首页 > 最新文献

3D Printing and Additive Manufacturing最新文献

英文 中文
Optimization of Surface Roughness and Density of Overhang Structures Fabricated by Laser Powder Bed Fusion. 优化激光粉末床熔融技术制造的悬挂结构的表面粗糙度和密度
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0180
Hong-You Lin, Hong-Chuong Tran, Yu-Lung Lo, Trong-Nhan Le, Kuo-Chi Chiu, Yuan-Yao Hsu

Laser powder bed fusion (LPBF) provides a rapid and versatile approach for producing parts with complex geometries. However, many parts with intricate geometries have overhang structures, which are not easily fabricated by using LPBF and are often downgraded by staircase effects, warpage, cracks, and dross formation. Thus, the present study proposes a combined numerical and experimental approach for determining the optimal settings of the laser power and scanning speed that minimize the surface roughness and maximize the density of Inconel 718 LPBF overhang structures. In the proposed approach, the heat transfer simulations are employed to determine the melt pool depth, the melt pool length, and the solid cooling rate within the feasible input space of laser power and scanning speed combinations. Notably, the simulations take account of both the difference in the material properties of the solid and powder materials, respectively, and the variation of the laser absorptivity in the depth direction of the powder layer. The simulation results are then used to train artificial neural networks for predicting the melt pool depth for 3600 combinations of the laser power and scanning speed within the input space. The resulting processing maps are screened in accordance with three quality criteria (namely the melt pool depth, the melt pool length, and the solid cooling rate) to determine the optimal processing region, which improves the surface roughness. The feasibility of the proposed approach is demonstrated by fabricating 10 × 10 and 20 × 20 mm2 horizontal overhang structures using parameter settings chosen from the optimal processing map. It shows that the optimal processing conditions result in a low surface roughness and a maximum density of 99.78%.

激光粉末床熔融技术(LPBF)为生产复杂几何形状的零件提供了一种快速、通用的方法。然而,许多几何形状复杂的零件都有悬空结构,使用 LPBF 不容易制造,而且往往会因阶梯效应、翘曲、裂纹和渣滓的形成而降级。因此,本研究提出了一种数值和实验相结合的方法,用于确定激光功率和扫描速度的最佳设置,使因科镍合金 718 LPBF 悬伸结构的表面粗糙度最小,密度最大。在所提出的方法中,热传导模拟用于确定熔池深度、熔池长度以及激光功率和扫描速度组合的可行输入空间内的固体冷却速率。值得注意的是,模拟既考虑了固体材料和粉末材料在材料特性上的差异,也考虑了激光吸收率在粉末层深度方向上的变化。模拟结果用于训练人工神经网络,以预测输入空间内 3600 种激光功率和扫描速度组合的熔池深度。根据三个质量标准(即熔池深度、熔池长度和固体冷却速度)对得到的加工图进行筛选,以确定最佳加工区域,从而改善表面粗糙度。通过使用从最佳加工图中选择的参数设置制造 10 × 10 和 20 × 20 mm2 水平悬伸结构,证明了所提方法的可行性。结果表明,最佳加工条件可实现较低的表面粗糙度和 99.78% 的最大密度。
{"title":"Optimization of Surface Roughness and Density of Overhang Structures Fabricated by Laser Powder Bed Fusion.","authors":"Hong-You Lin, Hong-Chuong Tran, Yu-Lung Lo, Trong-Nhan Le, Kuo-Chi Chiu, Yuan-Yao Hsu","doi":"10.1089/3dp.2021.0180","DOIUrl":"10.1089/3dp.2021.0180","url":null,"abstract":"<p><p>Laser powder bed fusion (LPBF) provides a rapid and versatile approach for producing parts with complex geometries. However, many parts with intricate geometries have overhang structures, which are not easily fabricated by using LPBF and are often downgraded by staircase effects, warpage, cracks, and dross formation. Thus, the present study proposes a combined numerical and experimental approach for determining the optimal settings of the laser power and scanning speed that minimize the surface roughness and maximize the density of Inconel 718 LPBF overhang structures. In the proposed approach, the heat transfer simulations are employed to determine the melt pool depth, the melt pool length, and the solid cooling rate within the feasible input space of laser power and scanning speed combinations. Notably, the simulations take account of both the difference in the material properties of the solid and powder materials, respectively, and the variation of the laser absorptivity in the depth direction of the powder layer. The simulation results are then used to train artificial neural networks for predicting the melt pool depth for 3600 combinations of the laser power and scanning speed within the input space. The resulting processing maps are screened in accordance with three quality criteria (namely the melt pool depth, the melt pool length, and the solid cooling rate) to determine the optimal processing region, which improves the surface roughness. The feasibility of the proposed approach is demonstrated by fabricating 10 × 10 and 20 × 20 mm<sup>2</sup> horizontal overhang structures using parameter settings chosen from the optimal processing map. It shows that the optimal processing conditions result in a low surface roughness and a maximum density of 99.78%.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"732-748"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10052246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Temperature- and Humidity-Independent Silver Nanoparticle's Carbon Composite-Based Strain Sensor Through Additive Manufacturing Process. 通过增材制造工艺制作与温度和湿度无关的银纳米粒子碳复合材料应变传感器
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0032
Iqbal Nadeem, Sajid Memoon, Rahman Khalid, Amin Qausaria Tahseen, Muhammad Shakeel, Ahmad Salman, Amin Mohsin

A highly sensitive low-cost strain sensor was fabricated in this research study based on microdispensing direct write (MDDW) technique. MDDW is an additive manufacturing approach that involves direct deposition of functional material to the substrate. The devices were printed directly onto a polymeric substrate by optimizing the fabrication parameters. A composite of silver and carbon was used as active sensor material where both materials in the composite have opposite resistance temperature coefficients. The ratio of materials in the composite was selected so that the effect of temperature on the resistance of overall composite was canceled out. This resulted in achieving temperature compensation or inherent independence of the strain sensor resistance on temperature without requiring any additional sensors and components. The sensor was further encapsulated by electrospray deposition, which is also an additive manufacturing approach, to eliminate the effect of humidity as well. Electrical and morphological characterizations were performed to investigate the output response of the sensors and their physical and structural properties. An analog signal conditioning circuit was developed for seamless interfacing of the sensor with any electronic system. The sensor had an excellent gauge factor of 45 and a strain sensitivity of 45 Ω/μɛ that is higher than most of the conventional strain sensors. The sensor's response showed excellent temperature and humidity compensation reducing the relative effect of temperature on the resistance by ∼99.5% and humidity by ∼99.8%.

本研究基于微点直接写入(MDDW)技术制造了一种高灵敏度、低成本的应变传感器。MDDW 是一种增材制造方法,涉及将功能材料直接沉积到基底上。通过优化制造参数,器件被直接打印在聚合物基底上。银和碳的复合材料被用作活性传感器材料,复合材料中的两种材料具有相反的电阻温度系数。选择复合材料的比例是为了抵消温度对整个复合材料电阻的影响。这就实现了温度补偿或应变传感器电阻对温度的固有独立性,而不需要任何额外的传感器和元件。通过电喷沉积(也是一种增材制造方法)对传感器进行了进一步封装,以消除湿度的影响。为了研究传感器的输出响应及其物理和结构特性,对其进行了电学和形态学表征。还开发了模拟信号调节电路,以便将传感器与任何电子系统无缝连接。传感器的测量系数为 45,应变灵敏度为 45 Ω/μɛ,高于大多数传统应变传感器。传感器的响应显示出出色的温度和湿度补偿能力,温度对电阻的相对影响降低了 ∼ 99.5%,湿度降低了 ∼ 99.8%。
{"title":"Fabrication of Temperature- and Humidity-Independent Silver Nanoparticle's Carbon Composite-Based Strain Sensor Through Additive Manufacturing Process.","authors":"Iqbal Nadeem, Sajid Memoon, Rahman Khalid, Amin Qausaria Tahseen, Muhammad Shakeel, Ahmad Salman, Amin Mohsin","doi":"10.1089/3dp.2021.0032","DOIUrl":"10.1089/3dp.2021.0032","url":null,"abstract":"<p><p>A highly sensitive low-cost strain sensor was fabricated in this research study based on microdispensing direct write (MDDW) technique. MDDW is an additive manufacturing approach that involves direct deposition of functional material to the substrate. The devices were printed directly onto a polymeric substrate by optimizing the fabrication parameters. A composite of silver and carbon was used as active sensor material where both materials in the composite have opposite resistance temperature coefficients. The ratio of materials in the composite was selected so that the effect of temperature on the resistance of overall composite was canceled out. This resulted in achieving temperature compensation or inherent independence of the strain sensor resistance on temperature without requiring any additional sensors and components. The sensor was further encapsulated by electrospray deposition, which is also an additive manufacturing approach, to eliminate the effect of humidity as well. Electrical and morphological characterizations were performed to investigate the output response of the sensors and their physical and structural properties. An analog signal conditioning circuit was developed for seamless interfacing of the sensor with any electronic system. The sensor had an excellent gauge factor of 45 and a strain sensitivity of 45 Ω/μɛ that is higher than most of the conventional strain sensors. The sensor's response showed excellent temperature and humidity compensation reducing the relative effect of temperature on the resistance by ∼99.5% and humidity by ∼99.8%.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"674-683"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Facile Three-Dimensional Printing of the Composite of Copper Nanosized Powder and Micron Powder with Enhanced Properties. 纳米铜粉与微米铜粉复合材料的便捷三维打印与性能提升。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0122
Youzhi Zhou, Huijun He, Jingjie Xu, Minghui Liang, Limin Wang, Ligen Wang, Xu Pan, Qiang Hu, Jingguo Zhang

Three-dimensional (3D) printing of Cu items is a new way to build up the structured Cu materials, but 3D printing of Cu items is usually a challenge because of the high melting point, high thermal conductivity, and high light reflection rate of Cu material. In this study, the composite of Cu microspheres powder and Cu nanoparticles (micro/nano Cu powder) is used to realize the 3D printing of Cu items with the selective laser melting technology. The sintering temperature and the thermal conductivity of micro/nano Cu powder are evidently decreased due to Cu nanoparticles' addition in the micron Cu powder. The results reveal that the 3D printing of 50%/50% micro/nano Cu powder needs laser power range of 100-240 W, which is in contrast to 200-340 W for 3D printing of 100% Cu microspheres powder. Furthermore, the conductivity, mechanical strength, and density of 3D-printed Cu items are improved with the addition of Cu nanoparticles into the micron Cu powder. The increasement of 34% on electrical conductivity and 17% on tensile strength are reached by the addition of 50% Cu nanoparticles with the laser power of 240 W.

三维(3D)打印铜制品是构建铜结构材料的一种新方法,但由于铜材料的高熔点、高导热性和高光反射率,三维打印铜制品通常是一项挑战。本研究采用选择性激光熔融技术,将铜微球粉末和铜纳米颗粒(微/纳米铜粉)复合在一起,实现了铜材料的三维打印。在微米铜粉中加入纳米铜粒子后,微米/纳米铜粉的烧结温度和导热系数明显降低。结果表明,50%/50% 微米/纳米铜粉的 3D 打印所需的激光功率范围为 100-240 W,而 100% 微球铜粉的 3D 打印所需的激光功率范围为 200-340 W。此外,在微米铜粉中加入纳米铜粒子后,三维打印铜制品的导电性、机械强度和密度都得到了改善。在激光功率为 240 W 的情况下,添加 50%的纳米铜微粒后,导电率提高了 34%,拉伸强度提高了 17%。
{"title":"The Facile Three-Dimensional Printing of the Composite of Copper Nanosized Powder and Micron Powder with Enhanced Properties.","authors":"Youzhi Zhou, Huijun He, Jingjie Xu, Minghui Liang, Limin Wang, Ligen Wang, Xu Pan, Qiang Hu, Jingguo Zhang","doi":"10.1089/3dp.2021.0122","DOIUrl":"10.1089/3dp.2021.0122","url":null,"abstract":"<p><p>Three-dimensional (3D) printing of Cu items is a new way to build up the structured Cu materials, but 3D printing of Cu items is usually a challenge because of the high melting point, high thermal conductivity, and high light reflection rate of Cu material. In this study, the composite of Cu microspheres powder and Cu nanoparticles (micro/nano Cu powder) is used to realize the 3D printing of Cu items with the selective laser melting technology. The sintering temperature and the thermal conductivity of micro/nano Cu powder are evidently decreased due to Cu nanoparticles' addition in the micron Cu powder. The results reveal that the 3D printing of 50%/50% micro/nano Cu powder needs laser power range of 100-240 W, which is in contrast to 200-340 W for 3D printing of 100% Cu microspheres powder. Furthermore, the conductivity, mechanical strength, and density of 3D-printed Cu items are improved with the addition of Cu nanoparticles into the micron Cu powder. The increasement of 34% on electrical conductivity and 17% on tensile strength are reached by the addition of 50% Cu nanoparticles with the laser power of 240 W.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"631-639"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10433425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Process Parameters of Direct Ink Writing for Dimensional Accuracy of Printed Layers. 优化直接油墨写入工艺参数,实现印刷层的尺寸精度。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0208
Yongqiang Tu, Javier A Arrieta-Escobar, Alaa Hassan, Uzair Khaleeq Uz Zaman, Ali Siadat, Gongliu Yang

Direct ink writing (DIW) belongs to extrusion-based three-dimensional (3D) printing techniques. The success of DIW process depends on well-printable ink and optimized process parameters. After ink preparation, DIW process parameters considerably affect the parts' dimensional accuracy, and process parameters optimization for dimensional accuracy of printed layers is necessary for quality control of parts in DIW. In this study, DIW process parameters were identified and divided into two categories as the parameters for printing a line and the parameter from lines to a layer. Then, a two-step method was proposed for optimizing process parameters. Step 1 was to optimize process parameters for printing a line. In Step 1, continuity and uniformity of extruded filaments and printed rectangular objects were observed in screening experiments to determine printability windows for each process parameter. Then, interaction effect tests were conducted and degree of freedom for experiments was calculated followed by orthogonal array selection for the Taguchi design. Next, main experiments of line printing based on the Taguchi method were conducted. Signal-to-noise ratio calculations and analysis of variance were performed to find the optimal combination and evaluate the significance, respectively. Step 2 was to optimize the parameter from lines to a layer. In Step 2, the average width of the printed line under optimal condition was first measured. Then, single-factor tests of rectangular object printing were conducted to find the optimal parameter from lines to a layer. After these two steps, confirmation results were conducted to verify the reliability of the proposed method and the method robustness on other shapes and other materials; parameter adaptability in 3D parts printing from printed layers' analyses for the proposed method; and parameter adaptability in constructs fabricated as 100% infill or with porosities.

直接油墨书写(DIW)属于基于挤压的三维(3D)打印技术。DIW 工艺的成功取决于良好的可印刷性油墨和优化的工艺参数。油墨制备完成后,DIW 工艺参数会对零件的尺寸精度产生很大影响,因此,为了控制 DIW 零件的质量,有必要针对印刷层的尺寸精度进行工艺参数优化。本研究确定了 DIW 工艺参数,并将其分为两类,即印刷线参数和从线到层的参数。然后,提出了一种分两步优化工艺参数的方法。第一步是优化印刷线的工艺参数。在步骤 1 中,通过筛选实验观察挤出长丝和印刷矩形物体的连续性和均匀性,以确定每个工艺参数的可印刷性窗口。然后,进行交互效应测试,计算实验的自由度,然后进行田口设计的正交阵列选择。接着,根据田口方法进行了线性印刷的主要实验。分别进行信噪比计算和方差分析,以找到最佳组合并评估其显著性。第 2 步是优化从线到层的参数。在步骤 2 中,首先测量了最佳条件下印刷线的平均宽度。然后,对矩形物体的印刷进行单因素测试,以找到从线条到图层的最佳参数。在这两个步骤之后,还进行了确认结果,以验证所提方法的可靠性以及该方法在其他形状和其他材料上的鲁棒性;根据所提方法对打印层的分析,验证三维零件打印中的参数适应性;以及以 100% 填充或多孔形式制造的结构中的参数适应性。
{"title":"Optimizing Process Parameters of Direct Ink Writing for Dimensional Accuracy of Printed Layers.","authors":"Yongqiang Tu, Javier A Arrieta-Escobar, Alaa Hassan, Uzair Khaleeq Uz Zaman, Ali Siadat, Gongliu Yang","doi":"10.1089/3dp.2021.0208","DOIUrl":"10.1089/3dp.2021.0208","url":null,"abstract":"<p><p>Direct ink writing (DIW) belongs to extrusion-based three-dimensional (3D) printing techniques. The success of DIW process depends on well-printable ink and optimized process parameters. After ink preparation, DIW process parameters considerably affect the parts' dimensional accuracy, and process parameters optimization for dimensional accuracy of printed layers is necessary for quality control of parts in DIW. In this study, DIW process parameters were identified and divided into two categories as the parameters for printing a line and the parameter from lines to a layer. Then, a two-step method was proposed for optimizing process parameters. Step 1 was to optimize process parameters for printing a line. In Step 1, continuity and uniformity of extruded filaments and printed rectangular objects were observed in screening experiments to determine printability windows for each process parameter. Then, interaction effect tests were conducted and degree of freedom for experiments was calculated followed by orthogonal array selection for the Taguchi design. Next, main experiments of line printing based on the Taguchi method were conducted. Signal-to-noise ratio calculations and analysis of variance were performed to find the optimal combination and evaluate the significance, respectively. Step 2 was to optimize the parameter from lines to a layer. In Step 2, the average width of the printed line under optimal condition was first measured. Then, single-factor tests of rectangular object printing were conducted to find the optimal parameter from lines to a layer. After these two steps, confirmation results were conducted to verify the reliability of the proposed method and the method robustness on other shapes and other materials; parameter adaptability in 3D parts printing from printed layers' analyses for the proposed method; and parameter adaptability in constructs fabricated as 100% infill or with porosities.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"816-827"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Auxiliary Process on Microstructure and Mechanical Properties of Wire Arc Additive Manufacturing of Thick Wall Depositions. 辅助工艺对线弧增材制造厚壁沉积微观结构和机械性能的影响
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0142
Wei Wu, Wei Xu, Jiaxiang Xue, Ping Yao

Serious heat accumulation causes poor properties and anisotropy of products in wire and arc additive manufacturing, which restricts the further efficiency in application, especially in double-wire and double-arc depositions. Consequently, this study applied an auxiliary gas process in double-arc additive manufacturing and then compared two 50-layer depositions in morphology, microstructure, and properties to research the influence of the auxiliary process on the forming and performance. The results showed that the auxiliary gas process could improve the deposition morphology, and the efficiency was increased by 24%; moreover, the surface roughness was reduced. As the cooling and stirring effect of the auxiliary gas process, the deposition with the auxiliary gas process mainly presented short axis columnar crystal and less defects on cross-section, which was finally increasing the hardness, tensile strength, and impact toughness and bending force and decreasing the tensile strength anisotropy obviously.

在线材和电弧增材制造中,严重的热积累会导致产品性能不佳和各向异性,从而限制了进一步的应用效率,尤其是在双线和双弧沉积中。因此,本研究在双弧快速成型制造中应用了辅助气体工艺,然后比较了两种 50 层沉积的形态、微观结构和性能,研究了辅助工艺对成型和性能的影响。结果表明,辅助气体工艺可以改善沉积形态,效率提高了 24%,而且表面粗糙度降低了。由于辅助气体工艺的冷却和搅拌作用,辅助气体工艺下的沉积主要呈短轴柱状晶,截面缺陷较少,最终提高了硬度、抗拉强度、冲击韧性和弯曲力,明显降低了抗拉强度各向异性。
{"title":"Influence of Auxiliary Process on Microstructure and Mechanical Properties of Wire Arc Additive Manufacturing of Thick Wall Depositions.","authors":"Wei Wu, Wei Xu, Jiaxiang Xue, Ping Yao","doi":"10.1089/3dp.2021.0142","DOIUrl":"10.1089/3dp.2021.0142","url":null,"abstract":"<p><p>Serious heat accumulation causes poor properties and anisotropy of products in wire and arc additive manufacturing, which restricts the further efficiency in application, especially in double-wire and double-arc depositions. Consequently, this study applied an auxiliary gas process in double-arc additive manufacturing and then compared two 50-layer depositions in morphology, microstructure, and properties to research the influence of the auxiliary process on the forming and performance. The results showed that the auxiliary gas process could improve the deposition morphology, and the efficiency was increased by 24%; moreover, the surface roughness was reduced. As the cooling and stirring effect of the auxiliary gas process, the deposition with the auxiliary gas process mainly presented short axis columnar crystal and less defects on cross-section, which was finally increasing the hardness, tensile strength, and impact toughness and bending force and decreasing the tensile strength anisotropy obviously.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"776-784"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440653/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10052244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multipart Build Effects on Temperature and Residual Stress by Laser Beam Powder Bed Fusion Additive Manufacturing. 激光束粉末床熔融快速成型技术的多部件构建对温度和残余应力的影响
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0143
Wenyou Zhang, Mingming Tong, Noel M Harrison

Laser beam powder bed fusion (PBF-LB) is a leading technique among metal additive manufacturing (AM), and it has a wide range of applications in aerospace and medical devices. Most of the existing PBF-LB process modeling is mainly based on the fabrication of a single part on a large build plate, which is not reflective of the practical multipart PBF-LB manufacturing. The effects of batch size on the thermal and mechanical behavior of additively manufactured parts have not been investigated. In this work, the multipart PBF-LB thermomechanical modeling framework was proposed for the first time. The effects of sample numbers (1, 2, and 4) on temperature and residual stress (RS) of part-scale components were computationally investigated. It is found that RS within the parts decreased with increasing number of components per build. Parts located at the central areas of the build plate had larger RS than at the border. These findings can be beneficial for informing AM designers and operators of the optimum printing setup to minimize RS of metal parts in PBF-LB.

激光束粉末床熔融(PBF-LB)是金属增材制造(AM)技术中的领先技术,在航空航天和医疗器械领域有着广泛的应用。现有的大多数 PBF-LB 工艺建模主要基于在大型构建板上制造单个零件,无法反映实际的多零件 PBF-LB 制造。批量大小对快速成型零件的热性能和机械性能的影响尚未得到研究。在这项工作中,首次提出了多部件 PBF-LB 热力学建模框架。计算研究了样品数量(1、2 和 4)对零件级部件的温度和残余应力(RS)的影响。结果发现,零件内的 RS 随每次构建的零件数量增加而减少。位于构建板中心区域的部件比位于边界的部件具有更大的 RS。这些研究结果有助于为自动成型设计人员和操作人员提供最佳的打印设置,以最大限度地减少 PBF-LB 中金属零件的 RS。
{"title":"Multipart Build Effects on Temperature and Residual Stress by Laser Beam Powder Bed Fusion Additive Manufacturing.","authors":"Wenyou Zhang, Mingming Tong, Noel M Harrison","doi":"10.1089/3dp.2021.0143","DOIUrl":"10.1089/3dp.2021.0143","url":null,"abstract":"<p><p>Laser beam powder bed fusion (PBF-LB) is a leading technique among metal additive manufacturing (AM), and it has a wide range of applications in aerospace and medical devices. Most of the existing PBF-LB process modeling is mainly based on the fabrication of a single part on a large build plate, which is not reflective of the practical multipart PBF-LB manufacturing. The effects of batch size on the thermal and mechanical behavior of additively manufactured parts have not been investigated. In this work, the multipart PBF-LB thermomechanical modeling framework was proposed for the first time. The effects of sample numbers (1, 2, and 4) on temperature and residual stress (RS) of part-scale components were computationally investigated. It is found that RS within the parts decreased with increasing number of components per build. Parts located at the central areas of the build plate had larger RS than at the border. These findings can be beneficial for informing AM designers and operators of the optimum printing setup to minimize RS of metal parts in PBF-LB.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"749-761"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective Laser Sintering of Polydimethylsiloxane Composites. 选择性激光烧结聚二甲基硅氧烷复合材料。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0105
Jinzhi Wang, Shaojie Sun, Xue Li, Guoxia Fei, Zhanhua Wang, Hesheng Xia

Conductive silicone elastomer carbon nanotubes (CNTs) composites possess potential applications in a variety of fields, including electronic skin, wearable electronics, and human motion detection. Based on a novel self-made covalent adaptable network (CANs) of polydimethylsiloxane (PDMS) containg dynamic steric-hindrance pyrazole urea bond (PDMS-CANs), CNTs wrapped PDMS-CANs (CNTs@PDMS-CANs) powders were prepared by a liquid phase adsorption and deposition, and were successfully used for selective laser sintering (SLS) three-dimensional printing. SLS-printed PDMS-CANs/CNTs nanocomposites possess high electrical conductivity and low percolation threshold as SLS is one kind of quasi-static processing, which leads to the formation of conductive segregated CNTs network by using the PDMS powders with special CNTs wrapped structure. The introduction of dynamic pyrazole urea bond endows the materials self-healing capability under electrothermal and photothermal stimulus. In addition, due to the resistance difference of the damaged and intact areas, crack diagnosing can be realized by infrared thermograph under electricity. In an application demonstration in strain sensor, the composite exhibits a regular cyclic electrical resistance change at cyclic compression and bending, indicating a relative high reliability.

导电硅弹性体碳纳米管(CNTs)复合材料在电子皮肤、可穿戴电子设备和人体运动检测等多个领域都具有潜在的应用价值。基于自制的含有动态立体阻碍吡唑脲键的聚二甲基硅氧烷(PDMS)共价适应性网络(CANs)(PDMS-CANs),通过液相吸附沉积制备了包裹 PDMS-CANs 的 CNTs(CNTs@PDMS-CANs)粉末,并成功用于选择性激光烧结(SLS)三维打印。SLS 印刷的 PDMS-CANs/CNTs 纳米复合材料具有高导电性和低渗流阈值的特点,因为 SLS 是一种准静态加工工艺,利用具有特殊 CNTs 包裹结构的 PDMS 粉末形成了导电离析 CNTs 网络。动态吡唑脲键的引入赋予了材料在电热和光热刺激下的自愈能力。此外,由于受损区域和完好区域存在电阻差异,因此可在通电情况下通过红外热成像仪进行裂缝诊断。在应变传感器的应用演示中,该复合材料在循环压缩和弯曲时表现出有规律的循环电阻变化,表明其可靠性相对较高。
{"title":"Selective Laser Sintering of Polydimethylsiloxane Composites.","authors":"Jinzhi Wang, Shaojie Sun, Xue Li, Guoxia Fei, Zhanhua Wang, Hesheng Xia","doi":"10.1089/3dp.2021.0105","DOIUrl":"10.1089/3dp.2021.0105","url":null,"abstract":"<p><p>Conductive silicone elastomer carbon nanotubes (CNTs) composites possess potential applications in a variety of fields, including electronic skin, wearable electronics, and human motion detection. Based on a novel self-made covalent adaptable network (CANs) of polydimethylsiloxane (PDMS) containg dynamic steric-hindrance pyrazole urea bond (PDMS-CANs), CNTs wrapped PDMS-CANs (CNTs@PDMS-CANs) powders were prepared by a liquid phase adsorption and deposition, and were successfully used for selective laser sintering (SLS) three-dimensional printing. SLS-printed PDMS-CANs/CNTs nanocomposites possess high electrical conductivity and low percolation threshold as SLS is one kind of quasi-static processing, which leads to the formation of conductive segregated CNTs network by using the PDMS powders with special CNTs wrapped structure. The introduction of dynamic pyrazole urea bond endows the materials self-healing capability under electrothermal and photothermal stimulus. In addition, due to the resistance difference of the damaged and intact areas, crack diagnosing can be realized by infrared thermograph under electricity. In an application demonstration in strain sensor, the composite exhibits a regular cyclic electrical resistance change at cyclic compression and bending, indicating a relative high reliability.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"684-696"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10061431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wear and Thermal Behavior of TiAlN Thin Films onto Ti6Al4V Alloy Manufactured by Selective Laser Melting Method. 选择性激光熔融法制造的 Ti6Al4V 合金上 TiAlN 薄膜的磨损和热行为。
IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0081
Gürkan Kaya, Tevfik Oğuzhan Ergüder, İlyas Hacısalihoğlu, Emre Mandev, Eyüphan Manay, Fatih Yıldız

In this study, it was targeted to enhance the tribological and thermal properties of Ti6Al4V alloys, which were manufactured with three different build orientations and hatch spacing by using the selective laser melting (SLM) method and a traditional method (casting). In addition, the surfaces of the samples produced by these two methods were coated with the TiAlN thin film by using the cathodic arc physical vapor deposition (CAPVD) method. After the experimental investigations, the lowest wear rate was obtained for the 60-90° sample, and the highest microhardness value was measured as ∼1070 HV0.1 for the 90-45° sample. It was specified that the wear rate rose as the hatch spacing increased among the same build orientation Ti6Al4V alloys produced by SLM method. According to thermal analysis results, among the same hatch spacing values, it was determined that as the build orientation value increased, the specific heat capacity and thermal conductivity values decreased. Among the coated samples, the highest thermal conductivity and specific heat capacity values were obtained for casting samples as 5.63 (W/m·K) and 560.4 (J/kg·K), respectively.

本研究采用选择性激光熔化(SLM)方法和传统方法(铸造),以增强 Ti6Al4V 合金的摩擦学性能和热性能为目标,制造了三种不同构建方向和间距的 Ti6Al4V 合金。此外,还采用阴极电弧物理气相沉积(CAPVD)方法在这两种方法生产的样品表面镀上了 TiAlN 薄膜。经过实验研究,60-90° 样品的磨损率最低,90-45° 样品的显微硬度值最高,达到 ∼1070 HV0.1。结果表明,在采用 SLM 方法生产的相同构建方向的 Ti6Al4V 合金中,随着填充间距的增加,磨损率也随之增加。热分析结果表明,在相同的浇口间距值中,随着构建方向值的增加,比热容和热导率值降低。在涂层样品中,铸造样品的导热系数和比热容值最高,分别为 5.63 (W/m-K) 和 560.4 (J/kg-K)。
{"title":"Wear and Thermal Behavior of TiAlN Thin Films onto Ti6Al4V Alloy Manufactured by Selective Laser Melting Method.","authors":"Gürkan Kaya, Tevfik Oğuzhan Ergüder, İlyas Hacısalihoğlu, Emre Mandev, Eyüphan Manay, Fatih Yıldız","doi":"10.1089/3dp.2021.0081","DOIUrl":"10.1089/3dp.2021.0081","url":null,"abstract":"<p><p>In this study, it was targeted to enhance the tribological and thermal properties of Ti6Al4V alloys, which were manufactured with three different build orientations and hatch spacing by using the selective laser melting (SLM) method and a traditional method (casting). In addition, the surfaces of the samples produced by these two methods were coated with the TiAlN thin film by using the cathodic arc physical vapor deposition (CAPVD) method. After the experimental investigations, the lowest wear rate was obtained for the 60-90° sample, and the highest microhardness value was measured as ∼1070 HV<sub>0.1</sub> for the 90-45° sample. It was specified that the wear rate rose as the hatch spacing increased among the same build orientation Ti6Al4V alloys produced by SLM method. According to thermal analysis results, among the same hatch spacing values, it was determined that as the build orientation value increased, the specific heat capacity and thermal conductivity values decreased. Among the coated samples, the highest thermal conductivity and specific heat capacity values were obtained for casting samples as 5.63 (W/m·K) and 560.4 (J/kg·K), respectively.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"650-660"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10414379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2022 Award Recipient for 3D Printing and Additive Manufacturing 罗莎琳德·富兰克林学会自豪地宣布2022年3D打印和增材制造奖获得者
IF 3.1 4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-07-24 DOI: 10.1089/3dp.2022.29021.rfs2022
I. Mitropoulou
{"title":"Rosalind Franklin Society Proudly Announces the 2022 Award Recipient for 3D Printing and Additive Manufacturing","authors":"I. Mitropoulou","doi":"10.1089/3dp.2022.29021.rfs2022","DOIUrl":"https://doi.org/10.1089/3dp.2022.29021.rfs2022","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48591490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smoothing the Rough Edges: Evaluating Automatically Generated Multi-Lattice Transitions 平滑粗糙边缘:评估自动生成的多晶格过渡
4区 工程技术 Q3 ENGINEERING, MANUFACTURING Pub Date : 2023-06-30 DOI: 10.1089/3dp.2023.0008
Martha Baldwin, Nicholas A. Meisel, Christopher McComb
Additive manufacturing is advantageous for producing lightweight components while addressing complex design requirements. This capability has been bolstered by the introduction of unit lattice cells and the gradation of those cells. In cases where loading varies throughout a part, it may be beneficial to use multiple, distinct lattice cell types, resulting in multi-lattice structures. In such structures, abrupt transitions between unit cell topologies may cause stress concentrations, making the boundary between unit cell types a primary failure point. Thus, these regions require careful design to ensure the overall functionality of the part. Although computational design approaches have been proposed, smooth transition regions are still difficult to achieve, especially between lattices of drastically different topologies. This work demonstrates and assesses a method for using variational autoencoders to automate the creation of transitional lattice cells, examining the factors that contribute to smooth transitions. Through computational experimentation, it was found that the smoothness of transition regions was strongly predicted by how closely the endpoints were in the latent space, whereas the number of transition intervals was not a sole predictor.
增材制造在满足复杂设计要求的同时,也有利于生产轻质部件。这种能力得到了单位晶格细胞的引入和这些细胞的渐变的支持。在载荷在整个部件中变化的情况下,使用多个不同的晶格单元类型可能是有益的,从而产生多晶格结构。在这种结构中,单元胞拓扑之间的突变可能导致应力集中,使单元胞类型之间的边界成为主要的失效点。因此,这些区域需要仔细设计,以确保零件的整体功能。尽管已经提出了计算设计方法,但平滑过渡区域仍然难以实现,特别是在拓扑结构截然不同的晶格之间。这项工作演示并评估了一种使用变分自编码器自动创建过渡晶格细胞的方法,并检查了有助于顺利过渡的因素。通过计算实验发现,过渡区域的平滑程度可以通过潜在空间中端点的接近程度来预测,而过渡区间的数量并不是唯一的预测因素。
{"title":"Smoothing the Rough Edges: Evaluating Automatically Generated Multi-Lattice Transitions","authors":"Martha Baldwin, Nicholas A. Meisel, Christopher McComb","doi":"10.1089/3dp.2023.0008","DOIUrl":"https://doi.org/10.1089/3dp.2023.0008","url":null,"abstract":"Additive manufacturing is advantageous for producing lightweight components while addressing complex design requirements. This capability has been bolstered by the introduction of unit lattice cells and the gradation of those cells. In cases where loading varies throughout a part, it may be beneficial to use multiple, distinct lattice cell types, resulting in multi-lattice structures. In such structures, abrupt transitions between unit cell topologies may cause stress concentrations, making the boundary between unit cell types a primary failure point. Thus, these regions require careful design to ensure the overall functionality of the part. Although computational design approaches have been proposed, smooth transition regions are still difficult to achieve, especially between lattices of drastically different topologies. This work demonstrates and assesses a method for using variational autoencoders to automate the creation of transitional lattice cells, examining the factors that contribute to smooth transitions. Through computational experimentation, it was found that the smoothness of transition regions was strongly predicted by how closely the endpoints were in the latent space, whereas the number of transition intervals was not a sole predictor.","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135857664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
3D Printing and Additive Manufacturing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1