首页 > 最新文献

Electrocatalysis最新文献

英文 中文
Electroanalytical Performance of Non-Enzymatical Electrochemical Sensor Based on PtNPs-SeNPs-SnO2NPs@BFTO Nanocomposites for the Detection of Hydrogen Peroxide 基于PtNPs-SeNPs-SnO2NPs@BFTO纳米复合材料的非酶电化学传感器检测过氧化氢的电分析性能
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-05-25 DOI: 10.1007/s12678-023-00828-9
Nilesh S. Dumore, Mausumi Mukhopadhyay

Electroanalytical performance of electrodeposited platinum nanoparticles (PtNPs), selenium nanoparticles (SeNPs), and tin oxide nanoparticles (SnO2NPs) on the surface of bare fluorine-doped tin oxide (BFTO) (PtNPs-SeNPs-SnO2NPs@BFTO) nanocomposite was used as an non-enzymatic electrochemical sensor towards detection of H2O2. The surface morphology and characterization of PtNPs-SeNPs-SnO2NPs@BFTO was studied by field emission scanning electron microscopy (FESEM) and EDS mapping. The Morphology of PtNPs-SeNPs-SnO2NPs@BFTO showed flower, spherical and irregular shapes by FESEM investigation. X-ray photoelectron spectroscopy was used to investigate the elemental composition of platinum, selenium, tin, oxygen, and fluorine on the PtNPs-SeNPs-SnO2NPs@BFTO surface. The synthesized PtNPs-SeNPs-SnO2NPs@BFTO electrochemical sensor was used for electro-catalytic detection of H2O2. The linear concentration range of the PtNPs-SeNPs-SnO2NPs@BFTO was 0.01 to 54 mM, with a high sensitivity of 104.8 mA mM−1 cm−2 and a low detection limit of 0.01 mM. The interference study of PtNPs-SeNPs-SnO2NPs@BFTO based sensors showed high selectivity towards H2O2 with interfering agents, including glucose (GU), ascorbic acid (AA), urea (UA), sucrose (SU), sodium chloride (SC), and sodium selenite (SS).

利用电沉积铂纳米粒子(PtNPs)、硒纳米粒子(SeNPs)和氧化锡纳米粒子(SnO2NPs)在裸氟掺杂氧化锡(BFTO) (PtNPs-SeNPs-SnO2NPs@BFTO)纳米复合材料表面的电分析性能,作为检测H2O2的非酶电化学传感器。利用场发射扫描电镜(FESEM)和能谱仪(EDS)对PtNPs-SeNPs-SnO2NPs@BFTO的表面形貌和表征进行了研究。通过FESEM观察,PtNPs-SeNPs-SnO2NPs@BFTO的形态表现为花状、球形和不规则形状。利用x射线光电子能谱研究了PtNPs-SeNPs-SnO2NPs@BFTO表面铂、硒、锡、氧和氟的元素组成。将合成的PtNPs-SeNPs-SnO2NPs@BFTO电化学传感器用于电催化检测H2O2。PtNPs-SeNPs-SnO2NPs@BFTO的线性浓度范围为0.01 ~ 54 mM,灵敏度为104.8 mA mM−1 cm−2,检出限为0.01 mM。对PtNPs-SeNPs-SnO2NPs@BFTO传感器的干扰研究表明,干扰剂包括葡萄糖(GU)、抗坏血酸(AA)、尿素(UA)、蔗糖(SU)、氯化钠(SC)和亚硒酸钠(SS),对H2O2具有较高的选择性。
{"title":"Electroanalytical Performance of Non-Enzymatical Electrochemical Sensor Based on PtNPs-SeNPs-SnO2NPs@BFTO Nanocomposites for the Detection of Hydrogen Peroxide","authors":"Nilesh S. Dumore,&nbsp;Mausumi Mukhopadhyay","doi":"10.1007/s12678-023-00828-9","DOIUrl":"10.1007/s12678-023-00828-9","url":null,"abstract":"<div><p>Electroanalytical performance of electrodeposited platinum nanoparticles (PtNPs), selenium nanoparticles (SeNPs), and tin oxide nanoparticles (SnO<sub>2</sub>NPs) on the surface of bare fluorine-doped tin oxide (BFTO) (PtNPs-SeNPs-SnO<sub>2</sub>NPs@BFTO) nanocomposite was used as an non-enzymatic electrochemical sensor towards detection of H<sub>2</sub>O<sub>2</sub>. The surface morphology and characterization of PtNPs-SeNPs-SnO<sub>2</sub>NPs@BFTO was studied by field emission scanning electron microscopy (FESEM) and EDS mapping. The Morphology of PtNPs-SeNPs-SnO<sub>2</sub>NPs@BFTO showed flower, spherical and irregular shapes by FESEM investigation. X-ray photoelectron spectroscopy was used to investigate the elemental composition of platinum, selenium, tin, oxygen, and fluorine on the PtNPs-SeNPs-SnO<sub>2</sub>NPs@BFTO surface. The synthesized PtNPs-SeNPs-SnO<sub>2</sub>NPs@BFTO electrochemical sensor was used for electro-catalytic detection of H<sub>2</sub>O<sub>2.</sub> The linear concentration range of the PtNPs-SeNPs-SnO<sub>2</sub>NPs@BFTO was 0.01 to 54 mM, with a high sensitivity of 104.8 mA mM<sup>−1</sup> cm<sup>−2</sup> and a low detection limit of 0.01 mM. The interference study of PtNPs-SeNPs-SnO<sub>2</sub>NPs@BFTO based sensors showed high selectivity towards H<sub>2</sub>O<sub>2</sub> with interfering agents, including glucose (GU), ascorbic acid (AA), urea (UA), sucrose (SU), sodium chloride (SC), and sodium selenite (SS).\u0000</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4977919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Polymer-based Electrochemical Sensor: Fast, Accurate, and Simple Insulin Diagnostics Tool 基于聚合物的电化学传感器:快速,准确,简单的胰岛素诊断工具
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-05-10 DOI: 10.1007/s12678-023-00827-w
Ivana Šišoláková, Radka Gorejová, Frederika Chovancová, Jana Shepa, Fahanwi Asabuwa Ngwabebhoh, Andrea Straková Fedorková, Petr Sáha, Renáta Oriňaková

Study of the use of polymers with higher conductivity like polypyrrole, and polyaniline in the electrochemical insulin sensors can overcome the drawbacks arising from the ongoing use of non-conductive polymer membrane. Conductive polymer membranes maintain the positive properties of polymers, like improved stability, reproducibility, and even increase the current response of the prepared sensor toward insulin oxidation. Three different screen-printed electrodes modified with polyaniline, polypyrrole, or chitosan with electrochemically deposited nickel nanoparticles ensuring insulin oxidation were prepared. The electrode morphology was examined via SEM with EDX analysis. Also, the electroactive surface area and stability were determined by voltammetric methods. Based on the results, the SPCEs modified by polypyrrole and nickel nanoparticles were determined as the most appropriate for the insulin determination. The NiNPs-PPy-SPCE exhibited a linear range (500 nM–5 µM), a low-down limit of detection (38 nM), high sensitivity (3.98 µA/µM), and excellent result from insulin determination in real samples (human blood serum). The results confirmed the high potential of developed sensor for future research focused on detection of insulin via electrochemistry methods in clinical samples.

Graphical Abstract

研究在电化学胰岛素传感器中使用诸如聚吡咯、聚苯胺等电导率较高的聚合物,可以克服目前使用非导电聚合物膜所带来的缺点。导电聚合物膜保持了聚合物的积极特性,如提高了稳定性、可重复性,甚至增加了所制备的传感器对胰岛素氧化的电流响应。制备了三种不同的丝网印刷电极,分别用聚苯胺、聚吡咯或壳聚糖修饰,并以电化学沉积的纳米镍保证胰岛素氧化。通过扫描电镜和EDX分析检测电极形貌。用伏安法测定了其电活性表面积和稳定性。结果表明,聚吡咯和纳米镍修饰的spce最适合用于胰岛素的检测。NiNPs-PPy-SPCE具有良好的线性范围(500 nM - 5µM)、下限(38 nM)、高灵敏度(3.98µa /µM)和对真实样品(人血清)胰岛素的检测效果。结果证实了该传感器在未来的研究中具有很高的潜力,可以通过电化学方法在临床样品中检测胰岛素。图形抽象
{"title":"Polymer-based Electrochemical Sensor: Fast, Accurate, and Simple Insulin Diagnostics Tool","authors":"Ivana Šišoláková,&nbsp;Radka Gorejová,&nbsp;Frederika Chovancová,&nbsp;Jana Shepa,&nbsp;Fahanwi Asabuwa Ngwabebhoh,&nbsp;Andrea Straková Fedorková,&nbsp;Petr Sáha,&nbsp;Renáta Oriňaková","doi":"10.1007/s12678-023-00827-w","DOIUrl":"10.1007/s12678-023-00827-w","url":null,"abstract":"<div><p>Study of the use of polymers with higher conductivity like polypyrrole, and polyaniline in the electrochemical insulin sensors can overcome the drawbacks arising from the ongoing use of non-conductive polymer membrane. Conductive polymer membranes maintain the positive properties of polymers, like improved stability, reproducibility, and even increase the current response of the prepared sensor toward insulin oxidation. Three different screen-printed electrodes modified with polyaniline, polypyrrole, or chitosan with electrochemically deposited nickel nanoparticles ensuring insulin oxidation were prepared. The electrode morphology was examined via SEM with EDX analysis. Also, the electroactive surface area and stability were determined by voltammetric methods. Based on the results, the SPCEs modified by polypyrrole and nickel nanoparticles were determined as the most appropriate for the insulin determination. The NiNPs-PPy-SPCE exhibited a linear range (500 nM–5 µM), a low-down limit of detection (38 nM), high sensitivity (3.98 µA/µM), and excellent result from insulin determination in real samples (human blood serum). The results confirmed the high potential of developed sensor for future research focused on detection of insulin via electrochemistry methods in clinical samples.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00827-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4432696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Determination of Tyramine Using a Carbon Ionic Liquid Paste Electrode Modified with f-MWCNTs/Graphene Nanocomposite Film f-MWCNTs/石墨烯纳米复合膜修饰碳离子液体糊电极电化学测定酪胺
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-05-05 DOI: 10.1007/s12678-023-00825-y
Muhaned Mohammed Eteya, Gholam Hossein Rounaghi, Behjat Deiminiat

This paper describes the development of a carbon paste electrode based on the butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([bmim] NTF2) ionic liquid and its modification with functionalized multiwalled carbon nanotubes (f-MWCNTs) /graphene (GR) nanocomposite film. The f-MWCNTs-GR modified carbon ionic liquid paste electrode (CILPE) was utilized for electrochemical determination of tyramine using the square wave voltammetry technique. The prepared electrochemical sensor exhibited an excellent electrocatalytic behavior for oxidation of tyramine molecules in solutions compared to the carbon paste electrode. This behavior can be assigned to the synergistic effect of carbon nanotubes, graphen and ionic liquid. The oxidation peak currents of tyramine were linear in the concentration range of 1–1000 μM with a detection limit of 0.5 μM. The obtained experimental results showed that the f-MWCNTs-GR/CILPE has a good selectivity toward tyramine molecules in the presence of interfering specious and it can be used confidently for measurement the concentration of tyramine in food and biological samples.

Graphical Abstract

本文介绍了基于丁基-3-甲基咪唑双(三氟甲基磺酰基)亚胺([bmim] NTF2)离子液体的碳糊电极的研制及其功能化多壁碳纳米管(f-MWCNTs) /石墨烯(GR)纳米复合膜的改性。采用f-MWCNTs-GR改性碳离子液体糊电极(CILPE)方波伏安法测定了酪胺。与碳糊电极相比,所制备的电化学传感器在溶液中对酪胺分子的氧化表现出优异的电催化行为。这种行为可以归因于碳纳米管、石墨烯和离子液体的协同作用。酪胺的氧化峰电流在浓度1 ~ 1000 μM范围内呈线性关系,检出限为0.5 μM。实验结果表明,f-MWCNTs-GR/CILPE在干扰似是而非的情况下对酪胺分子具有良好的选择性,可可靠地用于食品和生物样品中酪胺的浓度测定。图形抽象
{"title":"Electrochemical Determination of Tyramine Using a Carbon Ionic Liquid Paste Electrode Modified with f-MWCNTs/Graphene Nanocomposite Film","authors":"Muhaned Mohammed Eteya,&nbsp;Gholam Hossein Rounaghi,&nbsp;Behjat Deiminiat","doi":"10.1007/s12678-023-00825-y","DOIUrl":"10.1007/s12678-023-00825-y","url":null,"abstract":"<div><p>This paper describes the development of a carbon paste electrode based on the butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([bmim] NTF2) ionic liquid and its modification with functionalized multiwalled carbon nanotubes (f-MWCNTs) /graphene (GR) nanocomposite film. The f-MWCNTs-GR modified carbon ionic liquid paste electrode (CILPE) was utilized for electrochemical determination of tyramine using the square wave voltammetry technique. The prepared electrochemical sensor exhibited an excellent electrocatalytic behavior for oxidation of tyramine molecules in solutions compared to the carbon paste electrode. This behavior can be assigned to the synergistic effect of carbon nanotubes, graphen and ionic liquid. The oxidation peak currents of tyramine were linear in the concentration range of 1–1000 μM with a detection limit of 0.5 μM. The obtained experimental results showed that the f-MWCNTs-GR/CILPE has a good selectivity toward tyramine molecules in the presence of interfering specious and it can be used confidently for measurement the concentration of tyramine in food and biological samples.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4221749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Co-deposition of Graphene Oxide and Silver Nanoparticles for the Voltammetric Sensing of Chlorpheniramine 氧化石墨烯与纳米银共沉积用于氯苯那敏伏安检测
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-05-03 DOI: 10.1007/s12678-023-00826-x
Piyanut Pinyou, Vincent Blay, Jaruwan Pansalee, Suthasinee Ramkrathok, Thanawan Phetmuenwai, Jaroon Jakmunee, Kantapat Chansaenpak, Sireerat Lisnund

Chlorpheniramine (CPM) is a widely used antihistamine drug that may be desirable to quantify in a variety of samples. We developed a CPM electrochemical sensor based on a composite of reduced graphene oxide (rGO) and silver nanoparticles (AgNPs) coated on a glassy carbon electrode (GCE). Sodium dodecyl sulfate (SDS) was used as a surfactant to prevent the aggregation of AgNPs. rGO and AgNPs were co-electrodeposited by cyclic voltammetry, varying the potential from -1.5 to 1.5 V vs. Ag/AgCl 3 M KCl. The electrochemical properties of the modified electrode were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The rGO/AgNPs/GCE showed excellent electrocatalytic activity for the oxidation of CPM. The anodic peak potential, measured using CV, was 0.78 V vs. Ag/AgCl in a carbonate-bicarbonate buffer of pH 10. The modified electrode exhibited a linear response for CPM concentrations between 10 and 300 μM, with a limit of detection of 4.2 μM. Several potentially interfering species, including ionic and organic compounds, did not have any significant effect on the CPM determination. This work thus describes a versatile sensor that could be applied to measure CPM in real samples.

氯苯那敏(CPM)是一种广泛使用的抗组胺药物,可能需要在各种样品中进行定量。我们开发了一种基于还原氧化石墨烯(rGO)和银纳米粒子(AgNPs)涂层在玻碳电极(GCE)上的复合材料的CPM电化学传感器。采用十二烷基硫酸钠(SDS)作为表面活性剂防止AgNPs的聚集。rGO和AgNPs通过循环伏安法共电沉积,电势在-1.5 ~ 1.5 V /Ag /AgCl 3 M KCl之间变化。采用循环伏安法(CV)和电化学阻抗谱法(EIS)对改性电极的电化学性能进行了表征。rGO/AgNPs/GCE对CPM的氧化表现出优异的电催化活性。在pH为10的碳酸盐-碳酸氢盐缓冲液中,用CV测量的阳极峰电位为0.78 V vs. Ag/AgCl。在CPM浓度为10 ~ 300 μM的范围内,电极的检测限为4.2 μM。离子和有机物等潜在干扰物质对CPM的测定无显著影响。因此,这项工作描述了一种多功能传感器,可用于测量实际样品中的CPM。
{"title":"Co-deposition of Graphene Oxide and Silver Nanoparticles for the Voltammetric Sensing of Chlorpheniramine","authors":"Piyanut Pinyou,&nbsp;Vincent Blay,&nbsp;Jaruwan Pansalee,&nbsp;Suthasinee Ramkrathok,&nbsp;Thanawan Phetmuenwai,&nbsp;Jaroon Jakmunee,&nbsp;Kantapat Chansaenpak,&nbsp;Sireerat Lisnund","doi":"10.1007/s12678-023-00826-x","DOIUrl":"10.1007/s12678-023-00826-x","url":null,"abstract":"<div><p>Chlorpheniramine (CPM) is a widely used antihistamine drug that may be desirable to quantify in a variety of samples. We developed a CPM electrochemical sensor based on a composite of reduced graphene oxide (rGO) and silver nanoparticles (AgNPs) coated on a glassy carbon electrode (GCE). Sodium dodecyl sulfate (SDS) was used as a surfactant to prevent the aggregation of AgNPs. rGO and AgNPs were co-electrodeposited by cyclic voltammetry, varying the potential from -1.5 to 1.5 V vs. Ag/AgCl 3 M KCl. The electrochemical properties of the modified electrode were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The rGO/AgNPs/GCE showed excellent electrocatalytic activity for the oxidation of CPM. The anodic peak potential, measured using CV, was 0.78 V vs. Ag/AgCl in a carbonate-bicarbonate buffer of pH 10. The modified electrode exhibited a linear response for CPM concentrations between 10 and 300 μM, with a limit of detection of 4.2 μM. Several potentially interfering species, including ionic and organic compounds, did not have any significant effect on the CPM determination. This work thus describes a versatile sensor that could be applied to measure CPM in real samples.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00826-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4135195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Individual and Simultaneous Determination of Heavy Metal Ions Using Carbon Paste Electrode Modified with Titania Nanoparticles 纳米二氧化钛修饰碳糊电极单独测定和同时测定重金属离子
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-05-01 DOI: 10.1007/s12678-023-00824-z
Elif Tüzün, Gülten Atun

In the development of ultrasensitive and selective sensors for heavy metal ions, the fabrication of titania-modified carbon paste electrodes with electrochemical sensing capabilities has received considerable attention. In this study, we investigated the facile preparation of the titania-modified carbon paste electrode and the determination of trace amounts of hazardous Hg(II), Cu(II), and Pb(II) ions by applying the square wave anodic stripping voltammetry method. The titania nanoparticles were characterized using various techniques such as size analyzer, XRD, and FTIR to determine their chemical properties. The experimental findings demonstrated that the titania nanoparticles were uniformly distributed in the graphite used to construct the modified electrode and had an average particle size of 85 nm in crystalline anatase form. Compared with the measurement results, the prepared sensor exhibited excellent sensing performance against Hg(II), Cu(II), and Pb(II) ions with a low detection limit of 15.26, 0.56, and 1.65 nM, respectively. In ternary solutions, their simultaneous determinations showed that the electrode is more sensitive to Hg(II) and Pb(II) ions, with detection limits of 8.32 and 0.25 nM, respectively. Consequently, the experimental results showed that the titania-modified carbon paste electrode is a promising sensor for the determination of hazardous Hg(II), Cu(II) and Pb(II) ions in sensor applications.

Graphical Abstract

在重金属离子超灵敏和选择性传感器的发展中,具有电化学传感能力的钛改性碳糊电极的制备受到了广泛的关注。本研究采用方波阳极溶出伏安法研究了钛修饰碳膏电极的简易制备及痕量有害离子Hg(II)、Cu(II)和Pb(II)的测定。利用粒度分析仪、XRD、FTIR等技术对纳米二氧化钛进行了表征,以确定其化学性质。实验结果表明,二氧化钛纳米颗粒均匀分布在构建修饰电极的石墨中,平均粒径为85 nm,呈锐钛矿晶体形式。与测量结果相比,所制备的传感器对Hg(II)、Cu(II)和Pb(II)离子具有良好的传感性能,检测限分别为15.26、0.56和1.65 nM。在三元溶液中,电极对Hg(II)和Pb(II)离子更敏感,检出限分别为8.32 nM和0.25 nM。因此,实验结果表明,钛改性碳糊电极是一种很有前途的传感器,可用于有害汞(II)、铜(II)和铅(II)离子的检测。图形抽象
{"title":"Individual and Simultaneous Determination of Heavy Metal Ions Using Carbon Paste Electrode Modified with Titania Nanoparticles","authors":"Elif Tüzün,&nbsp;Gülten Atun","doi":"10.1007/s12678-023-00824-z","DOIUrl":"10.1007/s12678-023-00824-z","url":null,"abstract":"<div><p>In the development of ultrasensitive and selective sensors for heavy metal ions, the fabrication of titania-modified carbon paste electrodes with electrochemical sensing capabilities has received considerable attention. In this study, we investigated the facile preparation of the titania-modified carbon paste electrode and the determination of trace amounts of hazardous Hg(II), Cu(II), and Pb(II) ions by applying the square wave anodic stripping voltammetry method. The titania nanoparticles were characterized using various techniques such as size analyzer, XRD, and FTIR to determine their chemical properties. The experimental findings demonstrated that the titania nanoparticles were uniformly distributed in the graphite used to construct the modified electrode and had an average particle size of 85 nm in crystalline anatase form. Compared with the measurement results, the prepared sensor exhibited excellent sensing performance against Hg(II), Cu(II), and Pb(II) ions with a low detection limit of 15.26, 0.56, and 1.65 nM, respectively. In ternary solutions, their simultaneous determinations showed that the electrode is more sensitive to Hg(II) and Pb(II) ions, with detection limits of 8.32 and 0.25 nM, respectively. Consequently, the experimental results showed that the titania-modified carbon paste electrode is a promising sensor for the determination of hazardous Hg(II), Cu(II) and Pb(II) ions in sensor applications.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00824-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4047370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient MoS2/V2O5 Electrocatalyst for Enhanced Oxygen and Hydrogen Evolution Reactions 高效的MoS2/V2O5电催化剂促进氧和氢的析出反应
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-04-29 DOI: 10.1007/s12678-023-00822-1
Krishna Kanta Haldar, Imtiaz Ahmed, Rathindranath Biswas, Shouvik Mete, Ranjit A. Patil, Yuan-Ron Ma

Electrochemical (EC) water splitting is a promising approach for the generation of renewable hydrogen (H2) fuels and oxygen (O2) evolution. Composite structured molybdenum disulphide (MoS2)/vanadium pentoxide (V2O5) with low overpotential is a promising electrocatalyst for anodic and cathodic material for an alternative energy source. We fabricated a flower shape MoS2/V2O5 composite via a hydrothermal approach where V2Ogrew on the surface of the MoS2 petals. The unique flower-type composite structure alleviates the surface expansion of electrode material. The electrochemical studies show that the composite possesses good stability with low overpotential and smaller Tafel slope compared to its constituents. It has been found that the MoS2/V2O5 composite exhibits a stable rate performance under the current density of 10 mA cm−2 which indicates that the MoS2/V2O5 composite might be a good candidate for both oxygen and hydrogen evolution reactions.

Graphical Abstract

电化学(EC)水分解是一种很有前途的可再生氢(H2)燃料生成和氧(O2)演化方法。具有低过电位的二硫化钼(MoS2)/五氧化钒(V2O5)复合结构电催化剂是一种很有前途的替代能源阳极和阴极材料。我们通过水热法制备了花状的MoS2/V2O5复合材料,其中V2O5生长在MoS2花瓣表面。独特的花型复合结构减轻了电极材料的表面膨胀。电化学研究表明,该复合材料具有较好的稳定性,过电位低,Tafel斜率小。结果表明,MoS2/V2O5复合材料在10 mA cm−2的电流密度下表现出稳定的速率性能,表明该复合材料可能是析氧和析氢反应的良好候选材料。图形抽象
{"title":"Efficient MoS2/V2O5 Electrocatalyst for Enhanced Oxygen and Hydrogen Evolution Reactions","authors":"Krishna Kanta Haldar,&nbsp;Imtiaz Ahmed,&nbsp;Rathindranath Biswas,&nbsp;Shouvik Mete,&nbsp;Ranjit A. Patil,&nbsp;Yuan-Ron Ma","doi":"10.1007/s12678-023-00822-1","DOIUrl":"10.1007/s12678-023-00822-1","url":null,"abstract":"<div><p>Electrochemical (EC) water splitting is a promising approach for the generation of renewable hydrogen (H<sub>2</sub>) fuels and oxygen (O<sub>2</sub>) evolution. Composite structured molybdenum disulphide (MoS<sub>2</sub>)/vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) with low overpotential is a promising electrocatalyst for anodic and cathodic material for an alternative energy source. We fabricated a flower shape MoS<sub>2</sub>/V<sub>2</sub>O<sub>5</sub> composite via a hydrothermal approach where V<sub>2</sub>O<sub>5 </sub>grew on the surface of the MoS<sub>2</sub> petals. The unique flower-type composite structure alleviates the surface expansion of electrode material. The electrochemical studies show that the composite possesses good stability with low overpotential and smaller Tafel slope compared to its constituents. It has been found that the MoS<sub>2</sub>/V<sub>2</sub>O<sub>5</sub> composite exhibits a stable rate performance under the current density of 10 mA cm<sup>−2</sup> which indicates that the MoS<sub>2</sub>/V<sub>2</sub>O<sub>5</sub> composite might be a good candidate for both oxygen and hydrogen evolution reactions.\u0000</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5102249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Au Cluster-derived Electrocatalysts for CO2 Reduction 金簇衍生的CO2还原电催化剂
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-04-21 DOI: 10.1007/s12678-023-00821-2
Shailendra Kumar Sharma, Hani Taleshi Ahangari, Bernt Johannessen, Vladimir B. Golovko, Aaron T. Marshall

Metal clusters often exhibit superior chemical, electronic, and geometrical properties and can show exciting catalytic performance. The catalytic behaviour of the clusters is strongly affected by their size and composition, offering unique opportunities to fine-tune such materials for a specific application. In this study, atomically precise [Au6(dppp)4](NO3)2, [Au9(PPh3)8](NO3)3, [Au13(dppe)5Cl2]Cl3 and Au101(PPPh3)21Cl5 clusters were synthesised, characterised and their activity for electrocatalytic CO2 reduction is compared. These Au clusters were deposited onto carbon paper to serve as the cathode for the electrochemical reduction of CO2. The experimental studies suggest that the clusters remain intact upon deposition on the carbon paper but undergo agglomeration during CO2 electrolysis. The cluster-based catalysts demonstrated high selectivity (75%—90%) for CO production over hydrogen evolution reaction. Upon calcination, the activity of the cluster-based electrodes decreases, which can be attributed to the agglomeration of small clusters into larger bulk-like nanoparticles, as suggested by XPS, XAS and SEM.

Graphical Abstract

A series of phosphine-protected gold clusters supported on carbon paper were studied as CO2RR electrocatalysts. The CO2RR activity was dependent on their size and ligand density. Thermal annealing of the catalysts invariably lowered CO selectivity due to agglomeration of the clusters into larger nanoparticles.

金属团簇通常表现出优异的化学、电子和几何性质,并能表现出令人兴奋的催化性能。簇的催化行为受其大小和组成的强烈影响,为特定应用提供了微调此类材料的独特机会。本研究合成了原子精密的[Au6(dppp)4](NO3)2、[Au9(PPh3)8](NO3)3、[Au13(dppe)5Cl2]Cl3和Au101(PPPh3)21Cl5簇,并对它们的电催化还原CO2活性进行了比较。这些金簇沉积在碳纸上,作为电化学还原CO2的阴极。实验研究表明,碳团簇在碳纸上沉积时保持完整,但在CO2电解过程中发生团聚。簇基催化剂对CO的产氢选择性高(75% ~ 90%)。煅烧后,簇基电极的活性降低,这可以归因于小簇聚集成更大的块状纳米颗粒,如XPS, XAS和SEM所示。研究了碳纸上负载的一系列磷化氢保护金团簇作为CO2RR电催化剂。CO2RR活性与它们的大小和配体密度有关。由于催化剂团簇聚集成更大的纳米颗粒,热退火总是降低CO的选择性。
{"title":"Au Cluster-derived Electrocatalysts for CO2 Reduction","authors":"Shailendra Kumar Sharma,&nbsp;Hani Taleshi Ahangari,&nbsp;Bernt Johannessen,&nbsp;Vladimir B. Golovko,&nbsp;Aaron T. Marshall","doi":"10.1007/s12678-023-00821-2","DOIUrl":"10.1007/s12678-023-00821-2","url":null,"abstract":"<div><p>Metal clusters often exhibit superior chemical, electronic, and geometrical properties and can show exciting catalytic performance. The catalytic behaviour of the clusters is strongly affected by their size and composition, offering unique opportunities to fine-tune such materials for a specific application. In this study, atomically precise [Au<sub>6</sub>(dppp)<sub>4</sub>](NO<sub>3</sub>)<sub>2</sub>, [Au<sub>9</sub>(PPh<sub>3</sub>)<sub>8</sub>](NO<sub>3</sub>)<sub>3</sub>, [Au<sub>13</sub>(dppe)<sub>5</sub>Cl<sub>2</sub>]Cl<sub>3</sub> and Au<sub>101</sub>(PPPh<sub>3</sub>)<sub>21</sub>Cl<sub>5</sub> clusters were synthesised, characterised and their activity for electrocatalytic CO<sub>2</sub> reduction is compared. These Au clusters were deposited onto carbon paper to serve as the cathode for the electrochemical reduction of CO<sub>2</sub>. The experimental studies suggest that the clusters remain intact upon deposition on the carbon paper but undergo agglomeration during CO<sub>2</sub> electrolysis. The cluster-based catalysts demonstrated high selectivity (75%—90%) for CO production over hydrogen evolution reaction. Upon calcination, the activity of the cluster-based electrodes decreases, which can be attributed to the agglomeration of small clusters into larger bulk-like nanoparticles, as suggested by XPS, XAS and SEM.\u0000</p><h3>Graphical Abstract</h3><p>A series of phosphine-protected gold clusters supported on carbon paper were studied as CO<sub>2</sub>RR electrocatalysts. The CO<sub>2</sub>RR activity was dependent on their size and ligand density. Thermal annealing of the catalysts invariably lowered CO selectivity due to agglomeration of the clusters into larger nanoparticles. \u0000</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4810874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Proton Relay Mediated Electrocatalytic Hydrogen Evolution by an Economic Co(III) Complex 经济Co(III)配合物质子继电器介导电催化析氢
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-04-19 DOI: 10.1007/s12678-023-00823-0
D. Majumder, S. Kolay, V. S. Tripathi

Bis(iminidiacetato)cobaltate(III) complex has been evaluated for electrocatalytic proton reduction. The process follows a rare pathway of protonation of ligand upon addition of a weak acid in DMF/water (9:1 v/v) medium. Thus, the complex becomes electroactive only in the presence of acid. In the presence of weak acid, a new reduction peak corresponding to CoI/Co0 reduction is observed. The electrocatalytic activity towards proton reduction reaction is exhibited by this peak. An electrochemical-chemical-electrochemical (ECE) route initiated by proton relay on ligand site has been established for the electrocatalytic process. The catalytic activity of the complex in DMF/water medium was evaluated by controlled potential electrolysis, turnover number (TON), and turnover frequency (TOF).

Graphical Abstract

对二(亚氨基二乙酸)钴酸酯(III)配合物的电催化质子还原性能进行了评价。在DMF/水(9:1 v/v)介质中加入弱酸后,该过程遵循罕见的配体质子化途径。因此,络合物只有在酸的存在下才具有电活性。在弱酸存在下,观察到与CoI/Co0还原相对应的新的还原峰。该峰显示了质子还原反应的电催化活性。建立了配体上质子接力启动的电化学-化学-电化学(ECE)电催化过程。通过控制电位电解、周转率(TON)和周转率(TOF)评价该配合物在DMF/水介质中的催化活性。图形抽象
{"title":"Proton Relay Mediated Electrocatalytic Hydrogen Evolution by an Economic Co(III) Complex","authors":"D. Majumder,&nbsp;S. Kolay,&nbsp;V. S. Tripathi","doi":"10.1007/s12678-023-00823-0","DOIUrl":"10.1007/s12678-023-00823-0","url":null,"abstract":"<div><p>Bis(iminidiacetato)cobaltate(III) complex has been evaluated for electrocatalytic proton reduction. The process follows a rare pathway of protonation of ligand upon addition of a weak acid in DMF/water (9:1 v/v) medium. Thus, the complex becomes electroactive only in the presence of acid. In the presence of weak acid, a new reduction peak corresponding to Co<sup>I</sup>/Co<sup>0</sup> reduction is observed. The electrocatalytic activity towards proton reduction reaction is exhibited by this peak. An electrochemical-chemical-electrochemical (ECE) route initiated by proton relay on ligand site has been established for the electrocatalytic process. The catalytic activity of the complex in DMF/water medium was evaluated by controlled potential electrolysis, turnover number (TON), and turnover frequency (TOF).</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00823-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5037051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Reagentless Aptamer Sensor Based on a Self-Powered DNA Machine for Electrochemical Detection of AFB1 基于自供电DNA机的无试剂适体传感器电化学检测AFB1
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-04-01 DOI: 10.1007/s12678-023-00819-w
Guobing Wei, Qiqi Fan, Nian Hong, Hanfeng Cui, Wenxing Zhang, Mijit Rustam, Alxir Alim, Tao Jiang, Huanhuan Dong, Hao Fan

A reagentless electrochemical aptamer sensor for AFB1 detection was constructed based on DNAzyme-driven DNA walker and bisferrocene. No significant change in electrochemical signal was observed when the target AFB1 was not added. The electrochemical signal was significantly reduced when the target AFB1 was added.

基于dnazyme驱动的DNA助行器和二茂铁构建了AFB1检测的电化学适体传感器。当不添加目标AFB1时,电化学信号没有明显变化。加入目标AFB1后,电化学信号明显降低。
{"title":"A Reagentless Aptamer Sensor Based on a Self-Powered DNA Machine for Electrochemical Detection of AFB1","authors":"Guobing Wei,&nbsp;Qiqi Fan,&nbsp;Nian Hong,&nbsp;Hanfeng Cui,&nbsp;Wenxing Zhang,&nbsp;Mijit Rustam,&nbsp;Alxir Alim,&nbsp;Tao Jiang,&nbsp;Huanhuan Dong,&nbsp;Hao Fan","doi":"10.1007/s12678-023-00819-w","DOIUrl":"10.1007/s12678-023-00819-w","url":null,"abstract":"<p>A reagentless electrochemical aptamer sensor for AFB1 detection was constructed based on DNAzyme-driven DNA walker and bisferrocene. No significant change in electrochemical signal was observed when the target AFB1 was not added. The electrochemical signal was significantly reduced when the target AFB1 was added.</p>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4001407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Enhanced Photoelectrocatalytic Performance Using Chalcogenide Te/TiO2/Ti Nanotube Array Based on COD Analyses for Water Treatment Applications 基于COD分析的硫系Te/TiO2/Ti纳米管阵列增强水处理中光电催化性能
IF 3.1 4区 化学 Q2 Chemistry Pub Date : 2023-03-16 DOI: 10.1007/s12678-023-00820-3
Muhammad Nurdin, Ilham Ilham, Maulidiyah Maulidiyah, Muh. Zakir Muzakkar, Dwiprayogo Wibowo, Zul Arham, La Ode Agus Salim, Irwan Irwan, Catherina Bijang, Akrajas Ali Umar

The effect of Te doping of the TiO2/Ti nanotube arrays (NTAs) on the photoelectrochemical chemical oxygen demand (COD) detection has been investigated. It is found that the Te doping has enhanced the photoelectrocatalytic properties of the TiO2/Ti NTAs electrode. This indicated by the linearity, accuracy, and repeatability of measurement of the test compounds chemicals. The Te-TiO2/Ti NTAs shows an excellent linearity to all test compounds up to 10 μM of concentration. It is only up to 5 μM in pristine TiO2/Ti NTAs system. In term of accuracy, the Te-TiO2/Ti NTAs electrode can provide the measurement accuracy of up to 100% fit to the theoretical value for all test compound chemical. It is only less than 80% for TiO2/Ti NTAs electrode. Meanwhile, the repeatability of measurement for the electrode, the Te-TiO2/Ti NTAs exhibits 1.8% RSD value, which is lower than the pristine TiO2/Ti NTAs, i.e., 2%. The enhancement of the photoelectrocatalytic properties of the TiO2 by Te doping is due to the lowering of electron and hole recombination during the photoactivation, promoting massive surface reaction with organic compounds and improving the sensing sensitivity. The Te-TiO2/Ti NTAs should find the extensive application of PECOD detection of organic contamination in the environment.

研究了TiO2/Ti纳米管阵列(NTAs)中Te掺杂对光电化学需氧量(COD)检测的影响。结果表明,Te的掺杂增强了TiO2/Ti NTAs电极的光电催化性能。这表明了测试化合物化学测量的线性,准确性和可重复性。Te-TiO2/Ti NTAs在10 μM浓度范围内对所有测试化合物均表现出良好的线性关系。在原始的TiO2/Ti NTAs体系中,其厚度仅为5 μM。在精度方面,Te-TiO2/Ti NTAs电极对所有被测化合物化学物质的测量精度可达到理论值的100%。对于TiO2/Ti NTAs电极,其回收率仅小于80%。同时,Te-TiO2/Ti NTAs电极测量的重复性RSD值为1.8%,低于原始TiO2/Ti NTAs的2%。Te掺杂对TiO2光电催化性能的增强是由于光活化过程中电子和空穴复合的减少,促进了与有机化合物的大量表面反应,提高了传感灵敏度。Te-TiO2/Ti NTAs在环境有机污染的PECOD检测中有广泛的应用前景。
{"title":"Enhanced Photoelectrocatalytic Performance Using Chalcogenide Te/TiO2/Ti Nanotube Array Based on COD Analyses for Water Treatment Applications","authors":"Muhammad Nurdin,&nbsp;Ilham Ilham,&nbsp;Maulidiyah Maulidiyah,&nbsp;Muh. Zakir Muzakkar,&nbsp;Dwiprayogo Wibowo,&nbsp;Zul Arham,&nbsp;La Ode Agus Salim,&nbsp;Irwan Irwan,&nbsp;Catherina Bijang,&nbsp;Akrajas Ali Umar","doi":"10.1007/s12678-023-00820-3","DOIUrl":"10.1007/s12678-023-00820-3","url":null,"abstract":"<div><p>The effect of Te doping of the TiO<sub>2</sub>/Ti nanotube arrays (NTAs) on the photoelectrochemical chemical oxygen demand (COD) detection has been investigated. It is found that the Te doping has enhanced the photoelectrocatalytic properties of the TiO<sub>2</sub>/Ti NTAs electrode. This indicated by the linearity, accuracy, and repeatability of measurement of the test compounds chemicals. The Te-TiO<sub>2</sub>/Ti NTAs shows an excellent linearity to all test compounds up to 10 μM of concentration. It is only up to 5 μM in pristine TiO<sub>2</sub>/Ti NTAs system. In term of accuracy, the Te-TiO<sub>2</sub>/Ti NTAs electrode can provide the measurement accuracy of up to 100% fit to the theoretical value for all test compound chemical. It is only less than 80% for TiO<sub>2</sub>/Ti NTAs electrode. Meanwhile, the repeatability of measurement for the electrode, the Te-TiO<sub>2</sub>/Ti NTAs exhibits 1.8% RSD value, which is lower than the pristine TiO<sub>2</sub>/Ti NTAs, i.e., 2%. The enhancement of the photoelectrocatalytic properties of the TiO<sub>2</sub> by Te doping is due to the lowering of electron and hole recombination during the photoactivation, promoting massive surface reaction with organic compounds and improving the sensing sensitivity. The Te-TiO<sub>2</sub>/Ti NTAs should find the extensive application of PECOD detection of organic contamination in the environment.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00820-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4655430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Electrocatalysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1