modification of carbon paste electrode (CPE) by Ag nanoparticle, polyoxometalate, reduced graphene oxide (Ag@POM@rGO), and ionic liquid (IL). The electrochemical behaviors of DA and AC were evaluated by Ag@POM@rGO-IL/CPE and various electrochemical methods. Design-Expert software by response surface methodology (RSM) approach was utilized to consider the interaction between the different factors. The best electrochemical response was attained with 0.01 g of IL and 0.04 g of Ag@POM@rGO in the modified electrode, phosphate buffer solution (0.1 M, pH 7.0), and a sweep rate of 0.07 V s<sup>−1</sup>. In the optimum situation, the calibration curves for DA and AC were achieved in a square wave voltammetry (SWV) manner, and linear dynamic ranges (LDR) were obtained to be 0.05–115.04 µM and 0.1–137.90 µM for DA and AC, respectively. The limit of detection (LOD) was attained to be 17.0 for DA and 37.0 nM for AC. The Ag@POM@rGO-IL/CPE showed good stability, productivity and repeatability, and advanced recovery, and it has a little price and low background current. Also, the usage of this nanosensor was studied by measuring the DA and AC in the human plasma by means of worthy recovery. This technique is easy, rapid, and cheap and can be utilized as a significant device in the quantitative analysis of the medicinal product.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45181923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electrodeposition of Ni-Co-S Electrocatalyst Using 2,5-dimercapto-1,3,4-thiadiazole as S Precursor for Hydrogen Evolution Reaction at Neutral pH 以2,5-二巯基-1,3,4-噻二唑为S前驱体的Ni-Co-S电催化剂在中性pH下电沉积的析氢反应
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-07-18 DOI: 10.1007/s12678-023-00837-8
Yeosol Yoon, Sehyun Yoo, Taeho Lim

Among various chalcogenide materials, transition metal sulfides are known to be effective catalysts for the electrochemical hydrogen evolution reaction (HER). In particular, Ni-Co-S is a promising material for the next generation of non-precious metal HER catalysts due to its excellent HER activity in neutral pH solutions. Ni-Co-S is also advantageous in large-scale applications, as it enables relatively simple catalytic synthesis through electrodeposition. In this study, we employed a new S precursor, 2,5-dimercapto-1,3,4-thiadiazole (DMTD), for the electrodeposition of Ni-Co-S, instead of the conventional S precursor, thiourea (TU). Ni-Co-S synthesized with DMTD (Ni-Co-SDMTD) showed enhanced HER activity at neutral pH compared to that synthesized with TU (Ni-Co-STU). It has been found that this improvement in activity is due to the large surface area and high S content of Ni-Co-SDMTD. The S content and HER activity of Ni-Co-SDMTD depend on the concentration of DMTD. At the optimal DMTD concentration (12 mM), Ni-Co-SDMTD exhibited an overpotential of 303 mV at a current density of 10 mA cm− 2 and a Tafel slope of 99 mV dec− 1 in a phosphate buffer solution (pH 7.4).

Graphical Abstract

在各种硫系材料中,过渡金属硫化物是电化学析氢反应(HER)的有效催化剂。特别是,Ni-Co-S在中性pH溶液中具有优异的HER活性,是下一代非贵金属HER催化剂的理想材料。Ni-Co-S在大规模应用中也具有优势,因为它可以通过电沉积实现相对简单的催化合成。在这项研究中,我们采用了一种新的S前驱体,2,5-二巯基-1,3,4-噻二唑(DMTD)来电沉积Ni-Co-S,取代了传统的S前驱体硫脲(TU)。与TU (Ni-Co-STU)合成的Ni-Co-S相比,DMTD合成的Ni-Co-S在中性pH下的HER活性增强。研究发现,这种活性的提高是由于Ni-Co-SDMTD的大表面积和高S含量。Ni-Co-SDMTD的S含量和HER活性与DMTD的浓度有关。在最佳DMTD浓度(12 mM)下,Ni-Co-SDMTD在10 mA cm−2电流密度下的过电位为303 mV,在pH 7.4的磷酸盐缓冲溶液中,Tafel斜率为99 mV dec−1。图形抽象
{"title":"Electrodeposition of Ni-Co-S Electrocatalyst Using 2,5-dimercapto-1,3,4-thiadiazole as S Precursor for Hydrogen Evolution Reaction at Neutral pH","authors":"Yeosol Yoon,&nbsp;Sehyun Yoo,&nbsp;Taeho Lim","doi":"10.1007/s12678-023-00837-8","DOIUrl":"10.1007/s12678-023-00837-8","url":null,"abstract":"<div><p>Among various chalcogenide materials, transition metal sulfides are known to be effective catalysts for the electrochemical hydrogen evolution reaction (HER). In particular, Ni-Co-S is a promising material for the next generation of non-precious metal HER catalysts due to its excellent HER activity in neutral pH solutions. Ni-Co-S is also advantageous in large-scale applications, as it enables relatively simple catalytic synthesis through electrodeposition. In this study, we employed a new S precursor, 2,5-dimercapto-1,3,4-thiadiazole (DMTD), for the electrodeposition of Ni-Co-S, instead of the conventional S precursor, thiourea (TU). Ni-Co-S synthesized with DMTD (Ni-Co-S<sub>DMTD</sub>) showed enhanced HER activity at neutral pH compared to that synthesized with TU (Ni-Co-S<sub>TU</sub>). It has been found that this improvement in activity is due to the large surface area and high S content of Ni-Co-S<sub>DMTD</sub>. The S content and HER activity of Ni-Co-S<sub>DMTD</sub> depend on the concentration of DMTD. At the optimal DMTD concentration (12 mM), Ni-Co-S<sub>DMTD</sub> exhibited an overpotential of 303 mV at a current density of 10 mA cm<sup>− 2</sup> and a Tafel slope of 99 mV dec<sup>− 1</sup> in a phosphate buffer solution (pH 7.4).</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4721673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Monitoring of Organic Pollutants in Wastewater Using Electrochemical Approach 电化学法监测废水中有机污染物的研究进展
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-07-17 DOI: 10.1007/s12678-023-00834-x
Azeez Olayiwola Idris, Benjamin Orimolade, Lynn Dennany, Bhekie Mamba, Shohreh Azizi, K. Kaviyarasu, Malik Maaza

This diagram illustrates the steps involved in creating a sensor utilising nanomaterial and connected to a three-electrode system. The nanomaterial is immobilised onto the surface of the working electrode. A suitable potentiostat is then employed to generate the current signal of the reaction between the sensor and the desired analyte.

该图说明了利用纳米材料制造传感器并连接到三电极系统的步骤。纳米材料被固定在工作电极的表面。然后使用合适的恒电位器来产生传感器和所需分析物之间反应的电流信号。
{"title":"A Review on Monitoring of Organic Pollutants in Wastewater Using Electrochemical Approach","authors":"Azeez Olayiwola Idris,&nbsp;Benjamin Orimolade,&nbsp;Lynn Dennany,&nbsp;Bhekie Mamba,&nbsp;Shohreh Azizi,&nbsp;K. Kaviyarasu,&nbsp;Malik Maaza","doi":"10.1007/s12678-023-00834-x","DOIUrl":"10.1007/s12678-023-00834-x","url":null,"abstract":"<p>This diagram illustrates the steps involved in creating a sensor utilising nanomaterial and connected to a three-electrode system. The nanomaterial is immobilised onto the surface of the working electrode. A suitable potentiostat is then employed to generate the current signal of the reaction between the sensor and the desired analyte.</p>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00834-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4685447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of MnO Content on the Oxygen Reduction Activity of MnO/C Nanostructures MnO含量对MnO/C纳米结构氧还原活性的影响
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-07-10 DOI: 10.1007/s12678-023-00836-9
Vineet Mishra, Biswaranjan D. Mohapatra, Tapan Kumar Ghosh, G. Ranga Rao

Manganese oxide based materials are considered as alternate non-noble metal electrocatalysts for oxygen reduction reaction (ORR). These materials possess rich redox chemistry and can decompose hydrogen peroxide disproportionately to drive the oxygen reduction towards efficient 4-electron pathway. In this work, a set of MnO nanostructures supported on activated charcoal (MnO/C) with varying MnO loadings are prepared by ball milling followed by in-situ pyrolysis. The MnO/C composites are tested for ORR activity by employing cyclic voltammetry and linear sweep voltammetry using rotating-ring disk electrode (RRDE) in 0.1 M KOH. The results indicate that the ORR activity as well as catalytic pathways are sensitive to MnO loading. The ORR activities of the composites follow volcano type relationship with the quantity of MnO loadings. The role of MnO loading on surface morphology, hydrophilicity, electrochemical double layer capacitance (Cdl) and electrochemical active surface area (ECSA) of the composites has been investigated and correlated with ORR activity. Among the MnO electroctalysts studied, 18 wt% MnO loaded sample showed the highest activity, close to that of standard Pt/C, with onset potential of 1.02 V vs. RHE and 3.48 mA cm-2 limiting disk current in RRDE at 0.2 V. This electrocatalyst also preferred 4-electron reduction pathway in ORR and produced least amount of hydrogen peroxide. No hydrophilicity effect is found on the ORR activity of MnO/C electrocatalysts.

锰氧化物基材料被认为是氧还原反应(ORR)的替代非贵金属电催化剂。这些材料具有丰富的氧化还原化学性质,可以不成比例地分解过氧化氢,推动氧还原向高效的4电子途径发展。在这项工作中,通过球磨和原位热解制备了一组不同MnO负载的活性炭负载MnO纳米结构(MnO/C)。在0.1 M KOH条件下,采用循环伏安法和旋转环盘电极(RRDE)线性扫描伏安法对MnO/C复合材料的ORR活性进行了测试。结果表明,ORR活性和催化途径对MnO负载敏感。复合材料的ORR活性与MnO负载量呈火山型关系。研究了MnO负载对复合材料表面形貌、亲水性、电化学双层电容(Cdl)和电化学活性表面积(ECSA)的影响,并将其与ORR活性进行了关联。在所研究的MnO电催化剂中,18 wt%的MnO负载样品表现出最高的活性,接近标准Pt/C,对RHE的起始电位为1.02 V, RRDE中0.2 V的极限磁盘电流为3.48 mA cm-2。该电催化剂在ORR中也倾向于4电子还原途径,产生的过氧化氢最少。MnO/C电催化剂的ORR活性不受亲水性影响。
{"title":"Effect of MnO Content on the Oxygen Reduction Activity of MnO/C Nanostructures","authors":"Vineet Mishra,&nbsp;Biswaranjan D. Mohapatra,&nbsp;Tapan Kumar Ghosh,&nbsp;G. Ranga Rao","doi":"10.1007/s12678-023-00836-9","DOIUrl":"10.1007/s12678-023-00836-9","url":null,"abstract":"<div><p>Manganese oxide based materials are considered as alternate non-noble metal electrocatalysts for oxygen reduction reaction (ORR). These materials possess rich redox chemistry and can decompose hydrogen peroxide disproportionately to drive the oxygen reduction towards efficient 4-electron pathway. In this work, a set of MnO nanostructures supported on activated charcoal (MnO/C) with varying MnO loadings are prepared by ball milling followed by in-situ pyrolysis. The MnO/C composites are tested for ORR activity by employing cyclic voltammetry and linear sweep voltammetry using rotating-ring disk electrode (RRDE) in 0.1 M KOH. The results indicate that the ORR activity as well as catalytic pathways are sensitive to MnO loading. The ORR activities of the composites follow volcano type relationship with the quantity of MnO loadings. The role of MnO loading on surface morphology, hydrophilicity, electrochemical double layer capacitance (C<sub>dl</sub>) and electrochemical active surface area (ECSA) of the composites has been investigated and correlated with ORR activity. Among the MnO electroctalysts studied, 18 wt% MnO loaded sample showed the highest activity, close to that of standard Pt/C, with onset potential of 1.02 V vs. RHE and 3.48 mA cm<sup>-2</sup> limiting disk current in RRDE at 0.2 V. This electrocatalyst also preferred 4-electron reduction pathway in ORR and produced least amount of hydrogen peroxide. No hydrophilicity effect is found on the ORR activity of MnO/C electrocatalysts.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00836-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4420254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dandelion-like P-Doped Fe-Co-Se Grown on Carbon Cloths for Enhanced Electrocatalytic Oxygen Evolution 蒲公英样p掺杂Fe-Co-Se在碳布上生长增强电催化析氧
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-07-04 DOI: 10.1007/s12678-023-00835-w
Yingping Zheng, Dehua Yu, Ke Zhang, Wei Xu, Kaili Ma, Yuhang Wang, Yongbing Lou

As a representative anodic reaction, the oxygen evolution reaction (OER) is often combined with hydrogen evolution, carbon dioxide reduction, and other cathodic reactions. Bimetallic selenides can satisfy the requirement of efficiency and economy for OER. However, the OER performance of Fe-Co-Se is less than satisfactory, restricted by the limited inherent active sites. Therefore, by doping P into Fe-Co-Se, the electron density and mass transfer were successfully adjusted. The 3D dandelion-like flower Fe-Co-Se-P/CC showed η10 of 210 mV and the 45.3 mV dec−1 Tafel slope better than Fe-Co-Se/CC and RuO2. Experimental investigations demonstrated that outstanding OER activity was ascribed to the double modulation influences of P dopant both in electron environment and morphology which could not only improve conductivity but also enrich catalytic reactive sites. This work presents another choice for the design of a transition metal OER catalyzer and propels the development of electrocatalytic oxygen production to higher efficiency and lower cost.

Graphical Abstract

3D dandelion-like flowers Fe-Co-Se-P structure anchored on carbon cloth has been firstly synthesized as economy and efficient OER electrocatalyst, which displays outstanding catalytic perform ance (equipped with 210 mV low overpotential at η10) and stability benefited from the double modulation effect of P doping on the electronic environment and morphology.

析氧反应(OER)作为典型的阳极反应,常与析氢、二氧化碳还原等阴极反应相结合。双金属硒化物可以满足OER的效率和经济性要求。然而,Fe-Co-Se的OER性能并不理想,这主要受限于其固有活性位点的限制。因此,通过在Fe-Co-Se中掺杂P,成功地调节了电子密度和传质。与Fe-Co-Se/CC和RuO2相比,Fe-Co-Se- p /CC的η值为210 mV, Tafel斜率为45.3 mV。实验研究表明,优异的OER活性归因于P掺杂剂在电子环境和形态上的双重调制作用,不仅可以提高电导率,还可以丰富催化活性位点。这项工作为过渡金属OER催化剂的设计提供了另一种选择,并推动了电催化制氧向更高效率和更低成本的方向发展。摘要首次合成了锚定在碳布上的三维蒲公英状Fe-Co-Se-P结构,作为经济高效的OER电催化剂,其具有优异的催化性能(在η10处具有210 mV的低过电位)和稳定性,这得益于P掺杂对电子环境和形貌的双重调制作用。
{"title":"Dandelion-like P-Doped Fe-Co-Se Grown on Carbon Cloths for Enhanced Electrocatalytic Oxygen Evolution","authors":"Yingping Zheng,&nbsp;Dehua Yu,&nbsp;Ke Zhang,&nbsp;Wei Xu,&nbsp;Kaili Ma,&nbsp;Yuhang Wang,&nbsp;Yongbing Lou","doi":"10.1007/s12678-023-00835-w","DOIUrl":"10.1007/s12678-023-00835-w","url":null,"abstract":"<div><p>As a representative anodic reaction, the oxygen evolution reaction (OER) is often combined with hydrogen evolution, carbon dioxide reduction, and other cathodic reactions. Bimetallic selenides can satisfy the requirement of efficiency and economy for OER. However, the OER performance of Fe-Co-Se is less than satisfactory, restricted by the limited inherent active sites. Therefore, by doping P into Fe-Co-Se, the electron density and mass transfer were successfully adjusted. The 3D dandelion-like flower Fe-Co-Se-P/CC showed η<sub>10</sub> of 210 mV and the 45.3 mV dec<sup>−1</sup> Tafel slope better than Fe-Co-Se/CC and RuO<sub>2</sub>. Experimental investigations demonstrated that outstanding OER activity was ascribed to the double modulation influences of P dopant both in electron environment and morphology which could not only improve conductivity but also enrich catalytic reactive sites. This work presents another choice for the design of a transition metal OER catalyzer and propels the development of electrocatalytic oxygen production to higher efficiency and lower cost.</p><h3>Graphical Abstract</h3><p>3D dandelion-like flowers Fe<b>-</b>Co-Se-P structure anchored on carbon cloth has been firstly synthesized as economy and efficient OER electrocatalyst, which displays outstanding catalytic perform ance (equipped with 210 mV low overpotential at η<sub>10</sub>) and stability benefited from the double modulation effect of P doping on the electronic environment and morphology.</p>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4168064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopamine Electrochemical Sensor Based on Molecularly Imprinted Polymer on Carbon Electrodes with Platinum Nanoparticles 基于铂纳米颗粒碳电极分子印迹聚合物的多巴胺电化学传感器
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-06-07 DOI: 10.1007/s12678-023-00833-y
İzzet Koçak, Berrin Gürler Akyüz

This article addresses the construction of a dopamine electrochemical sensor based on a molecularly imprinted polymer on carbon electrodes, for instance, glassy carbon and highly oriented pyrolytic graphite electrodes with the orientation of edge and basal plane by the formation of thiophene acetic acid-dopamine thin film using electropolymerization. The electrochemical deposition of Pt nanoparticles was then carried out at the modified electrode surface, followed by the extraction of dopamine as a template molecule from the generated layer was performed via elution brought on by chemicals. The variables that affect the performance of the imprinted polymer-based sensor, such as monomer-template ratio, immersion time, and the number of electropolymerization cycles, were examined and optimized. To confirm the changes in the oxidation peak current of DA and to investigate the electrochemical behavior of the MIP sensor, cyclic voltammetry, chronoamperometry, and differential pulse voltammetry (DPV) tests were performed. The differential pulse voltammetry studies revealed that, under ideal circumstances, the limit of detection values of the proposed MIP sensor decorated with Pt nanoparticles was found to be 14.40 nmol L−1, 42.50 nmol L−1, and 0.671 μmol L−1 for glassy carbon, edge, and basal plane electrodes, respectively. In the presence of interferents with comparable structural chemicals, such as ascorbic acid, uric acid, glucose, o-phenylenediamine, and glycine, the proposed sensor exhibits noticeable selectivity. Dopamine analysis in a human fluid such as blood serum was conducted with success using the devised sensor, which was shown to possess impressive stability and reproducibility.

Graphical Abstract

本文介绍了一种基于分子印迹聚合物的多巴胺电化学传感器的构建,该传感器基于碳电极,例如玻璃碳电极和边缘和基面取向的高取向热解石墨电极,通过电聚合形成噻吩乙酸-多巴胺薄膜。然后在修饰的电极表面进行Pt纳米粒子的电化学沉积,然后通过化学物质的洗脱从生成的层中提取多巴胺作为模板分子。考察并优化了影响印迹聚合物传感器性能的因素,如单体-模板比、浸泡时间、电聚合循环次数等。为了确认DA氧化峰电流的变化,并研究MIP传感器的电化学行为,进行了循环伏安法、计时伏安法和差分脉冲伏安法(DPV)测试。差分脉冲伏安法研究表明,在理想情况下,铂纳米粒子修饰的MIP传感器对玻碳电极、边缘电极和基面电极的检出限分别为14.40、42.50和0.671 μmol L−1。在具有类似结构化学物质的干扰物存在时,如抗坏血酸、尿酸、葡萄糖、邻苯二胺和甘氨酸,所提出的传感器表现出明显的选择性。使用所设计的传感器成功地进行了人体液体(如血清)中的多巴胺分析,该传感器具有令人印象深刻的稳定性和可重复性。图形抽象
{"title":"Dopamine Electrochemical Sensor Based on Molecularly Imprinted Polymer on Carbon Electrodes with Platinum Nanoparticles","authors":"İzzet Koçak,&nbsp;Berrin Gürler Akyüz","doi":"10.1007/s12678-023-00833-y","DOIUrl":"10.1007/s12678-023-00833-y","url":null,"abstract":"<div><p>This article addresses the construction of a dopamine electrochemical sensor based on a molecularly imprinted polymer on carbon electrodes, for instance, glassy carbon and highly oriented pyrolytic graphite electrodes with the orientation of edge and basal plane by the formation of thiophene acetic acid-dopamine thin film using electropolymerization. The electrochemical deposition of Pt nanoparticles was then carried out at the modified electrode surface, followed by the extraction of dopamine as a template molecule from the generated layer was performed via elution brought on by chemicals. The variables that affect the performance of the imprinted polymer-based sensor, such as monomer-template ratio, immersion time, and the number of electropolymerization cycles, were examined and optimized. To confirm the changes in the oxidation peak current of DA and to investigate the electrochemical behavior of the MIP sensor, cyclic voltammetry, chronoamperometry, and differential pulse voltammetry (DPV) tests were performed. The differential pulse voltammetry studies revealed that, under ideal circumstances, the limit of detection values of the proposed MIP sensor decorated with Pt nanoparticles was found to be 14.40 nmol L<sup>−1</sup>, 42.50 nmol L<sup>−1</sup>, and 0.671 μmol L<sup>−1</sup> for glassy carbon, edge, and basal plane electrodes, respectively. In the presence of interferents with comparable structural chemicals, such as ascorbic acid, uric acid, glucose, o-phenylenediamine, and glycine, the proposed sensor exhibits noticeable selectivity. Dopamine analysis in a human fluid such as blood serum was conducted with success using the devised sensor, which was shown to possess impressive stability and reproducibility.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4305031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Oxygen Reduction Reaction Studies on Pd Coatings Prepared by Galvanic Exchange of Silver, Nickel and Copper 银、镍、铜电交换制备Pd涂层的氧还原反应研究
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-06-06 DOI: 10.1007/s12678-023-00831-0
Audris Mihailovs, Markus Otsus, Arvo Kikas, Vambola Kisand, Aile Tamm, Heiki Erikson, Kaido Tammeveski

Palladium coatings are deposited onto bulk silver, nickel and copper electrodes using galvanic exchange to study the oxygen reduction reaction (ORR) on those bimetallic electrodes. The electrodes prepared by galvanic replacement for 30 min in the Pd precursor bath are analysed by X-ray photoelectron spectroscopy and the surface morphology of all Pd coatings prepared onto Ag substrates are examined by scanning electron microscopy. The electrochemical tests show that specific activity of Pd on Ag for ORR in alkaline media increases with deposition time and specific activity of palladium on nickel reaches a plateau after 30 min of galvanic replacement.

Graphical Abstract

ORR was studied in 0.1 M KOH on Ag, Cu and Ni electrodes coated with palladium via galvanic replacement. Specific activity of Pd on Ag increased with each subsequent deposition step, whereas Pd on Ni reached maximum with 30 min.

采用电交换法在银、镍和铜电极上沉积钯膜,研究了这些双金属电极上的氧还原反应。用x射线光电子能谱分析了在Pd前驱体浴中电替换30 min制备的电极,并用扫描电镜观察了在银衬底上制备的所有Pd涂层的表面形貌。电化学试验表明,在碱性介质中,钯对银的比活性随着沉积时间的增加而增加,钯对镍的比活性在换电30 min后达到平稳状态。在0.1 M KOH条件下,用电替换法研究了镀有钯的Ag、Cu和Ni电极上的电阻率。钯在银上的比活度随着沉积步骤的增加而增加,而钯在镍上的比活度在沉积30 min时达到最大值。
{"title":"Oxygen Reduction Reaction Studies on Pd Coatings Prepared by Galvanic Exchange of Silver, Nickel and Copper","authors":"Audris Mihailovs,&nbsp;Markus Otsus,&nbsp;Arvo Kikas,&nbsp;Vambola Kisand,&nbsp;Aile Tamm,&nbsp;Heiki Erikson,&nbsp;Kaido Tammeveski","doi":"10.1007/s12678-023-00831-0","DOIUrl":"10.1007/s12678-023-00831-0","url":null,"abstract":"<div><p>Palladium coatings are deposited onto bulk silver, nickel and copper electrodes using galvanic exchange to study the oxygen reduction reaction (ORR) on those bimetallic electrodes. The electrodes prepared by galvanic replacement for 30 min in the Pd precursor bath are analysed by X-ray photoelectron spectroscopy and the surface morphology of all Pd coatings prepared onto Ag substrates are examined by scanning electron microscopy. The electrochemical tests show that specific activity of Pd on Ag for ORR in alkaline media increases with deposition time and specific activity of palladium on nickel reaches a plateau after 30 min of galvanic replacement.</p><h3>Graphical Abstract</h3><p>ORR was studied in 0.1 M KOH on Ag, Cu and Ni electrodes coated with palladium via galvanic replacement. Specific activity of Pd on Ag increased with each subsequent deposition step, whereas Pd on Ni reached maximum with 30 min.\u0000</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4261880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cobalt-based Metalloporphyrins As Efficient Electro-catalysts for Hydrogen Evolution From Acetic Acid and Water 钴基金属卟啉作为醋酸和水析氢的高效电催化剂
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-06-06 DOI: 10.1007/s12678-023-00832-z
Zong Wang, Yin Liu, Ting Li, Yong-Zhen He, Er-Chen Han, Yan-Lin Chen, Xin-Yi Jiang, Chun-Lin Ni, Le-Min Yang, Wei Liu

Four molecular electrocatalysts based on cobalt complexes, CoT(X)PP (X = H (1), OH (2), CN (3), COOH (4)), were prepared from meso-tetra-p-X-phenylporphin (H2T(X)PP, X = H, OH, CN, COOH) by reaction with cobalt acetate to be used for electrolytic proton or water reduction. The electrochemical properties and the corresponding catalytic activities of these four catalysts were investigated by cyclic voltammetry. Controlled potential electrolysis with gas chromatography analysis confirmed that the turn-over frequencies (TOF) per mol of catalyst per hour were 42.4, 38.6, 55.5, and 70.1 mol H2 at an overpotential of 941.6 mV (in DMF) in the acetic acid solution containing catalyst. In neutral buffered aqueous solution (pH 7.0), these four molecular catalysts had TOF per mol of catalyst per hour of 352.53, 313.7, 473.4, and 714.6 mol H2, respectively, with an overpotential of 837.6 mV, indicating that complex 4 had better activity than complexes 1, 2, and 3. The Faraday efficiencies of complexes 1-4 were 99.1, 99.6, 100.4, and 99.0% at 72 h of consecutive reduction on a glassy carbon electrode, respectively. These results indicate that the electronic properties of the ligands play a crucial role in determining the catalytic activity of the cobalt complex and are consistent with the phenomenon that the catalytic activity of the benzene porphyrins is significantly increased in the presence of electron-withdrawing groups, and the CoT(COOH)PP is the most active catalyst.

Graphical Abstract

以中四对苯基卟啉(H2T(X)PP, X = H, OH, CN, COOH)为原料,与醋酸钴反应制备了四种基于钴配合物的分子电催化剂CoT(X)PP (X = H (1), OH (2), CN (3), COOH(4)),分别用于电解质子还原或水还原。采用循环伏安法研究了这四种催化剂的电化学性能和相应的催化活性。气相色谱控制电位电解分析证实,在含催化剂的乙酸溶液中,过电位为941.6 mV (DMF)时,每mol催化剂每小时的翻转频率(TOF)分别为42.4、38.6、55.5和70.1 mol H2。在中性缓冲水溶液(pH 7.0)中,这4种分子催化剂的TOF分别为352.53、313.7、473.4和714.6 mol H2 / h,过电位为837.6 mV,表明配合物4的活性优于配合物1、2和3。在玻璃碳电极上连续还原72 h时,配合物1-4的法拉第效率分别为99.1、99.6、100.4和99.0%。这些结果表明,配体的电子性质对钴配合物的催化活性起着至关重要的作用,这与苯卟啉在吸电子基团的存在下催化活性显著提高的现象是一致的,而CoT(COOH)PP是最活跃的催化剂。图形抽象
{"title":"Cobalt-based Metalloporphyrins As Efficient Electro-catalysts for Hydrogen Evolution From Acetic Acid and Water","authors":"Zong Wang,&nbsp;Yin Liu,&nbsp;Ting Li,&nbsp;Yong-Zhen He,&nbsp;Er-Chen Han,&nbsp;Yan-Lin Chen,&nbsp;Xin-Yi Jiang,&nbsp;Chun-Lin Ni,&nbsp;Le-Min Yang,&nbsp;Wei Liu","doi":"10.1007/s12678-023-00832-z","DOIUrl":"10.1007/s12678-023-00832-z","url":null,"abstract":"<div><p>Four molecular electrocatalysts based on cobalt complexes, CoT(X)PP (X = H (<b>1</b>), OH (<b>2</b>), CN (<b>3</b>), COOH (<b>4</b>)), were prepared from <i>meso</i>-tetra-<i>p</i>-X-phenylporphin (H<sub>2</sub>T(X)PP, X = H, OH, CN, COOH) by reaction with cobalt acetate to be used for electrolytic proton or water reduction. The electrochemical properties and the corresponding catalytic activities of these four catalysts were investigated by cyclic voltammetry. Controlled potential electrolysis with gas chromatography analysis confirmed that the turn-over frequencies (TOF) per mol of catalyst per hour were 42.4, 38.6, 55.5, and 70.1 mol H<sub>2</sub> at an overpotential of 941.6 mV (in DMF) in the acetic acid solution containing catalyst. In neutral buffered aqueous solution (pH 7.0), these four molecular catalysts had TOF per mol of catalyst per hour of 352.53, 313.7, 473.4, and 714.6 mol H<sub>2</sub>, respectively, with an overpotential of 837.6 mV, indicating that complex 4 had better activity than complexes <b>1</b>, <b>2</b>, and <b>3</b>. The Faraday efficiencies of complexes <b>1-4</b> were 99.1, 99.6, 100.4, and 99.0% at 72 h of consecutive reduction on a glassy carbon electrode, respectively. These results indicate that the electronic properties of the ligands play a crucial role in determining the catalytic activity of the cobalt complex and are consistent with the phenomenon that the catalytic activity of the benzene porphyrins is significantly increased in the presence of electron-withdrawing groups, and the CoT(COOH)PP is the most active catalyst.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00832-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4257301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of a New Nanocomposite Based on Natural Asphalt and Its Application as a High-Performance and Eco-friendly Platform for the Electrochemical Determination of Deferiprone 基于天然沥青的新型纳米复合材料的合成及其作为电化学测定去铁素的高性能环保平台的应用
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-06-03 DOI: 10.1007/s12678-023-00829-8
Somayeh Farokhi, Mahmoud Roushani, Hadi Hosseini, Neda Zalpour, Mohammad Soleiman-Beigi

Designing efficient and economical nano-catalysts in the development of electrochemical sensors has been a constant challenge. The design of core–shell nanoarrays using natural asphalt (NA) as the core has not been found in reports. In this report, for the first time, flower-like nanostructures were synthesized by joining nickel–cobalt double hydroxide nanosheets (NiCo-LDH NSs) on NA as a precursor. The synthesis of flower-like nanostructures, abbreviated as NA@NiCo-LDH NSs, was done by an easy and one-step hydrothermal method. NA has characteristics such as availability, cost-effectiveness, high surface area due to its porous structure, and good interaction with the surface of carbon electrodes due to its carbonaceous nature. In addition, the growth of NiCo-LDH NSs on the NA leads to the improvement of electrocatalytic properties, the creation of a larger specific surface area, available active sites, and an increase of contact between analyte and nanostructures. The performance of synthetic nanostructures in the electrochemical determination of deferiprone (DFN) was evaluated satisfactorily. DFN is the first oral iron chelator and the first drug for thalassemia patient treatment. This strategy has some advantages such as cost-effectiveness, portability, good linear range (0.5–2500 µM), and low detection limit (0.19 µM) in the DFN determination. The proposed strategy can be a way to develop new nanomaterials derived from NA with green chemistry in mind. In addition, it can be a way to enter NA-based nanomaterials into other applications.

Graphical Abstract

Flower-like nanostructures based on natural asphalt (NA) coated with nickel-cobalt double hydroxide nanosheets (NiCo-LDH NSs) have been synthesized and their application as a high-performance platform for the electrocatalytic oxidation of deferiprone has been studied.

在电化学传感器的发展中,设计高效、经济的纳米催化剂一直是一个挑战。以天然沥青(NA)为核心的核-壳纳米阵列的设计尚未见报道。本文首次以NA为前驱体,将镍钴双氢氧化物纳米片(NiCo-LDH NSs)连接,合成了花状纳米结构。通过简单的一步水热法合成了花状纳米结构(简称NA@NiCo-LDH NSs)。NA具有可用性、成本效益、多孔结构的高表面积以及碳质性质与碳电极表面良好的相互作用等特点。此外,NiCo-LDH NSs在NA上的生长导致电催化性能的改善,产生更大的比表面积,可用的活性位点,以及分析物与纳米结构之间接触的增加。合成纳米结构在电化学测定去铁素(DFN)中的性能得到了满意的评价。DFN是首个口服铁螯合剂,也是首个用于治疗地中海贫血患者的药物。该方法具有成本效益高、便携性好、线性范围好(0.5 ~ 2500µM)、检测限低(0.19µM)等优点。提出的策略可以是一种开发新的纳米材料的方法,从NA中提取绿色化学。此外,它还可以作为将na基纳米材料应用于其他领域的一种途径。摘要在天然沥青(NA)表面包覆镍钴双氢氧化物纳米片(NiCo-LDH NSs),合成了花状纳米结构,并研究了其作为电催化氧化去铁酮的高性能平台的应用。
{"title":"Synthesis of a New Nanocomposite Based on Natural Asphalt and Its Application as a High-Performance and Eco-friendly Platform for the Electrochemical Determination of Deferiprone","authors":"Somayeh Farokhi,&nbsp;Mahmoud Roushani,&nbsp;Hadi Hosseini,&nbsp;Neda Zalpour,&nbsp;Mohammad Soleiman-Beigi","doi":"10.1007/s12678-023-00829-8","DOIUrl":"10.1007/s12678-023-00829-8","url":null,"abstract":"<div><p>Designing efficient and economical nano-catalysts in the development of electrochemical sensors has been a constant challenge. The design of core–shell nanoarrays using natural asphalt (NA) as the core has not been found in reports. In this report, for the first time, flower-like nanostructures were synthesized by joining nickel–cobalt double hydroxide nanosheets (NiCo-LDH NSs) on NA as a precursor. The synthesis of flower-like nanostructures, abbreviated as NA@NiCo-LDH NSs, was done by an easy and one-step hydrothermal method. NA has characteristics such as availability, cost-effectiveness, high surface area due to its porous structure, and good interaction with the surface of carbon electrodes due to its carbonaceous nature. In addition, the growth of NiCo-LDH NSs on the NA leads to the improvement of electrocatalytic properties, the creation of a larger specific surface area, available active sites, and an increase of contact between analyte and nanostructures. The performance of synthetic nanostructures in the electrochemical determination of deferiprone (DFN) was evaluated satisfactorily. DFN is the first oral iron chelator and the first drug for thalassemia patient treatment. This strategy has some advantages such as cost-effectiveness, portability, good linear range (0.5–2500 µM), and low detection limit (0.19 µM) in the DFN determination. The proposed strategy can be a way to develop new nanomaterials derived from NA with green chemistry in mind. In addition, it can be a way to enter NA-based nanomaterials into other applications.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 <p>Flower-like nanostructures based on natural asphalt (NA) coated with nickel-cobalt double hydroxide nanosheets (NiCo-LDH NSs) have been synthesized and their application as a high-performance platform for the electrocatalytic oxidation of deferiprone has been studied.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00829-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4130150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Study on the Inhibitory Effect of Cystine, Cysteine, and Clutamate as Inhibitors on X100 Pipeline Steel in 1 M HCl 半胱氨酸、半胱氨酸和谷氨酸盐作为抑制剂对X100管线钢在1m盐酸中抑制作用的研究
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-06-02 DOI: 10.1007/s12678-023-00830-1
Pandong Zhang, Liang He, Xiaolu Sun, Xinran Liu, Ping Li

Metal corrosion can cause massive economic losses and many safety hazards; thus, metal corrosion inhibition has been a major research direction worldwide. Among the many methods to stop metal corrosion, the addition of corrosion inhibitors is a common method. The use of amino acids as metal corrosion inhibitors not only has the advantage of being economical and efficient but also meets the long-term concept of being environmentally friendly. In this study, the effect on the corrosion behavior of a mild steel (X100 pipeline steel) in 1 M HCl containing the same concentration of the amino groups of cystine (Cys-Cys), cysteine (Cys), and glutamate (Glu) was investigated via density functional theory (DFT) and various characterization methods. These methods include the weightlessness method, electrochemical tests, scanning electron microscopy (SEM), and the contact angle test. The results show that the inhibition efficiency increased with increasing inhibitor concentration; Cys-Cys showed the best inhibition and Glu showed the poorest inhibition for X100 pipeline steel at the same amino group concentration. Furthermore, the results obtained from various characterization methods were generally consistent.

金属腐蚀会造成巨大的经济损失和诸多安全隐患;因此,金属缓蚀已成为世界范围内的主要研究方向。在许多阻止金属腐蚀的方法中,添加缓蚀剂是一种常用的方法。使用氨基酸作为金属缓蚀剂不仅具有经济、高效的优点,而且符合环保的长期理念。本研究采用密度泛函理论(DFT)和各种表征方法,研究了含有相同浓度胱氨酸(Cys-Cys)、半胱氨酸(Cys)和谷氨酸(Glu)的1 M HCl对低碳钢(X100管线钢)腐蚀行为的影响。这些方法包括失重法、电化学测试、扫描电子显微镜(SEM)和接触角测试。结果表明:缓蚀剂浓度越大,缓蚀效果越好;在相同的氨基浓度下,Cys-Cys对X100管线钢的抑制效果最好,Glu的抑制效果最差。此外,各种表征方法得到的结果基本一致。
{"title":"Study on the Inhibitory Effect of Cystine, Cysteine, and Clutamate as Inhibitors on X100 Pipeline Steel in 1 M HCl","authors":"Pandong Zhang,&nbsp;Liang He,&nbsp;Xiaolu Sun,&nbsp;Xinran Liu,&nbsp;Ping Li","doi":"10.1007/s12678-023-00830-1","DOIUrl":"10.1007/s12678-023-00830-1","url":null,"abstract":"<div><p>Metal corrosion can cause massive economic losses and many safety hazards; thus, metal corrosion inhibition has been a major research direction worldwide. Among the many methods to stop metal corrosion, the addition of corrosion inhibitors is a common method. The use of amino acids as metal corrosion inhibitors not only has the advantage of being economical and efficient but also meets the long-term concept of being environmentally friendly. In this study, the effect on the corrosion behavior of a mild steel (X100 pipeline steel) in 1 M HCl containing the same concentration of the amino groups of cystine (Cys-Cys), cysteine (Cys), and glutamate (Glu) was investigated via density functional theory (DFT) and various characterization methods. These methods include the weightlessness method, electrochemical tests, scanning electron microscopy (SEM), and the contact angle test. The results show that the inhibition efficiency increased with increasing inhibitor concentration; Cys-Cys showed the best inhibition and Glu showed the poorest inhibition for X100 pipeline steel at the same amino group concentration. Furthermore, the results obtained from various characterization methods were generally consistent.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4091434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electrocatalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1