Pub Date : 2023-08-01Epub Date: 2023-08-09DOI: 10.1089/3dp.2021.0142
Wei Wu, Wei Xu, Jiaxiang Xue, Ping Yao
Serious heat accumulation causes poor properties and anisotropy of products in wire and arc additive manufacturing, which restricts the further efficiency in application, especially in double-wire and double-arc depositions. Consequently, this study applied an auxiliary gas process in double-arc additive manufacturing and then compared two 50-layer depositions in morphology, microstructure, and properties to research the influence of the auxiliary process on the forming and performance. The results showed that the auxiliary gas process could improve the deposition morphology, and the efficiency was increased by 24%; moreover, the surface roughness was reduced. As the cooling and stirring effect of the auxiliary gas process, the deposition with the auxiliary gas process mainly presented short axis columnar crystal and less defects on cross-section, which was finally increasing the hardness, tensile strength, and impact toughness and bending force and decreasing the tensile strength anisotropy obviously.
{"title":"Influence of Auxiliary Process on Microstructure and Mechanical Properties of Wire Arc Additive Manufacturing of Thick Wall Depositions.","authors":"Wei Wu, Wei Xu, Jiaxiang Xue, Ping Yao","doi":"10.1089/3dp.2021.0142","DOIUrl":"10.1089/3dp.2021.0142","url":null,"abstract":"<p><p>Serious heat accumulation causes poor properties and anisotropy of products in wire and arc additive manufacturing, which restricts the further efficiency in application, especially in double-wire and double-arc depositions. Consequently, this study applied an auxiliary gas process in double-arc additive manufacturing and then compared two 50-layer depositions in morphology, microstructure, and properties to research the influence of the auxiliary process on the forming and performance. The results showed that the auxiliary gas process could improve the deposition morphology, and the efficiency was increased by 24%; moreover, the surface roughness was reduced. As the cooling and stirring effect of the auxiliary gas process, the deposition with the auxiliary gas process mainly presented short axis columnar crystal and less defects on cross-section, which was finally increasing the hardness, tensile strength, and impact toughness and bending force and decreasing the tensile strength anisotropy obviously.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"776-784"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440653/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10052244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-08-09DOI: 10.1089/3dp.2021.0143
Wenyou Zhang, Mingming Tong, Noel M Harrison
Laser beam powder bed fusion (PBF-LB) is a leading technique among metal additive manufacturing (AM), and it has a wide range of applications in aerospace and medical devices. Most of the existing PBF-LB process modeling is mainly based on the fabrication of a single part on a large build plate, which is not reflective of the practical multipart PBF-LB manufacturing. The effects of batch size on the thermal and mechanical behavior of additively manufactured parts have not been investigated. In this work, the multipart PBF-LB thermomechanical modeling framework was proposed for the first time. The effects of sample numbers (1, 2, and 4) on temperature and residual stress (RS) of part-scale components were computationally investigated. It is found that RS within the parts decreased with increasing number of components per build. Parts located at the central areas of the build plate had larger RS than at the border. These findings can be beneficial for informing AM designers and operators of the optimum printing setup to minimize RS of metal parts in PBF-LB.
{"title":"Multipart Build Effects on Temperature and Residual Stress by Laser Beam Powder Bed Fusion Additive Manufacturing.","authors":"Wenyou Zhang, Mingming Tong, Noel M Harrison","doi":"10.1089/3dp.2021.0143","DOIUrl":"10.1089/3dp.2021.0143","url":null,"abstract":"<p><p>Laser beam powder bed fusion (PBF-LB) is a leading technique among metal additive manufacturing (AM), and it has a wide range of applications in aerospace and medical devices. Most of the existing PBF-LB process modeling is mainly based on the fabrication of a single part on a large build plate, which is not reflective of the practical multipart PBF-LB manufacturing. The effects of batch size on the thermal and mechanical behavior of additively manufactured parts have not been investigated. In this work, the multipart PBF-LB thermomechanical modeling framework was proposed for the first time. The effects of sample numbers (1, 2, and 4) on temperature and residual stress (RS) of part-scale components were computationally investigated. It is found that RS within the parts decreased with increasing number of components per build. Parts located at the central areas of the build plate had larger RS than at the border. These findings can be beneficial for informing AM designers and operators of the optimum printing setup to minimize RS of metal parts in PBF-LB.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"749-761"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conductive silicone elastomer carbon nanotubes (CNTs) composites possess potential applications in a variety of fields, including electronic skin, wearable electronics, and human motion detection. Based on a novel self-made covalent adaptable network (CANs) of polydimethylsiloxane (PDMS) containg dynamic steric-hindrance pyrazole urea bond (PDMS-CANs), CNTs wrapped PDMS-CANs (CNTs@PDMS-CANs) powders were prepared by a liquid phase adsorption and deposition, and were successfully used for selective laser sintering (SLS) three-dimensional printing. SLS-printed PDMS-CANs/CNTs nanocomposites possess high electrical conductivity and low percolation threshold as SLS is one kind of quasi-static processing, which leads to the formation of conductive segregated CNTs network by using the PDMS powders with special CNTs wrapped structure. The introduction of dynamic pyrazole urea bond endows the materials self-healing capability under electrothermal and photothermal stimulus. In addition, due to the resistance difference of the damaged and intact areas, crack diagnosing can be realized by infrared thermograph under electricity. In an application demonstration in strain sensor, the composite exhibits a regular cyclic electrical resistance change at cyclic compression and bending, indicating a relative high reliability.
{"title":"Selective Laser Sintering of Polydimethylsiloxane Composites.","authors":"Jinzhi Wang, Shaojie Sun, Xue Li, Guoxia Fei, Zhanhua Wang, Hesheng Xia","doi":"10.1089/3dp.2021.0105","DOIUrl":"10.1089/3dp.2021.0105","url":null,"abstract":"<p><p>Conductive silicone elastomer carbon nanotubes (CNTs) composites possess potential applications in a variety of fields, including electronic skin, wearable electronics, and human motion detection. Based on a novel self-made covalent adaptable network (CANs) of polydimethylsiloxane (PDMS) containg dynamic steric-hindrance pyrazole urea bond (PDMS-CANs), CNTs wrapped PDMS-CANs (CNTs@PDMS-CANs) powders were prepared by a liquid phase adsorption and deposition, and were successfully used for selective laser sintering (SLS) three-dimensional printing. SLS-printed PDMS-CANs/CNTs nanocomposites possess high electrical conductivity and low percolation threshold as SLS is one kind of quasi-static processing, which leads to the formation of conductive segregated CNTs network by using the PDMS powders with special CNTs wrapped structure. The introduction of dynamic pyrazole urea bond endows the materials self-healing capability under electrothermal and photothermal stimulus. In addition, due to the resistance difference of the damaged and intact areas, crack diagnosing can be realized by infrared thermograph under electricity. In an application demonstration in strain sensor, the composite exhibits a regular cyclic electrical resistance change at cyclic compression and bending, indicating a relative high reliability.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"684-696"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10061431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-08-09DOI: 10.1089/3dp.2021.0081
Gürkan Kaya, Tevfik Oğuzhan Ergüder, İlyas Hacısalihoğlu, Emre Mandev, Eyüphan Manay, Fatih Yıldız
In this study, it was targeted to enhance the tribological and thermal properties of Ti6Al4V alloys, which were manufactured with three different build orientations and hatch spacing by using the selective laser melting (SLM) method and a traditional method (casting). In addition, the surfaces of the samples produced by these two methods were coated with the TiAlN thin film by using the cathodic arc physical vapor deposition (CAPVD) method. After the experimental investigations, the lowest wear rate was obtained for the 60-90° sample, and the highest microhardness value was measured as ∼1070 HV0.1 for the 90-45° sample. It was specified that the wear rate rose as the hatch spacing increased among the same build orientation Ti6Al4V alloys produced by SLM method. According to thermal analysis results, among the same hatch spacing values, it was determined that as the build orientation value increased, the specific heat capacity and thermal conductivity values decreased. Among the coated samples, the highest thermal conductivity and specific heat capacity values were obtained for casting samples as 5.63 (W/m·K) and 560.4 (J/kg·K), respectively.
{"title":"Wear and Thermal Behavior of TiAlN Thin Films onto Ti6Al4V Alloy Manufactured by Selective Laser Melting Method.","authors":"Gürkan Kaya, Tevfik Oğuzhan Ergüder, İlyas Hacısalihoğlu, Emre Mandev, Eyüphan Manay, Fatih Yıldız","doi":"10.1089/3dp.2021.0081","DOIUrl":"10.1089/3dp.2021.0081","url":null,"abstract":"<p><p>In this study, it was targeted to enhance the tribological and thermal properties of Ti6Al4V alloys, which were manufactured with three different build orientations and hatch spacing by using the selective laser melting (SLM) method and a traditional method (casting). In addition, the surfaces of the samples produced by these two methods were coated with the TiAlN thin film by using the cathodic arc physical vapor deposition (CAPVD) method. After the experimental investigations, the lowest wear rate was obtained for the 60-90° sample, and the highest microhardness value was measured as ∼1070 HV<sub>0.1</sub> for the 90-45° sample. It was specified that the wear rate rose as the hatch spacing increased among the same build orientation Ti6Al4V alloys produced by SLM method. According to thermal analysis results, among the same hatch spacing values, it was determined that as the build orientation value increased, the specific heat capacity and thermal conductivity values decreased. Among the coated samples, the highest thermal conductivity and specific heat capacity values were obtained for casting samples as 5.63 (W/m·K) and 560.4 (J/kg·K), respectively.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"650-660"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10414379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-24DOI: 10.1089/3dp.2022.29021.rfs2022
I. Mitropoulou
{"title":"Rosalind Franklin Society Proudly Announces the 2022 Award Recipient for 3D Printing and Additive Manufacturing","authors":"I. Mitropoulou","doi":"10.1089/3dp.2022.29021.rfs2022","DOIUrl":"https://doi.org/10.1089/3dp.2022.29021.rfs2022","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48591490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martha Baldwin, Nicholas A. Meisel, Christopher McComb
Additive manufacturing is advantageous for producing lightweight components while addressing complex design requirements. This capability has been bolstered by the introduction of unit lattice cells and the gradation of those cells. In cases where loading varies throughout a part, it may be beneficial to use multiple, distinct lattice cell types, resulting in multi-lattice structures. In such structures, abrupt transitions between unit cell topologies may cause stress concentrations, making the boundary between unit cell types a primary failure point. Thus, these regions require careful design to ensure the overall functionality of the part. Although computational design approaches have been proposed, smooth transition regions are still difficult to achieve, especially between lattices of drastically different topologies. This work demonstrates and assesses a method for using variational autoencoders to automate the creation of transitional lattice cells, examining the factors that contribute to smooth transitions. Through computational experimentation, it was found that the smoothness of transition regions was strongly predicted by how closely the endpoints were in the latent space, whereas the number of transition intervals was not a sole predictor.
{"title":"Smoothing the Rough Edges: Evaluating Automatically Generated Multi-Lattice Transitions","authors":"Martha Baldwin, Nicholas A. Meisel, Christopher McComb","doi":"10.1089/3dp.2023.0008","DOIUrl":"https://doi.org/10.1089/3dp.2023.0008","url":null,"abstract":"Additive manufacturing is advantageous for producing lightweight components while addressing complex design requirements. This capability has been bolstered by the introduction of unit lattice cells and the gradation of those cells. In cases where loading varies throughout a part, it may be beneficial to use multiple, distinct lattice cell types, resulting in multi-lattice structures. In such structures, abrupt transitions between unit cell topologies may cause stress concentrations, making the boundary between unit cell types a primary failure point. Thus, these regions require careful design to ensure the overall functionality of the part. Although computational design approaches have been proposed, smooth transition regions are still difficult to achieve, especially between lattices of drastically different topologies. This work demonstrates and assesses a method for using variational autoencoders to automate the creation of transitional lattice cells, examining the factors that contribute to smooth transitions. Through computational experimentation, it was found that the smoothness of transition regions was strongly predicted by how closely the endpoints were in the latent space, whereas the number of transition intervals was not a sole predictor.","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135857664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-06-08DOI: 10.1089/3dp.2021.0114
Xing Peng, Lingbao Kong, Huijun An, Guangxi Dong
The additive manufacturing (AM) technique has received considerable industrial attention, as it is capable of producing complex functional parts in the aerospace and defense industry. Selective laser melting (SLM) technology is a relatively mature AM process that can manufacture complex structures both directly and efficiently. However, the quality of SLM parts is affected by many factors, resulting in a lack of repeatability and stability of this method. Therefore, several common and advanced in situ monitoring as well as defect detection methods are utilized to improve the quality and stability of SLM processes. This article aims at documenting the various defects that occurred in SLM processes and their influences on the final parts. Various types of in situ monitoring and defect detection methods and their applications are reviewed, and their integrations with the SLM processes are also discussed.
{"title":"A Review of <i>In Situ</i> Defect Detection and Monitoring Technologies in Selective Laser Melting.","authors":"Xing Peng, Lingbao Kong, Huijun An, Guangxi Dong","doi":"10.1089/3dp.2021.0114","DOIUrl":"10.1089/3dp.2021.0114","url":null,"abstract":"<p><p>The additive manufacturing (AM) technique has received considerable industrial attention, as it is capable of producing complex functional parts in the aerospace and defense industry. Selective laser melting (SLM) technology is a relatively mature AM process that can manufacture complex structures both directly and efficiently. However, the quality of SLM parts is affected by many factors, resulting in a lack of repeatability and stability of this method. Therefore, several common and advanced <i>in situ</i> monitoring as well as defect detection methods are utilized to improve the quality and stability of SLM processes. This article aims at documenting the various defects that occurred in SLM processes and their influences on the final parts. Various types of <i>in situ</i> monitoring and defect detection methods and their applications are reviewed, and their integrations with the SLM processes are also discussed.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 3","pages":"438-466"},"PeriodicalIF":3.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9702094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A single screw extruder is used in this study to efficiently transport SiC slurry in direct ink writing (DIW) technology. The deposits caused by low viscosity and the agglomerations resulting from the nonuniform mixing form the obstacles in the channel, which affect the normal flow of the slurry, theoretical outlet velocity, and interaction with other printing parameters. Therefore, it is necessary to study the effect mechanism of the obstacles on the flow. The obstacles are always irregular, which makes it difficult to directly analyze them. Irregular geometries are always composed of linear and/or arcuate elements; therefore, the obstacles can be simplified into regular geometries. In the present work, interactive elements, including line-line, line-arc, arc-arc situations are analyzed. Then, an improved multiple relaxation time lattice Boltzmann method (MRT LBM) with a pseudo external force is proposed for the flow analysis. The improved MRT LBM is combined with rheological test data to investigate cases with interactive elements, and the results are applied to reveal the general mechanism. The results show that the positions are common influencing factors, which affect the streamlines, outflow directions, and outlet velocity distributions. In addition, in different situations, different factors are considered to affect SiC slurry flow. It is obvious that the existed obstacles inevitably change the theoretical flow direction and outlet velocity, which has a synergistic effect on the printing parameters. It is necessary to understand the effect mechanism of the obstacles on the flow.
本研究使用单螺杆挤压机在直接油墨书写(DIW)技术中高效输送碳化硅浆料。低粘度造成的沉积物和不均匀混合产生的团聚物形成了通道中的障碍物,影响了浆料的正常流动、理论出口速度以及与其他印刷参数的相互作用。因此,有必要研究障碍物对流动的影响机理。障碍物总是不规则的,因此很难对其进行直接分析。不规则几何图形总是由线性和/或弧形元素组成;因此,可以将障碍物简化为规则几何图形。本研究分析了交互式元素,包括线-线、线-弧、弧-弧情况。然后,提出了一种带有伪外力的改进型多重弛豫时间晶格玻尔兹曼法(MRT LBM)来进行流动分析。改进后的 MRT LBM 与流变测试数据相结合,研究了具有交互元素的情况,并应用研究结果揭示了一般机制。结果表明,位置是常见的影响因素,会影响流线、流出方向和出口速度分布。此外,在不同情况下,影响 SiC 浆料流动的因素也不同。显然,存在的障碍物必然会改变理论流向和出口速度,从而对印刷参数产生协同效应。有必要了解障碍物对流动的影响机制。
{"title":"Investigation of Obstacles with Interactive Elements on the Flow in SiC Three-Dimensional Printing.","authors":"Weiwei Wu, Xu Deng, Shuang Ding, Yanjun Zhang, Dongren Liu, Jin Zhang","doi":"10.1089/3dp.2021.0217","DOIUrl":"10.1089/3dp.2021.0217","url":null,"abstract":"<p><p>A single screw extruder is used in this study to efficiently transport SiC slurry in direct ink writing (DIW) technology. The deposits caused by low viscosity and the agglomerations resulting from the nonuniform mixing form the obstacles in the channel, which affect the normal flow of the slurry, theoretical outlet velocity, and interaction with other printing parameters. Therefore, it is necessary to study the effect mechanism of the obstacles on the flow. The obstacles are always irregular, which makes it difficult to directly analyze them. Irregular geometries are always composed of linear and/or arcuate elements; therefore, the obstacles can be simplified into regular geometries. In the present work, interactive elements, including line-line, line-arc, arc-arc situations are analyzed. Then, an improved multiple relaxation time lattice Boltzmann method (MRT LBM) with a pseudo external force is proposed for the flow analysis. The improved MRT LBM is combined with rheological test data to investigate cases with interactive elements, and the results are applied to reveal the general mechanism. The results show that the positions are common influencing factors, which affect the streamlines, outflow directions, and outlet velocity distributions. In addition, in different situations, different factors are considered to affect SiC slurry flow. It is obvious that the existed obstacles inevitably change the theoretical flow direction and outlet velocity, which has a synergistic effect on the printing parameters. It is necessary to understand the effect mechanism of the obstacles on the flow.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 3","pages":"536-551"},"PeriodicalIF":3.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9710249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Additive manufacturing (AM) that is currently being used to process micromixers has many issues regarding the structural integrity of the micromixers. To solve these issues, in this article, we propose a cross-sectional contour extraction algorithm based on computed tomography (CT) scan data to nondestructively detect the size deviation of micromixers generated by AM. Herein, we take a square wave micromixer and a three-dimensional (3D) circular micromixer as examples to characterize the size deviation. We reconstruct the surface model of the micromixer from CT scan data, which is referred to as the reconstructed model, and extract the central axis of the micromixer reconstructed model. Subsequently, a dividing plane perpendicular to the central axis is established, which is then used to cut the reconstructed model to obtain the cross-sectional contour of the channel. Finally, size inspection is conducted on the extracted cross-sectional contour. The standard deviations of the channel width and height for the square wave micromixer are 0.0271 and 0.0175, respectively, and those for the 3D circular micromixer are 0.0122 and 0.0144, respectively. Through uncertainty analysis, the errors calculated based on the design size are -1.70%, +0.48%, +0.23%, -1.86%, -5.23%, and -0.90%, respectively, which shows that this method can meet the needs of measurement.
{"title":"Cross Algorithm of Additive Manufacturing Micromixers.","authors":"Wenjie Niu, Mengxue Yang, Yu Liu, Yu Gong, Ying Xu","doi":"10.1089/3dp.2021.0245","DOIUrl":"10.1089/3dp.2021.0245","url":null,"abstract":"<p><p>Additive manufacturing (AM) that is currently being used to process micromixers has many issues regarding the structural integrity of the micromixers. To solve these issues, in this article, we propose a cross-sectional contour extraction algorithm based on computed tomography (CT) scan data to nondestructively detect the size deviation of micromixers generated by AM. Herein, we take a square wave micromixer and a three-dimensional (3D) circular micromixer as examples to characterize the size deviation. We reconstruct the surface model of the micromixer from CT scan data, which is referred to as the reconstructed model, and extract the central axis of the micromixer reconstructed model. Subsequently, a dividing plane perpendicular to the central axis is established, which is then used to cut the reconstructed model to obtain the cross-sectional contour of the channel. Finally, size inspection is conducted on the extracted cross-sectional contour. The standard deviations of the channel width and height for the square wave micromixer are 0.0271 and 0.0175, respectively, and those for the 3D circular micromixer are 0.0122 and 0.0144, respectively. Through uncertainty analysis, the errors calculated based on the design size are -1.70%, +0.48%, +0.23%, -1.86%, -5.23%, and -0.90%, respectively, which shows that this method can meet the needs of measurement.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 3","pages":"490-499"},"PeriodicalIF":3.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9710250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/3dp.2022.0138.correx
[This corrects the article DOI: 10.1089/3dp.2022.0138.].
[这更正了文章DOI: 10.1089/3d .2022.0138.]。
{"title":"<i>Correction to:</i> In Vitro Evaluation of Pore Size Graded Bone Scaffolds with Different Material Composition, by Daskalakis, et al. (DOI: 10.1089/3dp.2022.0138).","authors":"","doi":"10.1089/3dp.2022.0138.correx","DOIUrl":"https://doi.org/10.1089/3dp.2022.0138.correx","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1089/3dp.2022.0138.].</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 3","pages":"584"},"PeriodicalIF":3.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285375/pdf/3dp.2022.0138.correx.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9692279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}