首页 > 最新文献

Electrocatalysis最新文献

英文 中文
Gamma Radiolysis-Synthesized Carbon Nanotube–Supported Palladium as Electrocatalyst for Oxygen Reduction Reaction γ射线裂解-合成碳纳米管负载钯作为氧还原反应的电催化剂
IF 3.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-12-26 DOI: 10.1007/s12678-022-00807-6
Thye-Foo Choo, Nurazila Mat Zali, Nur Ubaidah Saidin, Kuan-Ying Kok

Electrocatalysts are used to promote efficient energy conversion in fuel cell, especially for the sluggish oxygen reduction reaction (ORR) at the cathode that inhibits the performance of the device. In this work, we demonstrate the use of a facile gamma radiolysis technique to synthesize carbon nanotube-supported palladium (Pd) metal particles as electrocatalysts for the ORR application. The Pd precursor concentration used in the preparation process was found to contribute greater effects on the Pd content and Pd crystallite size of the synthesized product compared to the gamma irradiation dose. The results showed that gamma radiolysis could successfully reduce Pd ions from its precursor solution as evidenced from field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) characterization. The optimal ORR electrocatalyst was prepared using 0.01-M Pd precursor and a gamma radiation dose of 50 kGy. It displays a high half-wave potential (E1/2) of 0.84 V (vs. RHE) and superior electron transfer number (n) of 3.96, as well as a low peroxide yield of 1.8%. This impressive ORR electrocatalytic performance was also attributed to the synergistic effect of Pd metal particles with CNT. The findings showed that Pd/CNT is a promising electrocatalyst for ORR application and that gamma radiolysis provides a facile and eco-friendly approach in synthesizing electrocatalysts.

电催化剂被用于提高燃料电池的能量转换效率,特别是在阴极上缓慢的氧还原反应(ORR)抑制了设备的性能。在这项工作中,我们展示了使用一种简单的伽马辐射分解技术来合成碳纳米管负载的钯(Pd)金属颗粒作为ORR应用的电催化剂。与γ辐照剂量相比,制备过程中使用的Pd前驱体浓度对合成产物的Pd含量和Pd晶粒尺寸的影响更大。结果表明,从场发射扫描电镜(FESEM)、能量色散x射线能谱(EDS)和x射线衍射(XRD)表征中可以看出,γ射线裂解可以成功地从前驱体溶液中还原Pd离子。以0.01 m Pd为前驱体,γ辐射剂量为50 kGy,制备了最佳的ORR电催化剂。它具有0.84 V(相对于RHE)的高半波电位(E1/2)和3.96的优越电子转移数(n),以及1.8%的低过氧化物收率。这种令人印象深刻的ORR电催化性能也归功于钯金属颗粒与碳纳米管的协同效应。研究结果表明,Pd/CNT是一种很有前途的ORR电催化剂,而伽马射线裂解为电催化剂的合成提供了一种简便、环保的方法。
{"title":"Gamma Radiolysis-Synthesized Carbon Nanotube–Supported Palladium as Electrocatalyst for Oxygen Reduction Reaction","authors":"Thye-Foo Choo,&nbsp;Nurazila Mat Zali,&nbsp;Nur Ubaidah Saidin,&nbsp;Kuan-Ying Kok","doi":"10.1007/s12678-022-00807-6","DOIUrl":"10.1007/s12678-022-00807-6","url":null,"abstract":"<div><p>Electrocatalysts are used to promote efficient energy conversion in fuel cell, especially for the sluggish oxygen reduction reaction (ORR) at the cathode that inhibits the performance of the device. In this work, we demonstrate the use of a facile gamma radiolysis technique to synthesize carbon nanotube-supported palladium (Pd) metal particles as electrocatalysts for the ORR application. The Pd precursor concentration used in the preparation process was found to contribute greater effects on the Pd content and Pd crystallite size of the synthesized product compared to the gamma irradiation dose. The results showed that gamma radiolysis could successfully reduce Pd ions from its precursor solution as evidenced from field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) characterization. The optimal ORR electrocatalyst was prepared using 0.01-M Pd precursor and a gamma radiation dose of 50 kGy. It displays a high half-wave potential (<i>E</i><sub>1/2</sub>) of 0.84 V (vs. RHE) and superior electron transfer number (<i>n</i>) of 3.96, as well as a low peroxide yield of 1.8%. This impressive ORR electrocatalytic performance was also attributed to the synergistic effect of Pd metal particles with CNT. The findings showed that Pd/CNT is a promising electrocatalyst for ORR application and that gamma radiolysis provides a facile and eco-friendly approach in synthesizing electrocatalysts.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 3","pages":"418 - 428"},"PeriodicalIF":3.1,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5002422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Simultaneous Detection of Dopamine and Paracetamol on Electroreduced Graphene Oxide–Cobalt Phthalocyanine Polymer Nanocomposite Electrode 电还原氧化石墨烯-酞菁钴聚合物纳米复合电极上多巴胺和扑热息痛的同时检测
IF 3.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-12-24 DOI: 10.1007/s12678-022-00806-7
Charles Luhana, Philani Mashazi

Abstract

The fabrication of sensitive, fast, cost-effective and eco-friendly electrochemical sensors is essential for monitoring analytes of biomedical, environmental and pharmaceutical interests. Herein, we report the simultaneous electroreduction and deposition of graphene oxide (GO) to form electrochemically reduced graphene oxide (ERGO) onto a glassy carbon electrode (GCE) represented as GCE-ERGO. Onto the GCE-ERGO, cobalt (II) tetra-amino phthalocyanine was electropolymerized to form a stable GCE-ERGO/polyCoTAPc. The sensing surface, GCE-ERGO/polyCoTAPc, was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques to ascertain its electron transfer and conducting properties. The modifier surface functional groups and composition were confirmed using infrared spectroscopy and energy-dispersive X-ray spectroscopy. The prepared sensing electrode displayed enhanced electrocatalytic activity towards ferri/ferrocyanide {[Fe(CN)6]3−/4−} as a redox probe. GCE-ERGO/polyCoTAPc was further used for ultrasensitive simultaneous detection and determination of dopamine (DA) and paracetamol (PA). The electrocatalytic peak currents for DA and PA were greatly enhanced with an oxidation potential difference of 264 mV, wide enough for simultaneous determination. Using differential pulse voltammetry (DPV), the electrocatalytic oxidation peak currents of DA and PA at GCE-ERGO/polyCoTAPc showed linear dependence with the changes in concentrations up to 100 µM for DA and up to 90 µM for PA. The limits of detection (LOD) values were 0.095 µM and 0.10 µM using a signal-to-noise (S/N) ratio of 3 for DA and PA, respectively. The GCE-ERGO/polyCoTAPc displayed excellent sensitivity of 8.39 µA µM−1 cm−2 for DA and 1.32 µA µM−1 cm−2 for PA. The fabricated ultrasensitive electrochemical sensor was successfully used for the determination of DA and PA in synthetic urine samples with excellent percentage recoveries.

摘要制备灵敏、快速、经济、环保的电化学传感器对于生物医学、环境和制药领域的分析物监测至关重要。在此,我们报道了氧化石墨烯(GO)的同时电还原和沉积,以形成电化学还原的氧化石墨烯(ERGO)到玻璃碳电极(GCE)上,表示为GCE-ERGO。在GCE-ERGO上,钴(II)四氨基酞菁电聚合形成稳定的GCE-ERGO/polyCoTAPc。利用循环伏安法(CV)和电化学阻抗谱(EIS)技术对传感表面GCE-ERGO/polyCoTAPc进行了表征,以确定其电子转移和导电性能。利用红外光谱和能量色散x射线光谱确定了改性剂的表面官能团和组成。所制备的传感电极对铁/亚铁氰化物{[Fe(CN)6]3−/4−}作为氧化还原探针表现出增强的电催化活性。进一步采用GCE-ERGO/polyCoTAPc超灵敏同时检测和测定多巴胺(DA)和扑热息痛(PA)。DA和PA的电催化峰电流明显增强,氧化电位差为264 mV,足以同时测定。采用差分脉冲伏安法(DPV),在GCE-ERGO/polyCoTAPc上,DA和PA的电催化氧化峰电流随DA浓度≥100µM和PA浓度≥90µM的变化呈线性关系。DA和PA的检出限(LOD)分别为0.095µM和0.10µM,信噪比为3。GCE-ERGO/polyCoTAPc对DA的灵敏度为8.39µAµM−1 cm−2,对PA的灵敏度为1.32µAµM−1 cm−2。所制备的超灵敏电化学传感器成功地用于合成尿液样品中DA和PA的测定,并具有良好的回收率。
{"title":"Simultaneous Detection of Dopamine and Paracetamol on Electroreduced Graphene Oxide–Cobalt Phthalocyanine Polymer Nanocomposite Electrode","authors":"Charles Luhana,&nbsp;Philani Mashazi","doi":"10.1007/s12678-022-00806-7","DOIUrl":"10.1007/s12678-022-00806-7","url":null,"abstract":"<div><h2>Abstract\u0000</h2><div><p>The fabrication of sensitive, fast, cost-effective and eco-friendly electrochemical sensors is essential for monitoring analytes of biomedical, environmental and pharmaceutical interests. Herein, we report the simultaneous electroreduction and deposition of graphene oxide (GO) to form electrochemically reduced graphene oxide (ERGO) onto a glassy carbon electrode (GCE) represented as GCE-ERGO. Onto the GCE-ERGO, cobalt (II) tetra-amino phthalocyanine was electropolymerized to form a stable GCE-ERGO/polyCoTAPc. The sensing surface, GCE-ERGO/polyCoTAPc, was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques to ascertain its electron transfer and conducting properties. The modifier surface functional groups and composition were confirmed using infrared spectroscopy and energy-dispersive X-ray spectroscopy. The prepared sensing electrode displayed enhanced electrocatalytic activity towards ferri/ferrocyanide {[Fe(CN)<sub>6</sub>]<sup>3−/4−</sup>} as a redox probe. GCE-ERGO/polyCoTAPc was further used for ultrasensitive simultaneous detection and determination of dopamine (DA) and paracetamol (PA). The electrocatalytic peak currents for DA and PA were greatly enhanced with an oxidation potential difference of 264 mV, wide enough for simultaneous determination. Using differential pulse voltammetry (DPV), the electrocatalytic oxidation peak currents of DA and PA at GCE-ERGO/polyCoTAPc showed linear dependence with the changes in concentrations up to 100 µM for DA and up to 90 µM for PA. The limits of detection (LOD) values were 0.095 µM and 0.10 µM using a signal-to-noise (S/N) ratio of 3 for DA and PA, respectively. The GCE-ERGO/polyCoTAPc displayed excellent sensitivity of 8.39 µA µM<sup>−1</sup> cm<sup>−2</sup> for DA and 1.32 µA µM<sup>−1</sup> cm<sup>−2</sup> for PA. The fabricated ultrasensitive electrochemical sensor was successfully used for the determination of DA and PA in synthetic urine samples with excellent percentage recoveries.</p></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 3","pages":"406 - 417"},"PeriodicalIF":3.1,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-022-00806-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5259853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Electrochemical Detection of Nevirapine Using Banana Peel Extract Functionalised Nickel Selenide Quantum Dots 香蕉皮提取物功能化硒化镍量子点电化学检测奈韦拉平
IF 3.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-12-24 DOI: 10.1007/s12678-022-00805-8
Ginny S. Tito, Alex T. Kuvarega, Bhekie B. Mamba, Usisipho Feleni

Nickel selenide quantum dots (NiSe2QDs) were synthesised using the aqueous colloidal method with banana peel extract (BPE) utilised as a capping agent. A gold electrode modified with the BPE-capped NiSe2QDs was used for the determination of nevirapine. Characterisation of the BPE-NiSe2QDs was conducted using high-resolution scanning electron microscopy (HRSEM), high-resolution transmission microscopy (HRTEM) and small-angle X-ray scattering (SAXS) which all revealed the spherical morphology of the QDs and their small sizes (˂ 10 nm). Optical properties of the BPE-NiSe2QDs studied by ultraviolet–visible spectroscopy (UV–Vis) revealed an absorbance band at 329 nm corresponding to an energy bandgap value of 2.99 eV. The electrochemical experiments were performed using differential pulse voltammetry. The Au/BPE-NiSe2QDs/Nafion-based electrochemical sensor showed a distinctive anodic response towards nevirapine at 0.76 V. The results obtained showed that the oxidation peak current increased linearly as the nevirapine concentrations increased in the range 0–1.21 pM (0–0.322 ng/L) with a low limit of detection (LOD) of 0.024 pM (0.0064 ng/L) and sensitivity of 5.52 µA/pM. These exceptional properties are comparable to or even better than already reported sensors for complex matrices. The electrochemical sensor demonstrated high repeatability and stability. The proposed sensor was successfully used for nevirapine detection in spiked wastewater samples with satisfactory results.

以香蕉皮提取物(BPE)为封盖剂,采用水溶胶法制备硒化镍量子点(NiSe2QDs)。用bpe包封的NiSe2QDs修饰金电极测定奈韦拉平。利用高分辨率扫描电镜(HRSEM)、高分辨率透射电镜(HRTEM)和小角度x射线散射(SAXS)对BPE-NiSe2QDs进行了表征,结果表明,BPE-NiSe2QDs的形貌为球形,尺寸小于10 nm。利用紫外可见光谱(UV-Vis)研究了BPE-NiSe2QDs的光学性质,发现其在329 nm处有一个吸收带,对应的能带值为2.99 eV。电化学实验采用差分脉冲伏安法进行。Au/BPE-NiSe2QDs/ nafion电化学传感器对0.76 V的奈韦拉平有明显的阳极响应。结果表明,在0 ~ 1.21 pM (0 ~ 0.322 ng/L)范围内,氧化峰电流随奈韦拉平浓度的增加呈线性增加,低检出限(LOD)为0.024 pM (0.0064 ng/L),灵敏度为5.52µa /pM。这些特殊的性质与已经报道的用于复杂矩阵的传感器相当,甚至更好。该电化学传感器具有较高的重复性和稳定性。该传感器成功地用于加标废水样品中奈韦拉平的检测,结果令人满意。
{"title":"Electrochemical Detection of Nevirapine Using Banana Peel Extract Functionalised Nickel Selenide Quantum Dots","authors":"Ginny S. Tito,&nbsp;Alex T. Kuvarega,&nbsp;Bhekie B. Mamba,&nbsp;Usisipho Feleni","doi":"10.1007/s12678-022-00805-8","DOIUrl":"10.1007/s12678-022-00805-8","url":null,"abstract":"<div><p>Nickel selenide quantum dots (NiSe<sub>2</sub>QDs) were synthesised using the aqueous colloidal method with banana peel extract (BPE) utilised as a capping agent. A gold electrode modified with the BPE-capped NiSe<sub>2</sub>QDs was used for the determination of nevirapine. Characterisation of the BPE-NiSe<sub>2</sub>QDs was conducted using high-resolution scanning electron microscopy (HRSEM), high-resolution transmission microscopy (HRTEM) and small-angle X-ray scattering (SAXS) which all revealed the spherical morphology of the QDs and their small sizes (˂ 10 nm). Optical properties of the BPE-NiSe<sub>2</sub>QDs studied by ultraviolet–visible spectroscopy (UV–Vis) revealed an absorbance band at 329 nm corresponding to an energy bandgap value of 2.99 eV. The electrochemical experiments were performed using differential pulse voltammetry. The Au/BPE-NiSe<sub>2</sub>QDs/Nafion-based electrochemical sensor showed a distinctive anodic response towards nevirapine at 0.76 V. The results obtained showed that the oxidation peak current increased linearly as the nevirapine concentrations increased in the range 0–1.21 pM (0–0.322 ng/L) with a low limit of detection (LOD) of 0.024 pM (0.0064 ng/L) and sensitivity of 5.52 µA/pM. These exceptional properties are comparable to or even better than already reported sensors for complex matrices. The electrochemical sensor demonstrated high repeatability and stability. The proposed sensor was successfully used for nevirapine detection in spiked wastewater samples with satisfactory results.\u0000</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 3","pages":"393 - 405"},"PeriodicalIF":3.1,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4930337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Determination of o-Aminophenol by Novel Co(II) Phthalocyanine with Appliance of Composite MWCNTs 复合纳米碳纳米管应用新型Co(II)酞菁测定邻氨基酚
IF 3.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-12-22 DOI: 10.1007/s12678-022-00804-9
T. M. Sharanakumar,  Mounesh, N Y Praveen Kumar, KR Venugopala Reddy, A. Sunilkumar

A novel peripherally tetra naphthol substituted Co(II) phthalocyanine (NCoPc) was synthesized by the reaction of naphthol linked phthalonitrile, and cobalt chloride, in the presence of catalytic amount of DMF, DBU, and K2CO3. The NCoPc and its composite with MWCNTs were characterized by FTIR, NMR, UV–Vis, XRD, TGA, and mass spectroscopic techniques. The NCoPc and NCoPc-MWCNTs-coated glassy carbon electrodes (GCEs) were used to electrochemically detect and quantify ortho amino phenol (oAP) oAP in aqueous solutions. Cyclic voltammetric data established a linear response between the oAP oxidation current (ipa) and its molar concentration (10–190 μM). The limit of detection (LoD) of the two modified electrodes was comparable (1.5 μM and 25 nM, respectively). The NCoPc and NCoPc-MWCNTs-GCEs (in the concentration range of 10–160 μM) were both low and comparable. The LoD values for oAP at the NCoPc-GCE and NCoPc-MWCNTs by DPV were 1.2 µM and 42 nM and CA were 10 nM and 6.5 nM, respectively. They are exhibited good electrocatalytic activity towards the oxidation of oAP, and this was aided by the improved conductivity of the composite modifiers.

Graphical Abstract

在DMF、DBU和K2CO3的催化作用下,以萘酚连接的邻苯二腈和氯化钴为原料,合成了一种新型的外周四萘酚取代的Co(II)酞菁(NCoPc)。采用FTIR、NMR、UV-Vis、XRD、TGA和质谱等技术对NCoPc及其与MWCNTs的复合材料进行了表征。采用NCoPc和NCoPc- mwcnts包覆的玻碳电极(GCEs)对水溶液中的邻位氨基酚(oAP)进行了电化学检测和定量。循环伏安数据表明oAP氧化电流(ipa)与其摩尔浓度(10 ~ 190 μM)呈线性关系。两种修饰电极的检出限(LoD)相当(分别为1.5 μM和25 nM)。NCoPc和NCoPc- mwcnts - gce(浓度范围在10 ~ 160 μM)均较低且具有可比性。DPV对NCoPc-GCE和NCoPc-MWCNTs的oAP LoD值分别为1.2µM和42 nM, CA为10 nM和6.5 nM。它们对oAP的氧化表现出良好的电催化活性,这得益于复合改性剂的导电性的提高。图形抽象
{"title":"Determination of o-Aminophenol by Novel Co(II) Phthalocyanine with Appliance of Composite MWCNTs","authors":"T. M. Sharanakumar,&nbsp; Mounesh,&nbsp;N Y Praveen Kumar,&nbsp;KR Venugopala Reddy,&nbsp;A. Sunilkumar","doi":"10.1007/s12678-022-00804-9","DOIUrl":"10.1007/s12678-022-00804-9","url":null,"abstract":"<div><p>A novel peripherally tetra naphthol substituted Co(II) phthalocyanine (NCoPc) was synthesized by the reaction of naphthol linked phthalonitrile, and cobalt chloride, in the presence of catalytic amount of DMF, DBU, and K<sub>2</sub>CO<sub>3</sub>. The NCoPc and its composite with MWCNTs were characterized by FTIR, NMR, UV–Vis, XRD, TGA, and mass spectroscopic techniques. The NCoPc and NCoPc-MWCNTs-coated glassy carbon electrodes (GCEs) were used to electrochemically detect and quantify ortho amino phenol (oAP) oAP in aqueous solutions. Cyclic voltammetric data established a linear response between the oAP oxidation current (ipa) and its molar concentration (10–190 μM). The limit of detection (LoD) of the two modified electrodes was comparable (1.5 μM and 25 nM, respectively). The NCoPc and NCoPc-MWCNTs-GCEs (in the concentration range of 10–160 μM) were both low and comparable. The LoD values for oAP at the NCoPc-GCE and NCoPc-MWCNTs by DPV were 1.2 µM and 42 nM and CA were 10 nM and 6.5 nM, respectively. They are exhibited good electrocatalytic activity towards the oxidation of oAP, and this was aided by the improved conductivity of the composite modifiers.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 3","pages":"381 - 392"},"PeriodicalIF":3.1,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-022-00804-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4856434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic Performance of Nickel Hydroxide-Decorated Microporous Nanozeolite Beta-Modified Carbon Paste Electrode for Formaldehyde Oxidation 羟基镍修饰微孔纳米沸石修饰碳糊电极对甲醛氧化的电催化性能
IF 3.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-12-21 DOI: 10.1007/s12678-022-00799-3
Samira Eshagh-Nimvari, Seyed Karim Hassaninejad-Darzi

In this paper, aluminosilicate nanozeolite beta has been prepared and described using X-ray diffraction (XRD), nitrogen sorption isotherm, Fourier transform infrared (FT-IR), transmission electron micrograph (TEM), and field emission scanning electronic microscopy (FESEM) techniques; TEM image demonstrated semispherical particles with dimensions under 50 nm. The BET surface area, total pore volume, and pore diameter of it were attained to be 321 m2 g−1, 0.053 cm3 g−1, and 1.22 nm, respectively. The modified carbon paste electrode by aluminosilicate nanozeolite beta and nickel hydroxide (Ni(OH)2-Beta/CPE) was applied for formaldehyde (HCHO) electrocatalytic oxidation. The obtained results specify that Ni(OH)2-Beta/CPE demonstrates worthy electrocatalytic activity for oxidation of HCHO due to mesoporous construction and the great surface area of nanozeolite. The electron-transfer coefficient, catalytic rate constant, and diffusion coefficient are found to be 0.69, 2.08 × 106 cm3 mol−1 s−1, and 4.4 × 10−7 cm2 s−1, respectively. The Ni(OH)2-Beta/CPE exhibited low background current, simplicity of surface renewal, good reproducibility, and stability and also displayed high stability up to 300 cycles and 3000 s without an important loss in the current density. This modified electrode has better poisoning tolerance capability than bare CPE for HCHO electrocatalytic oxidation and is a higher device for the long term accomplishment.

本文采用x射线衍射(XRD)、氮吸附等温线、傅里叶变换红外(FT-IR)、透射电子显微镜(TEM)和场发射扫描电子显微镜(FESEM)等技术对铝硅酸盐纳米沸石β进行了制备和表征;TEM图像显示尺寸在50 nm以下的半球形颗粒。得到的BET比表面积为321 m2 g−1,总孔容为0.053 cm3 g−1,孔径为1.22 nm。采用铝硅酸盐纳米沸石和氢氧化镍(Ni(OH)2- β /CPE)改性碳糊电极对甲醛(HCHO)进行电催化氧化。结果表明,由于Ni(OH)2-Beta/CPE的介孔结构和纳米沸石的大表面积,对HCHO的氧化具有良好的电催化活性。电子转移系数、催化速率常数和扩散系数分别为0.69、2.08 × 106 cm3 mol−1 s−1和4.4 × 10−7 cm2 s−1。Ni(OH)2-Beta/CPE具有背景电流小、表面更新简单、重现性好、稳定性好等特点,在300次循环和3000 s内具有较高的稳定性,且电流密度没有明显损失。该修饰电极对HCHO电催化氧化具有比裸CPE更好的耐中毒能力,是一种长期完成的较高的装置。
{"title":"Electrocatalytic Performance of Nickel Hydroxide-Decorated Microporous Nanozeolite Beta-Modified Carbon Paste Electrode for Formaldehyde Oxidation","authors":"Samira Eshagh-Nimvari,&nbsp;Seyed Karim Hassaninejad-Darzi","doi":"10.1007/s12678-022-00799-3","DOIUrl":"10.1007/s12678-022-00799-3","url":null,"abstract":"<div><p>In this paper, aluminosilicate nanozeolite beta has been prepared and described using X-ray diffraction (XRD), nitrogen sorption isotherm, Fourier transform infrared (FT-IR), transmission electron micrograph (TEM), and field emission scanning electronic microscopy (FESEM) techniques; TEM image demonstrated semispherical particles with dimensions under 50 nm. The BET surface area, total pore volume, and pore diameter of it were attained to be 321 m<sup>2</sup> g<sup>−1</sup>, 0.053 cm<sup>3</sup> g<sup>−1</sup>, and 1.22 nm, respectively. The modified carbon paste electrode by aluminosilicate nanozeolite beta and nickel hydroxide (Ni(OH)<sub>2</sub>-Beta/CPE) was applied for formaldehyde (HCHO) electrocatalytic oxidation. The obtained results specify that Ni(OH)<sub>2</sub>-Beta/CPE demonstrates worthy electrocatalytic activity for oxidation of HCHO due to mesoporous construction and the great surface area of nanozeolite. The electron-transfer coefficient, catalytic rate constant, and diffusion coefficient are found to be 0.69, 2.08 × 10<sup>6</sup> cm<sup>3</sup> mol<sup>−1</sup> s<sup>−1</sup>, and 4.4 × 10<sup>−7</sup> cm<sup>2</sup> s<sup>−1</sup>, respectively. The Ni(OH)<sub>2</sub>-Beta/CPE exhibited low background current, simplicity of surface renewal, good reproducibility, and stability and also displayed high stability up to 300 cycles and 3000 s without an important loss in the current density. This modified electrode has better poisoning tolerance capability than bare CPE for HCHO electrocatalytic oxidation and is a higher device for the long term accomplishment.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 3","pages":"365 - 380"},"PeriodicalIF":3.1,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-022-00799-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5117242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sea Urchin–Like CoS2@WS2/NF Bifunctional Catalyst for Efficient Overall Water Splitting 类海胆CoS2@WS2/NF双功能催化剂高效整体水分解
IF 3.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-12-19 DOI: 10.1007/s12678-022-00800-z
Chenzi Zhu, Hongbao Liu, Youchao Song, Jiajia Wang, Yuming Zhou, Yiwei Zhang

Metal sulfides have been shown to exhibit better electrical conductivity, mechanical and thermal stability, and higher electrochemical activity than their corresponding metal oxide counterparts. The one-dimensional nanoclusters and three-dimensional microspheres were assembled together by a well-designed synthetic strategy to finally form a sea urchin-like CoS2@WS2/NF composite electrode material. The stable chemical properties and firm physical structure remain stable before and after the catalytic reaction, and the unique structure, sea urchin-like morphology, is conducive to mass transfer and gas release during the reaction. In this nanocomposite, one-dimensional nanoclusters provide efficient electron transfer, while three-dimensional nanospheres provide strong and reliable mechanical support. When CoS2@WS2/NF was used as a bifunctional electrocatalyst at a current density of 10 mA cm−2 in 1.0 M KOH aqueous solution, it exhibited overpotentials as low as 127 mV and 415 mV to drive hydrogen evolution reaction (HER) and HER, respectively. Oxygen evolution reaction (OER) is responsive while having high durability. When evaluated as a two-electrode system, it delivers a small value of 1.66 V up to 10 mA cm−2, further demonstrating the superiority of the bifunctional water release function.

与金属氧化物相比,金属硫化物具有更好的导电性、机械稳定性和热稳定性以及更高的电化学活性。通过精心设计的合成策略,将一维纳米团簇和三维微球组装在一起,最终形成海胆样CoS2@WS2/NF复合电极材料。稳定的化学性质和牢固的物理结构在催化反应前后保持稳定,独特的结构,海胆样形态,有利于反应过程中的传质和气体释放。在这种纳米复合材料中,一维纳米团簇提供了高效的电子传递,而三维纳米球提供了强大可靠的机械支持。当CoS2@WS2/NF作为双功能电催化剂,在1.0 M KOH水溶液中,电流密度为10 mA cm−2时,其过电位低至127 mV和415 mV,分别驱动析氢反应(HER)和析氢反应(HER)。析氧反应(OER)反应灵敏,耐久性高。当被评估为双电极系统时,它提供了1.66 V的小值,高达10 mA cm - 2,进一步证明了双功能水释放功能的优越性。
{"title":"Sea Urchin–Like CoS2@WS2/NF Bifunctional Catalyst for Efficient Overall Water Splitting","authors":"Chenzi Zhu,&nbsp;Hongbao Liu,&nbsp;Youchao Song,&nbsp;Jiajia Wang,&nbsp;Yuming Zhou,&nbsp;Yiwei Zhang","doi":"10.1007/s12678-022-00800-z","DOIUrl":"10.1007/s12678-022-00800-z","url":null,"abstract":"<div><p>Metal sulfides have been shown to exhibit better electrical conductivity, mechanical and thermal stability, and higher electrochemical activity than their corresponding metal oxide counterparts. The one-dimensional nanoclusters and three-dimensional microspheres were assembled together by a well-designed synthetic strategy to finally form a sea urchin-like CoS<sub>2</sub>@WS<sub>2</sub>/NF composite electrode material. The stable chemical properties and firm physical structure remain stable before and after the catalytic reaction, and the unique structure, sea urchin-like morphology, is conducive to mass transfer and gas release during the reaction. In this nanocomposite, one-dimensional nanoclusters provide efficient electron transfer, while three-dimensional nanospheres provide strong and reliable mechanical support. When CoS<sub>2</sub>@WS<sub>2</sub>/NF was used as a bifunctional electrocatalyst at a current density of 10 mA cm<sup>−2</sup> in 1.0 M KOH aqueous solution, it exhibited overpotentials as low as 127 mV and 415 mV to drive hydrogen evolution reaction (HER) and HER, respectively. Oxygen evolution reaction (OER) is responsive while having high durability. When evaluated as a two-electrode system, it delivers a small value of 1.66 V up to 10 mA cm<sup>−2</sup>, further demonstrating the superiority of the bifunctional water release function.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 3","pages":"341 - 352"},"PeriodicalIF":3.1,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4745139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Crystal Size Dependence of the Photo-Electrochemical Water Oxidation on Nanoparticulate CaTiO3 电化学水氧化对纳米CaTiO3晶粒大小的影响
IF 3.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-12-19 DOI: 10.1007/s12678-022-00801-y
Monika Klusáčková, Roman Nebel, Kateřina Minhová Macounová, Petr Krtil

Nanocrystalline CaTiO3 materials with controlled particle size were prepared using spray-freezing/freeze-drying approach utilizing gelatine as a structure-directing agent. The resulting materials show characteristic particle size between 19 and 60 nm. The shape of the nanocrystals changes from cube-like single crystal containing particles into less regular isometric particles. Prepared materials as identified by X-ray diffraction analysis are formed by orthorhombic perovskite with small admixture of cubic phase. The ratio of both perovskite phases is independent of the particle size or prevailing crystal shape. All prepared materials show n-semiconducting character with band gap of ca 3.6 eV. They also show photo-electrochemical activity in water oxidation in acid media if a bias greater than 400 mV with respect to the flat band potential is applied. The specific photo-electrochemical activity decreases with increasing specific surface area. This behavior is attributed to increased probability of the electron transfer at the illuminated CaTiO3 surface facilitated by the surface states. The CaTiO3 materials also generate significant amount of ozone upon illumination in oxygen saturated solutions. The tendency to form ozone increases with increasing particle size suggesting that the ozone formation is hindered on materials with large number of low dimensionality states (crystal edges and vertices).

Graphical Abstract

以明胶为结构导向剂,采用喷雾冷冻/冷冻干燥法制备了粒径可控的CaTiO3纳米晶材料。所得材料的特征粒径在19 ~ 60 nm之间。纳米晶体的形状从含有颗粒的立方体状单晶转变为不太规则的等距颗粒。经x射线衍射分析,所制备的材料由正交钙钛矿和少量立方相的混合物组成。两种钙钛矿相的比例与颗粒大小或晶体形状无关。所制备的材料均具有n-半导体特性,带隙约为3.6 eV。如果相对于平带电位施加大于400 mV的偏置,它们在酸性介质中的水氧化中也显示出光电化学活性。比光化学活性随比表面积的增加而降低。这种行为是由于表面状态促进了CaTiO3表面上电子转移的可能性增加。CaTiO3材料在饱和氧溶液中光照后也会产生大量的臭氧。臭氧的形成倾向随着颗粒尺寸的增加而增加,这表明臭氧的形成在具有大量低维状态(晶体边缘和顶点)的材料上受到阻碍。图形抽象
{"title":"Crystal Size Dependence of the Photo-Electrochemical Water Oxidation on Nanoparticulate CaTiO3","authors":"Monika Klusáčková,&nbsp;Roman Nebel,&nbsp;Kateřina Minhová Macounová,&nbsp;Petr Krtil","doi":"10.1007/s12678-022-00801-y","DOIUrl":"10.1007/s12678-022-00801-y","url":null,"abstract":"<div><p>Nanocrystalline CaTiO<sub>3</sub> materials with controlled particle size were prepared using spray-freezing/freeze-drying approach utilizing gelatine as a structure-directing agent. The resulting materials show characteristic particle size between 19 and 60 nm. The shape of the nanocrystals changes from cube-like single crystal containing particles into less regular isometric particles. Prepared materials as identified by X-ray diffraction analysis are formed by orthorhombic perovskite with small admixture of cubic phase. The ratio of both perovskite phases is independent of the particle size or prevailing crystal shape. All prepared materials show n-semiconducting character with band gap of ca 3.6 eV. They also show photo-electrochemical activity in water oxidation in acid media if a bias greater than 400 mV with respect to the flat band potential is applied. The specific photo-electrochemical activity decreases with increasing specific surface area. This behavior is attributed to increased probability of the electron transfer at the illuminated CaTiO<sub>3</sub> surface facilitated by the surface states. The CaTiO<sub>3</sub> materials also generate significant amount of ozone upon illumination in oxygen saturated solutions. The tendency to form ozone increases with increasing particle size suggesting that the ozone formation is hindered on materials with large number of low dimensionality states (crystal edges and vertices).</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 3","pages":"353 - 364"},"PeriodicalIF":3.1,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4747981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CuCo-MOF/MoS2 as a High-Performance Electrocatalyst for Oxygen Evolution Reaction CuCo-MOF/MoS2作为析氧反应的高性能电催化剂
IF 3.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-12-15 DOI: 10.1007/s12678-022-00797-5
Qi Li, Xiabing Hu, Lidong Zhang, Shuyu Li, Jiayan Chen, Baoying Zhang, Zhiyuan Zheng, Hongyu He, Jie Zhang, Shiping Luo, Aijuan Xie

Metal–organic frame materials (MOFs) create ordered spatial structures through organic bridges and metal ion centers. This microstructure can effectively disperse the active centers. In this work, CuCo-MOF was firstly prepared by hydrothermal method and then physically mixed with MoS2. The prepared materials were applied to study the catalytic performance for oxygen evolution reaction (OER). The results show that the overpotential and Tafel slope of CuCo-MOF/MoS2 are 336 mV and 75 mV dec−1. The addition of MoS2 can effectively reduce the stacking of MOFs and increase the effective contact area with the reactants and promote charge/mass transport as well as enhance the catalytic activity. In addition, MoS2 has strong viscosity, and when it is mixed with MOF, the stability of the composite can be improved. The good OER performance of CuCo-MOF/MoS2 provides a reference for the exploration of a novel OER catalyst.

金属有机框架材料(MOFs)通过有机桥梁和金属离子中心创造有序的空间结构。这种微观结构能有效分散活性中心。本文首先采用水热法制备CuCo-MOF,然后与MoS2进行物理混合。将所制备的材料应用于析氧反应(OER)的催化性能研究。结果表明:CuCo-MOF/MoS2的过电位和Tafel斜率分别为336 mV和75 mV dec−1;添加MoS2可以有效减少mof的堆积,增加与反应物的有效接触面积,促进电荷/质量输运,提高催化活性。此外,MoS2具有较强的粘度,与MOF混合可提高复合材料的稳定性。CuCo-MOF/MoS2良好的OER性能为开发新型OER催化剂提供了参考。
{"title":"CuCo-MOF/MoS2 as a High-Performance Electrocatalyst for Oxygen Evolution Reaction","authors":"Qi Li,&nbsp;Xiabing Hu,&nbsp;Lidong Zhang,&nbsp;Shuyu Li,&nbsp;Jiayan Chen,&nbsp;Baoying Zhang,&nbsp;Zhiyuan Zheng,&nbsp;Hongyu He,&nbsp;Jie Zhang,&nbsp;Shiping Luo,&nbsp;Aijuan Xie","doi":"10.1007/s12678-022-00797-5","DOIUrl":"10.1007/s12678-022-00797-5","url":null,"abstract":"<div><p>Metal–organic frame materials (MOFs) create ordered spatial structures through organic bridges and metal ion centers. This microstructure can effectively disperse the active centers. In this work, CuCo-MOF was firstly prepared by hydrothermal method and then physically mixed with MoS<sub>2</sub>. The prepared materials were applied to study the catalytic performance for oxygen evolution reaction (OER). The results show that the overpotential and Tafel slope of CuCo-MOF/MoS<sub>2</sub> are 336 mV and 75 mV dec<sup>−1</sup>. The addition of MoS<sub>2</sub> can effectively reduce the stacking of MOFs and increase the effective contact area with the reactants and promote charge/mass transport as well as enhance the catalytic activity. In addition, MoS<sub>2</sub> has strong viscosity, and when it is mixed with MOF, the stability of the composite can be improved. The good OER performance of CuCo-MOF/MoS<sub>2</sub> provides a reference for the exploration of a novel OER catalyst.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 3","pages":"333 - 340"},"PeriodicalIF":3.1,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-022-00797-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4604101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Density Functional Calculations of the Sequential Adsorption of Hydrogen on Single Atom and Small Clusters of Pd and Pt Supported on Au(111) 氢在单原子和Au负载的Pd和Pt小簇上顺序吸附的密度泛函计算(111)
IF 3.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-12-09 DOI: 10.1007/s12678-022-00802-x
Joshua Meléndez-Rivera, Juan A. Santana

We have used density functional theory calculations to study the sequential adsorption of hydrogen on Pd and Pt atomic site catalysts such as single-atom alloy catalysts (SAAC), single-atom catalysts (SAC), and single cluster catalysts (SCC) on Au(111). The results show that Pd systems tend to have near-zero free energy of hydrogen adsorption ((Delta {G}_{{mathrm{H}}_{mathrm{ads}}}approx 0)) under various coverage conditions of adsorbed hydrogen. In the case of Pt systems, (Delta {G}_{{mathrm{H}}_{mathrm{ads}}}approx 0) only at high coverage conditions of adsorbed hydrogen. Such differences come from the preference of hydrogen for high-coordination and low-coordination sites on Pd and Pt, respectively. The low coordination of hydrogen results in multiple adsorption sites with (Delta {G}_{{mathrm{H}}_{mathrm{ads}}}approx 0) in SCC of Pt/Au. These results can help to understand the different catalytic properties of Pd/Au and Pt/Au.

Graphical Abstract

我们利用密度泛函理论计算研究了氢在钯和铂原子位催化剂上的顺序吸附,如单原子合金催化剂(SAAC)、单原子催化剂(SAC)和单团簇催化剂(SCC)在Au(111)上的顺序吸附。结果表明,在不同的吸附氢覆盖条件下,Pd体系的氢吸附自由能趋于接近于零((Delta {G}_{{mathrm{H}}_{mathrm{ads}}}approx 0))。在Pt体系的情况下,(Delta {G}_{{mathrm{H}}_{mathrm{ads}}}approx 0)仅在吸附氢的高覆盖条件下。这种差异来自于氢对Pd和Pt上的高配位和低配位的偏好。在Pt/Au的SCC中,氢的低配位导致(Delta {G}_{{mathrm{H}}_{mathrm{ads}}}approx 0)有多个吸附位点。这些结果有助于了解Pd/Au和Pt/Au的不同催化性能。图形摘要
{"title":"Density Functional Calculations of the Sequential Adsorption of Hydrogen on Single Atom and Small Clusters of Pd and Pt Supported on Au(111)","authors":"Joshua Meléndez-Rivera,&nbsp;Juan A. Santana","doi":"10.1007/s12678-022-00802-x","DOIUrl":"10.1007/s12678-022-00802-x","url":null,"abstract":"<div><p>We have used density functional theory calculations to study the sequential adsorption of hydrogen on Pd and Pt atomic site catalysts such as single-atom alloy catalysts (SAAC), single-atom catalysts (SAC), and single cluster catalysts (SCC) on Au(111). The results show that Pd systems tend to have near-zero free energy of hydrogen adsorption (<span>(Delta {G}_{{mathrm{H}}_{mathrm{ads}}}approx 0)</span>) under various coverage conditions of adsorbed hydrogen. In the case of Pt systems, <span>(Delta {G}_{{mathrm{H}}_{mathrm{ads}}}approx 0)</span> only at high coverage conditions of adsorbed hydrogen. Such differences come from the preference of hydrogen for high-coordination and low-coordination sites on Pd and Pt, respectively. The low coordination of hydrogen results in multiple adsorption sites with <span>(Delta {G}_{{mathrm{H}}_{mathrm{ads}}}approx 0)</span> in SCC of Pt/Au. These results can help to understand the different catalytic properties of Pd/Au and Pt/Au.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 2","pages":"325 - 331"},"PeriodicalIF":3.1,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-022-00802-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4374976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Modified MnO2 Anodes on the Electrolytic Effect of Doxycycline Hydrochloride 改性二氧化锰阳极对盐酸多西环素电解效果的影响
IF 3.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2022-11-23 DOI: 10.1007/s12678-022-00796-6
Feng Ye, Jianhua Wang, Jiqing Bao

To effectively degrade antibiotics, a series of MnO2 modified electrodes were prepared by using a thermal decomposition method in this study. The corrosion resistance of the coated electrodes was evaluated by characterizing the microscopic morphology of the electrodes using scanning electron microscopy (SEM). Moreover, electrochemical tests, including cyclic voltammetry (CV) curves, linear sweep voltammetry (LSV) curves, as well as alternating-current (AC) electrochemical impedance spectroscopy (EIS), were applied to study the electrocatalytic ability of the electrode for the degradation of doxycycline hydrochloride in simulated wastewater. Based on the findings, the MnO2/CuO-mesoporous silica (SBA)-15 electrode displayed a long lifetime and excellent catalytic performance. The peroxynitrite (PMS) was further combined with above electrodes to construct an electrocatalytic oxidation (EC) system for the removing of doxycycline hydrochloride from wastewater. Under optimized conditions (current density of 30 mA/cm2, initial pH of 5, PMS dosing of 350 mg/L), the MnO2/CuO-SBA-15/PMS system can remove 79.44% doxycycline hydrochloride (initial concentration of 20 mg/L) after 180 min of electrolysis, 24.71% higher than that in the MnO2/PMS system.

Graphical Abstract

为了有效降解抗生素,本研究采用热分解法制备了一系列MnO2修饰电极。利用扫描电子显微镜(SEM)对涂层电极的微观形貌进行表征,评价涂层电极的耐腐蚀性能。通过循环伏安法(CV)曲线、线性扫描伏安法(LSV)曲线和交流电化学阻抗谱(EIS)等电化学测试,研究了该电极对模拟废水中盐酸多西环素的电催化降解能力。研究结果表明,MnO2/ cuo介孔二氧化硅(SBA)-15电极具有较长的使用寿命和优异的催化性能。再将过氧亚硝酸盐(PMS)与上述电极结合,构建电催化氧化(EC)系统,用于去除废水中的盐酸多西环素。在优化条件下(电流密度为30 mA/cm2,初始pH为5,PMS投加量为350 mg/L),电解180 min后,MnO2/CuO-SBA-15/PMS体系对盐酸强力霉素(初始浓度为20 mg/L)的去除率为79.44%,比MnO2/PMS体系提高了24.71%。图形抽象
{"title":"Effect of Modified MnO2 Anodes on the Electrolytic Effect of Doxycycline Hydrochloride","authors":"Feng Ye,&nbsp;Jianhua Wang,&nbsp;Jiqing Bao","doi":"10.1007/s12678-022-00796-6","DOIUrl":"10.1007/s12678-022-00796-6","url":null,"abstract":"<div><p>To effectively degrade antibiotics, a series of MnO<sub>2</sub> modified electrodes were prepared by using a thermal decomposition method in this study. The corrosion resistance of the coated electrodes was evaluated by characterizing the microscopic morphology of the electrodes using scanning electron microscopy (SEM). Moreover, electrochemical tests, including cyclic voltammetry (CV) curves, linear sweep voltammetry (LSV) curves, as well as alternating-current (AC) electrochemical impedance spectroscopy (EIS), were applied to study the electrocatalytic ability of the electrode for the degradation of doxycycline hydrochloride in simulated wastewater. Based on the findings, the MnO<sub>2</sub>/CuO-mesoporous silica (SBA)-15 electrode displayed a long lifetime and excellent catalytic performance. The peroxynitrite (PMS) was further combined with above electrodes to construct an electrocatalytic oxidation (EC) system for the removing of doxycycline hydrochloride from wastewater. Under optimized conditions (current density of 30 mA/cm<sup>2</sup>, initial pH of 5, PMS dosing of 350 mg/L), the MnO<sub>2</sub>/CuO-SBA-15/PMS system can remove 79.44% doxycycline hydrochloride (initial concentration of 20 mg/L) after 180 min of electrolysis, 24.71% higher than that in the MnO<sub>2</sub>/PMS system.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 2","pages":"315 - 324"},"PeriodicalIF":3.1,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-022-00796-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4913533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Electrocatalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1