Identity and access management frameworks address user access rights and data governance for organizations, vendors and users. In response to the problems associated with centralized authorities (e.g. single point of failure, limited scalability, lack of user control), new identity management models have emerged, such as Self-Sovereign Identity (SSI), which relies on verifiable data registers to validate Decentralized Identifier (DIDs) and can be achieved in many different ways, e.g. through Distributed Ledger Technology (DLT), distributed databases or other decentralized systems. The main goal of SSI is to enable users to take control of managing their data shared with different services. In this paper, we examine a possible application of the SSI concept to aerial base station (ABS)- integrated networks. The paper presents the effective use of DID implementation to provide a secure and decentralized way to create, associate and verify credentials and identities of ABSs, ensuring secure communication between Ground Base stations (GBSs) and other nodes in the network in a multi-operator scenario. In the numerical results, the average values of various metrics (namely, the average credential presentation time, the average credential offer time, the average DIDcomm connection creation time, the average DIDcomm signing time, and the average DIDcomm revoke credential time) related to credential operations in a DID management system are given for three different number of requests (50 K, 75 K, and 100 K). We have also provided the values of the different status codes that occurred in 100 K operations in the same DID management system. Towards the end of the paper, a comparison is made between SSI-based and Non-fungible token (NFT)-based blockchain solutions, also discussing the challenges and future directions of SSI solutions in the context of ABS-integrated networks.