The ability to create cell-laden fluidic models that mimic the geometries and physical properties of vascularized tissue would be extremely beneficial to the study of disease etiologies and future therapies, including in the case of cancer where there is increasing interest in studying alterations to the microvasculature. Engineered systems can present significant advantages over animal studies, alleviating challenges associated with variable complexity and control. Three-dimensional (3D)-printable tissue-mimicking hydrogels can offer an alternative, where control of the biophysical properties of the materials can be achieved. Hydrogel-based systems that can recreate complex 3D structures and channels with diameters <500 μm are challenging to produce. We present a noncytotoxic photo-responsive hydrogel that supports 3D printing of complex 3D structures with microchannels down to 150 μm in diameter. Fine tuning of the 3D-printing process has allowed the production of complex structures, where for demonstration purposes we present a helical channel with diameters between 250 and 370 μm around a central channel of 150 μm in diameter in materials with mechanical and acoustic properties that closely replicate those of tissue. The ability to control and accurately reproduce the complex features of the microvasculature has value across a wide range of biomedical applications, especially when the materials involved accurately mimic the physical properties of tissue. An approach that is additionally cell compatible provides a unique setup that can be exploited to study aspects of biomedical research with an unprecedented level of accuracy.
In pelvic trauma patients, the mismatch of complex geometries between the pelvis and fixation implant is a fundamental cause of unstable and displaced pelvic ring disruption, in which secondary intervention is strongly considered. The geometrical matching in the current customized implant design and clinical practice is through the nonfractured hemi-pelvis for the fractured pelvis. This design philosophy overlooks the anatomical difference between the hemipelves, and further, the geometrical asymmetry at local area still remains unknown. This study analyzed the anatomical asymmetry of a patient's 3D pelvic models from 13 patients. The hemipelves of each patient were registered by using an iterative closet algorithm to an optimum position with minimum deviations. The high deviation regions were summarized between the hemipelves in each case, and a color map was drawn on a hemipelvis model that identified the areas that had a high possibility to be symmetrically different. A severe pelvic trauma case was used to comprehend the approach by designing a 3D printed implant. Each fracture was then registered to the mirrored uninjured hemipelvis by using the same algorithm, and customized fixation implants were designed with reference to the fractured model. The customized fixation plates showed that the implants had lower geometrical deviation when attached onto the re-stitched fracture side than onto the mirrored nonfractured bone. These results indicate that the symmetrical analysis of bone anatomy and the deviation color map can assist with implant selection and customized implant design given the geometrical difference between symmetrical bones. The novel approach provides a scientific reference that improves the accuracy and overall standard of 3D printed implants.
In this study, normal and floating builds of Ti-6Al-4V were fabricated by electron beam additive manufacturing. The effects of the spatial arrangement on the microstructure, mechanical properties, and surface roughness of the parts were investigated. Both the normal and floating builds exhibited an α+β lamellar microstructure, but the normal builds had finer grains compared to the floating builds. The microstructural characteristics were correlated with the thermal history, specifically the cooling rate, resulting from the connection plate (S45C for the normal builds and the powder bed for the floating builds). The compressive yield strength and hardness of the normal builds were higher than those of the floating builds, regardless of build location owing to the grain refinement effects on the normal builds. The top surface (TS) of the sample was smoothest, and the lateral surface of the sample was the roughest for both the normal and floating builds; however, the roughness of the TS and bottom surface samples did not differ significantly between normal and floating builds. There were no noticeable differences in the microstructure and mechanical properties of the builds in five different positions, that is, the center and four corners. Finally, these findings were used to develop a set of conceptual spatial arrangement designs, including floating builds, to optimize the microstructure and mechanical properties.
A 3D numerical model of heat transfer and fluid flow of molten pool in the process of laser wire deposition was presented by computational fluid dynamics technique. The simulation results of the deposition morphology were also compared with the experimental results under the condition of liquid bridge transfer mode. Moreover, they showed a good agreement. Considering the effect of recoil pressure, the morphology of the deposit metal obtained by the simulation was similar to the experiment result. Molten metal at the wire tip was peeled off and flowed into the molten pool, and then spread to both sides of the deposition layer under the recoil pressure. In addition, the results of simulation and high-speed charge-coupled device presented that a wedge transition zone, with a length of ∼6 mm, was formed behind the keyhole in the liquid bridge transfer process, where the height of deposited metal decreased gradually. After solidification, metal in the transition zone retained the original melt morphology, resulting in a decrease in the height of the tail of the deposition layer.
In the present study, TiC-Fe cermets were fabricated through selective laser melting (SLM) for the first time employing pulse wave using a pulse shaping technique and regular laser pulse wave. Two samples were fabricated each with adapting pulse shaping technique and regular laser pulse wave with varied laser peak power and exposure time to obtain an optimized parameter. The pulse shaping technique proves to be an optimal method for fabrication of the TiC-Fe-based cermet. The effect of the laser peak power and pulse shaping on the microstructure development was investigated through scanning electron microscopy and X-ray diffraction analysis. Two-phased microstructures revealed the distribution of TiC and Fe. A maximum hardness and fracture toughness of 1010 ± 65 MPa and 16.3 ± 1.7 MPa m1/2, respectively, were observed for the pulsed-shaped samples illustrating that pulse shaping can be an effective way to avoid cracking in brittle materials processed by SLM.

