Pub Date : 2008-01-01DOI: 10.4067/S0718-27912008000300001
Nilton Carlos de Souza Romero, K. I. Haga, Valdeci Orioli Júnior, E. Cardoso
An important factor in crop production is the nutrient liberation matching the growth rates, so these combined effects together with plant development can reach the best results. In this work, the times of nitrogen application (topdressing) were tested in the rate of 120 kg ha-1 of N, applied at 20 (T20), 25 (T25), 30 (T30), 35 (T35) and 40 (T40) days after emergency in eight cultivars of pea (Pisum sativum L) (Maria, Kodama, Mikado, Flavia, Luiza, Amelia, Dileta and Marina). Here, the aim was to evaluate the effect of these treatments on yield and seed quality in Cerrado Region. After harvest, the seeds were submitted to the quality tests (germination tests, electric conductivity and emergency under field conditions). The results showed that the peas crops are not influenced by the N timing application. Amongst the eight cultivars studied, the best productivity were for Mariana, Mikado, Amelia, Maria and Flavia and the lowest yield was for Kodama cultivar. The cultivar Mikado showed the best results for the quality tests. Palavras-chave: Pisum sativum L., nitrogenio, epocas de aplicacao, qualidade de sementes RESUMO Um fator importante na producao das culturas e a disponibilizacao do nutriente na epoca certa para que os efeitos no crescimento e desenvolvimento alcancem os melhores resultados. No presente trabalho, foram testadas as epocas de realizacao da adubacao nitrogenada (120 kg ha-1), aplicada em cobertura aos 20 (T20), 25 (T25), 30 (T30), 35 (T35) e 40 (T40) dias apos a emergencia em oito cultivares de ervilha (Pisum sativum L) (Maria, Kodama,
与生长速率相匹配的养分释放是影响作物生产的一个重要因素,因此这些因素与植物发育相结合才能达到最佳效果。以8个豌豆品种(Maria、Kodama、Mikado、Flavia、Luiza、Amelia、Dileta和Marina)为试验材料,以120 kg ha-1的施氮量,分别在应急后20 (T20)、25 (T25)、30 (T30)、35 (T35)和40 (T40) d进行施氮试验。在这里,目的是评价这些处理对塞拉多地区产量和种子质量的影响。收获后,将种子提交进行质量测试(发芽测试、电导率测试和田间条件下的应急测试)。结果表明,配施氮肥对豌豆产量影响不大。8个品种中,马里亚纳、米卡多、阿米莉亚、玛丽亚和弗蕾维亚产量最高,玉玉品种产量最低。在品质试验中,以“天皇”品种效果最好。植物:莴苣、氮素、施氮量、质粒、质粒等对生产和培养具有重要意义的因素,如:可降解性、可降解性、可降解性、可降解性、可降解性、可降解性、可降解性、可降解性、可降解性和可降解性。不存在trabalho,有孔的testadadadubacao氮肥(120 kg kg hm -1),施用20号(T20), 25号(T25), 30号(T30), 35号(T35)和40号(T40)的cobertura aa20 (T20), 25号(T25), 30号(T30), 35号(T35)和40号(T40),并在紧急情况下处理玉米(Pisum sativum L) (Maria, Kodama,
{"title":"EFEITO DA ÉPOCA DE ADUBACÃO NITROGENADA EM COBERTURA NA PRODUCÃO E QUALIDADE FISIOLÓGICA DE SEMENTES DE ERVILHA (Pisum sativum L)","authors":"Nilton Carlos de Souza Romero, K. I. Haga, Valdeci Orioli Júnior, E. Cardoso","doi":"10.4067/S0718-27912008000300001","DOIUrl":"https://doi.org/10.4067/S0718-27912008000300001","url":null,"abstract":"An important factor in crop production is the nutrient liberation matching the growth rates, so these combined effects together with plant development can reach the best results. In this work, the times of nitrogen application (topdressing) were tested in the rate of 120 kg ha-1 of N, applied at 20 (T20), 25 (T25), 30 (T30), 35 (T35) and 40 (T40) days after emergency in eight cultivars of pea (Pisum sativum L) (Maria, Kodama, Mikado, Flavia, Luiza, Amelia, Dileta and Marina). Here, the aim was to evaluate the effect of these treatments on yield and seed quality in Cerrado Region. After harvest, the seeds were submitted to the quality tests (germination tests, electric conductivity and emergency under field conditions). The results showed that the peas crops are not influenced by the N timing application. Amongst the eight cultivars studied, the best productivity were for Mariana, Mikado, Amelia, Maria and Flavia and the lowest yield was for Kodama cultivar. The cultivar Mikado showed the best results for the quality tests. Palavras-chave: Pisum sativum L., nitrogenio, epocas de aplicacao, qualidade de sementes RESUMO Um fator importante na producao das culturas e a disponibilizacao do nutriente na epoca certa para que os efeitos no crescimento e desenvolvimento alcancem os melhores resultados. No presente trabalho, foram testadas as epocas de realizacao da adubacao nitrogenada (120 kg ha-1), aplicada em cobertura aos 20 (T20), 25 (T25), 30 (T30), 35 (T35) e 40 (T40) dias apos a emergencia em oito cultivares de ervilha (Pisum sativum L) (Maria, Kodama,","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"89 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90685915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-01-01DOI: 10.4067/S0718-27912008000100006
Eduardo Martínez H, Juan Pablo Fuentes E, Edmundo Acevedo H
El carbono organico del suelo (COS) se relaciona con la sustentabilidad de los sistemas agricolas afectando las propiedades del suelo relacionadas con el rendimiento sostenido de los cultivos. El COS se vincula con la cantidad y disponibilidad de nutrientes del suelo, al aportar elementos como el N cuyo aporte mineral es normalmente deficitario. Ademas, al modificar la acidez y la alcalinidad hacia valores cercanos a la neutralidad, el COS aumenta la solubilidad de varios nutrientes. El COS asociado a la materia organica del suelo proporciona coloides de alta capacidad de intercambio cationico. Su efecto en las propiedades fisicas se manifiesta mediante la modificacion de la estructura y la distribucion del espacio poroso del suelo. La cantidad de COS no solo depende de las condiciones ambientales locales, sino que es afectada fuertemente por el manejo del suelo. Existen practicas de manejo que generan un detrimento del COS en el tiempo, a la vez hay practicas que favorecen su acumulacion. En este trabajo se discute la relacion entre carbono organico, propiedades quimicas, fisicas, biologicas y el manejo del suelo. Ademas se plantean metodologias para estudiar los flujos de C02 del suelo a la atmosfera
{"title":"CARBONO ORGÁNICO Y PROPIEDADES DEL SUELO","authors":"Eduardo Martínez H, Juan Pablo Fuentes E, Edmundo Acevedo H","doi":"10.4067/S0718-27912008000100006","DOIUrl":"https://doi.org/10.4067/S0718-27912008000100006","url":null,"abstract":"El carbono organico del suelo (COS) se relaciona con la sustentabilidad de los sistemas agricolas afectando las propiedades del suelo relacionadas con el rendimiento sostenido de los cultivos. El COS se vincula con la cantidad y disponibilidad de nutrientes del suelo, al aportar elementos como el N cuyo aporte mineral es normalmente deficitario. Ademas, al modificar la acidez y la alcalinidad hacia valores cercanos a la neutralidad, el COS aumenta la solubilidad de varios nutrientes. El COS asociado a la materia organica del suelo proporciona coloides de alta capacidad de intercambio cationico. Su efecto en las propiedades fisicas se manifiesta mediante la modificacion de la estructura y la distribucion del espacio poroso del suelo. La cantidad de COS no solo depende de las condiciones ambientales locales, sino que es afectada fuertemente por el manejo del suelo. Existen practicas de manejo que generan un detrimento del COS en el tiempo, a la vez hay practicas que favorecen su acumulacion. En este trabajo se discute la relacion entre carbono organico, propiedades quimicas, fisicas, biologicas y el manejo del suelo. Ademas se plantean metodologias para estudiar los flujos de C02 del suelo a la atmosfera","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"11 1","pages":"68-96"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90698985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-01-01DOI: 10.4067/S0718-27912008000400009
Cm Monreal, M. Schnitzer
Soil organic matter (SOM) has been studied in physical fractions (i.e., aggregates), chemical components (i.e., humic substances); and biological constituents (i.e., microbial biomass), or represented in kinetic compartments in simulation models (i.e., Century). In soils most organic matter is found as organo-mineral complexes, the interactions between inorganic and organic matter have been studied by Schnitzer and Kodama (1992). The physical domains of organic matter involve hierarchical units of aggregates and particle size fractions (Oades and Waters, 1991). The chemical domains involve chemically extracted humic substances (Schnitzer and Kodama, 1975), or several chemical classes of compounds in whole soil as characterized in mass spectrometry studies (Schnitzer and Schulten, 1992). The biological components and their interactions with inorganic matrices and organics control the flows of energy, carbon, nitrogen and other crop nutrients (Monreal and McGill, 1997). Another important component of organic matter is the soil solution, where chemical, biochemical and physico-chemical reactions occur (Monreal and McGill, 1997). The latter reactions affect supply of crop nutrients, the type of microbial communities, and molecular structures of soil organic matter (Monreal et al., 1997). In soil microsites organic matter binds to clay colloids and other minerals to form domains of nanocomposites at various arbitrary scales ( 1000 nm). On the other hand, bacteria may be considered as single domain microparticles or nanomolecular catalytic assemblies. Living communities of microorganisms in soils produce and utilize diverse nanoparticles during their metabolic reactions of oxidation and reduction of growth and energy synthesis (35). Thus, the
土壤有机质(SOM)在物理组分(即团聚体)、化学组分(即腐殖质);和生物成分(即微生物生物量),或在模拟模型(即世纪)的动力隔间中表示。在土壤中,大多数有机物质被发现为有机-无机复合物,Schnitzer和Kodama(1992)研究了无机物质和有机物质之间的相互作用。有机物质的物理领域包括聚集体和粒度分数的等级单位(Oades和Waters, 1991年)。化学领域包括化学提取的腐殖质物质(Schnitzer和Kodama, 1975),或质谱研究中描述的整个土壤中的几种化学类化合物(Schnitzer和Schulten, 1992)。生物成分及其与无机基质和有机物的相互作用控制着能量、碳、氮和其他作物营养物质的流动(Monreal和McGill, 1997)。有机质的另一个重要组成部分是土壤溶液,其中发生化学、生化和物理化学反应(Monreal和McGill, 1997)。后一种反应影响作物养分的供应、微生物群落的类型和土壤有机质的分子结构(Monreal et al., 1997)。在土壤微区,有机物质与粘土胶体和其他矿物质结合,形成各种任意尺度(1000纳米)的纳米复合材料域。另一方面,细菌可以被认为是单域微粒子或纳米分子催化组件。土壤中生活的微生物群落在氧化和减少生长和能量合成的代谢反应中产生和利用各种纳米颗粒(35)。因此,
{"title":"Soil Organic Matter in Nano-Composite and Clay Fractions, and Soluble Pools of the Rhizosphere","authors":"Cm Monreal, M. Schnitzer","doi":"10.4067/S0718-27912008000400009","DOIUrl":"https://doi.org/10.4067/S0718-27912008000400009","url":null,"abstract":"Soil organic matter (SOM) has been studied in physical fractions (i.e., aggregates), chemical components (i.e., humic substances); and biological constituents (i.e., microbial biomass), or represented in kinetic compartments in simulation models (i.e., Century). In soils most organic matter is found as organo-mineral complexes, the interactions between inorganic and organic matter have been studied by Schnitzer and Kodama (1992). The physical domains of organic matter involve hierarchical units of aggregates and particle size fractions (Oades and Waters, 1991). The chemical domains involve chemically extracted humic substances (Schnitzer and Kodama, 1975), or several chemical classes of compounds in whole soil as characterized in mass spectrometry studies (Schnitzer and Schulten, 1992). The biological components and their interactions with inorganic matrices and organics control the flows of energy, carbon, nitrogen and other crop nutrients (Monreal and McGill, 1997). Another important component of organic matter is the soil solution, where chemical, biochemical and physico-chemical reactions occur (Monreal and McGill, 1997). The latter reactions affect supply of crop nutrients, the type of microbial communities, and molecular structures of soil organic matter (Monreal et al., 1997). In soil microsites organic matter binds to clay colloids and other minerals to form domains of nanocomposites at various arbitrary scales ( 1000 nm). On the other hand, bacteria may be considered as single domain microparticles or nanomolecular catalytic assemblies. Living communities of microorganisms in soils produce and utilize diverse nanoparticles during their metabolic reactions of oxidation and reduction of growth and energy synthesis (35). Thus, the","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"106 1","pages":"48-55"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79731134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-01-01DOI: 10.4067/S0718-27912008000400010
R. Naidu, K. Kim
Environmental contamination from improper disposal of hazardous industrial and municipal wastes has long been recognised as an issue of public concern, regulatory activity, and scientific investigation. Such disposals have resulted in the occurrence of in excess of 80,000 potentially contaminated sites in Australia (Natusch, 1997) and over 3 million such sites in the Asia region. In the United States (US), there are estimated to be about 400,000 waste disposal sites where soil and groundwater contamination is deemed to be of sufficient extent and magnitude that some type of remedial action is warranted to protect public health or to minimize adverse environmental and ecological impacts (Rao et al., 1996; USEPA, 2004, http://www.epa.gov/superfund/news/30years.htm). Remediation of contaminated sites to the extent practicable is expected to cost approximately $5 to 8 billion in Australia (Powell, 1992;
{"title":"Contaminant Fate, Dynamics and Bioavailability: Biochemical and Molecular Mechanism at the Soil: Root interface","authors":"R. Naidu, K. Kim","doi":"10.4067/S0718-27912008000400010","DOIUrl":"https://doi.org/10.4067/S0718-27912008000400010","url":null,"abstract":"Environmental contamination from improper disposal of hazardous industrial and municipal wastes has long been recognised as an issue of public concern, regulatory activity, and scientific investigation. Such disposals have resulted in the occurrence of in excess of 80,000 potentially contaminated sites in Australia (Natusch, 1997) and over 3 million such sites in the Asia region. In the United States (US), there are estimated to be about 400,000 waste disposal sites where soil and groundwater contamination is deemed to be of sufficient extent and magnitude that some type of remedial action is warranted to protect public health or to minimize adverse environmental and ecological impacts (Rao et al., 1996; USEPA, 2004, http://www.epa.gov/superfund/news/30years.htm). Remediation of contaminated sites to the extent practicable is expected to cost approximately $5 to 8 billion in Australia (Powell, 1992;","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"1 1","pages":"56-63"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89805608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-01-01DOI: 10.4067/S0718-27912008000200001
M. Mora, F. Matus
{"title":"FOREWORD: Second International Symposium of Soil, Ecology and Environment November 8-9,2007","authors":"M. Mora, F. Matus","doi":"10.4067/S0718-27912008000200001","DOIUrl":"https://doi.org/10.4067/S0718-27912008000200001","url":null,"abstract":"","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"64 1","pages":"0-0"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89758125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-01-01DOI: 10.4067/S0718-27912008000400008
P. Hinsinger, M. Bravin, N. Devau, F. Gérard, E. Cadre, B. Jaillard
As stressed in the Millennium Ecosystem Assessment, over the last 50 years, human beings have modified the ecosystems to an unpreceded point in humankind history, in order to meet the increasing world demand in food, drinking water, wood, fibers and energy (Tilman 1999). Such changes much contributed to improving humankind well-being, but this was achieved at the expense of a degradation of numerous ecosystem services and increasing poverty of the poorest populations. Prediction models forecast further degradation of ecosystem services in the coming 50 years,
{"title":"Soil-Root-Microbe Interactions in the Rhizosphere: A Key to Understanding and Predicting Nutrient Bio availability to Plants","authors":"P. Hinsinger, M. Bravin, N. Devau, F. Gérard, E. Cadre, B. Jaillard","doi":"10.4067/S0718-27912008000400008","DOIUrl":"https://doi.org/10.4067/S0718-27912008000400008","url":null,"abstract":"As stressed in the Millennium Ecosystem Assessment, over the last 50 years, human beings have modified the ecosystems to an unpreceded point in humankind history, in order to meet the increasing world demand in food, drinking water, wood, fibers and energy (Tilman 1999). Such changes much contributed to improving humankind well-being, but this was achieved at the expense of a degradation of numerous ecosystem services and increasing poverty of the poorest populations. Prediction models forecast further degradation of ecosystem services in the coming 50 years,","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"74 1","pages":"39-47"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85819653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-01-01DOI: 10.4067/S0718-27912008000300005
Marco Pfeiffer, Julio Haberland, C. Kremer, O. Seguel
The following study compared two field methods and one laboratory method to measure saturated hydraulic conductivity (Ks) in the saturated phase of soil, all evaluated in a clayey loam soil with three replicates. The two field methods under study were the auger hole method (PB) and the cylinder infiltrometer (CI), the laboratory method was the constant head permeameter (PCC). Ks values delivered by the PCC method showed differences in magnitude (1,03 m day-1) and a high variability (CV=249%), thus using these method is not recommended for soil with similar characteristics to the studied one. The PB and the CI methods showed a low variability (CV=39 and 13%) and similar Ks values (10,8 and 7,1 m day-1), being recommended the use of both methods in soils with similar characteristics to the studied one. These methods are complementary, because of the PB requires the presence of a water level, meanwhile the CI requires the absence of these one.
下面的研究比较了两种现场方法和一种实验室方法来测量土壤饱和阶段的饱和水力传导性(Ks),所有方法都在粘壤土中进行了三次重复。现场研究的两种方法分别是螺旋孔法(PB)和圆柱体渗透计(CI),室内研究的方法是恒水头渗透计(PCC)。PCC方法的Ks值存在量级差异(1.03 m day-1)和变异系数(CV=249%),因此不建议对与研究土壤特征相似的土壤使用PCC方法。PB和CI方法具有较低的变异率(CV分别为39和13%)和相似的k值(10、8和7、1 m day-1),推荐在与研究土壤特征相似的土壤中使用这两种方法。这些方法是互补的,因为PB需要有水位,而CI需要没有水位。
{"title":"COMPARACIÓN DE DOS MÉTODOS ALTERNATIVOS AL POZO BARRENO PARA LA MEDICIÓN DE LA CONDUCTIVIDAD HIDRÁULICA SATURADA (Ks) EN UN ALFISOL","authors":"Marco Pfeiffer, Julio Haberland, C. Kremer, O. Seguel","doi":"10.4067/S0718-27912008000300005","DOIUrl":"https://doi.org/10.4067/S0718-27912008000300005","url":null,"abstract":"The following study compared two field methods and one laboratory method to measure saturated hydraulic conductivity (Ks) in the saturated phase of soil, all evaluated in a clayey loam soil with three replicates. The two field methods under study were the auger hole method (PB) and the cylinder infiltrometer (CI), the laboratory method was the constant head permeameter (PCC). Ks values delivered by the PCC method showed differences in magnitude (1,03 m day-1) and a high variability (CV=249%), thus using these method is not recommended for soil with similar characteristics to the studied one. The PB and the CI methods showed a low variability (CV=39 and 13%) and similar Ks values (10,8 and 7,1 m day-1), being recommended the use of both methods in soils with similar characteristics to the studied one. These methods are complementary, because of the PB requires the presence of a water level, meanwhile the CI requires the absence of these one.","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"5 1","pages":"49-56"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84281825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-01-01DOI: 10.4067/S0718-27912008000400003
D. Crowley
Metal and metalloid concentrations in soil exert an enormous influence on the diversity, composition, and activity of soil microorganisms that carry out essential ecosystem services. At low concentrations, microorganisms can compete for essential trace elements that are required to support their growth and in this manner affect plant nutrition and disease through the production of metal chelators. At high concentrations, the toxic effects of metals result in reduced microbial diversity and altered rates of key biological processes that underlie ecosystem function. The latter is now of great concern as large land areas across the globe have become contaminated with metals from land application of wastes and atmospheric deposition of heavy metals. An understanding of how plants, soils, organic matter, and microorganisms influence metal transformations in the rhizosphere is thus critical for managing soils to assure the long term protection of soil quality, food safety, and ecosystem function. One of the major difficulties in making practical management decisions with respect to metal pollution for different types of soils has been our inability to derive bioindicators of soil quality that can provide indices of soil quality across the landscape at different scales and over time. Ecosystems respond very differently to acute and chronic metal toxicities depending on their chemical properties and prior exposure histories. Toxicities are particularly influenced by physico-chemical conditions in soils that influence the bioavailability of metals and metalloids to plants and microorganisms. Nonetheless, the dynamic nature of microbial communities, which respond much faster to changes in management practices than do soil physical and chemical properties enables us to use bioindicators as a sensitive tools for predicting possible long term changes in soil properties. From a land management perspective, it is critical that soil microbiologists offer appropriate bioindicators for use in measuring the impacts of soil pollution on soil biological properties and extend knowledge as to how specific bioindicators may reflect long term changes in soil quality that can be used to guide land management practices and remediation of contaminated soils. Responses of Microbial Communities to Metal Contamination The microbial community concept is based on the interactions among in all of the various species of bacteria, fungi, protozoa, and microfauna that carry out the various broad level functions of the soil, ranging from nutrient cycling to organic matter formation, and plant disease protection. Differences in the species composition of various soils are linked to changes in soil biological properties that in turn affect the long term chemical and physical properties and ability to support plant growth. Among the most basic functions are respiration
{"title":"Impacts of Metals and Metalloids on Soil Microbial Diversity and Ecosystem Function","authors":"D. Crowley","doi":"10.4067/S0718-27912008000400003","DOIUrl":"https://doi.org/10.4067/S0718-27912008000400003","url":null,"abstract":"Metal and metalloid concentrations in soil exert an enormous influence on the diversity, composition, and activity of soil microorganisms that carry out essential ecosystem services. At low concentrations, microorganisms can compete for essential trace elements that are required to support their growth and in this manner affect plant nutrition and disease through the production of metal chelators. At high concentrations, the toxic effects of metals result in reduced microbial diversity and altered rates of key biological processes that underlie ecosystem function. The latter is now of great concern as large land areas across the globe have become contaminated with metals from land application of wastes and atmospheric deposition of heavy metals. An understanding of how plants, soils, organic matter, and microorganisms influence metal transformations in the rhizosphere is thus critical for managing soils to assure the long term protection of soil quality, food safety, and ecosystem function. One of the major difficulties in making practical management decisions with respect to metal pollution for different types of soils has been our inability to derive bioindicators of soil quality that can provide indices of soil quality across the landscape at different scales and over time. Ecosystems respond very differently to acute and chronic metal toxicities depending on their chemical properties and prior exposure histories. Toxicities are particularly influenced by physico-chemical conditions in soils that influence the bioavailability of metals and metalloids to plants and microorganisms. Nonetheless, the dynamic nature of microbial communities, which respond much faster to changes in management practices than do soil physical and chemical properties enables us to use bioindicators as a sensitive tools for predicting possible long term changes in soil properties. From a land management perspective, it is critical that soil microbiologists offer appropriate bioindicators for use in measuring the impacts of soil pollution on soil biological properties and extend knowledge as to how specific bioindicators may reflect long term changes in soil quality that can be used to guide land management practices and remediation of contaminated soils. Responses of Microbial Communities to Metal Contamination The microbial community concept is based on the interactions among in all of the various species of bacteria, fungi, protozoa, and microfauna that carry out the various broad level functions of the soil, ranging from nutrient cycling to organic matter formation, and plant disease protection. Differences in the species composition of various soils are linked to changes in soil biological properties that in turn affect the long term chemical and physical properties and ability to support plant growth. Among the most basic functions are respiration","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"110 1","pages":"6-11"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86232867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-01-01DOI: 10.4067/S0718-27912008000300002
Aridio Pérez, Carlos Céspedes, P. Núñez
Los beneficios de la aplicacion de enmiendas organicas en la agricultura son conocidos a nivel mundial; sin embargo, existen muy pocos estudios sobre los contenidos nutricionales y actividad biologica de estos fertilizantes organicos. En Republica Dominicana estas enmiendas son aplicadas en la agricultura hace mas de dos decadas; pero no han sido estudiadas. El objetivo de la investigacion fue determinar las caracteristicas fisica-quimicas y microbiologicas de las enmiendas organicas de mayor uso en Republica Dominicana, asi como las fuentes utilizadas para su preparacion. Las muestras de enmiendas organicas fueron recolectadas en las localidades de Jarabacoa, Espaillat, La Vega y Montecristi durante el periodo enero del 2005 a julio 2006. En total se analizaron 43 muestras. Los resultados demostraron que el tipo de bokashi de la planta Jarabacoa "BPJ" presento valores superiores de materia organica (MO) con 44%, P (6.1%), K (3.6%), Ca (21.7%) y micro nutrientes (Mn y Zn) que los otros bokashi evaluados. El mayor contenido de MO (52%) entre los materiales compostados se observo en el tipo Justino Peguero "CJP", pero con contenidos de nutrientes similares a los otros compost. El contenido de MO fue superior en humus de lombriz (76% promedio) comparado con los bokashi y los compost. Los resultados mostraron que las caracteristicas fisicas, quimicas y biologicas de las enmiendas organicas evaluadas varian con las condiciones de manejo, tipo de material utilizado en su preparacion, condiciones ambientales y procesos de elaboracion.
在农业中应用有机改良剂的好处是全世界都知道的;然而,关于这些有机肥料的营养含量和生物活性的研究很少。在多米尼加共和国,这些修正案在农业方面已经实施了20多年;但它们还没有被研究过。这项研究的目的是确定多米尼加共和国最常用的有机改进剂的物理化学和微生物特性,以及它们的制备来源。本研究的目的是确定在Jarabacoa、Espaillat、La Vega和Montecristi地区进行有机修正的方法。对43个样本进行了分析。结果表明,Jarabacoa植物“BPJ”型bokashi的有机质(om)值为44%,P (6.1%), K (3.6%), Ca(21.7%)和微量营养素(Mn和Zn)均高于其他bokashi。在堆肥材料中,MO含量最高(52%)的是Justino Peguero型“CJP”,但营养含量与其他堆肥相似。与bokashi和堆肥相比,蚯蚓腐殖质中MO含量较高(平均76%)。本研究的目的是评估有机改性剂的物理、化学和生物特性,这些特性随处理条件、制备所用材料的类型、环境条件和制备工艺而变化。
{"title":"CARACTERIZACIÓN FÍSICA-QUÍMICA Y BIOLÓGICA DE ENMIENDAS ORGÁNICAS APLICADAS EN LA PRODUCCIÓN DE CULTIVOS EN REPÚBLICA DOMINICANA","authors":"Aridio Pérez, Carlos Céspedes, P. Núñez","doi":"10.4067/S0718-27912008000300002","DOIUrl":"https://doi.org/10.4067/S0718-27912008000300002","url":null,"abstract":"Los beneficios de la aplicacion de enmiendas organicas en la agricultura son conocidos a nivel mundial; sin embargo, existen muy pocos estudios sobre los contenidos nutricionales y actividad biologica de estos fertilizantes organicos. En Republica Dominicana estas enmiendas son aplicadas en la agricultura hace mas de dos decadas; pero no han sido estudiadas. El objetivo de la investigacion fue determinar las caracteristicas fisica-quimicas y microbiologicas de las enmiendas organicas de mayor uso en Republica Dominicana, asi como las fuentes utilizadas para su preparacion. Las muestras de enmiendas organicas fueron recolectadas en las localidades de Jarabacoa, Espaillat, La Vega y Montecristi durante el periodo enero del 2005 a julio 2006. En total se analizaron 43 muestras. Los resultados demostraron que el tipo de bokashi de la planta Jarabacoa \"BPJ\" presento valores superiores de materia organica (MO) con 44%, P (6.1%), K (3.6%), Ca (21.7%) y micro nutrientes (Mn y Zn) que los otros bokashi evaluados. El mayor contenido de MO (52%) entre los materiales compostados se observo en el tipo Justino Peguero \"CJP\", pero con contenidos de nutrientes similares a los otros compost. El contenido de MO fue superior en humus de lombriz (76% promedio) comparado con los bokashi y los compost. Los resultados mostraron que las caracteristicas fisicas, quimicas y biologicas de las enmiendas organicas evaluadas varian con las condiciones de manejo, tipo de material utilizado en su preparacion, condiciones ambientales y procesos de elaboracion.","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"9 1","pages":"10-29"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89264737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-01-01DOI: 10.4067/S0718-27912008000400002
N. Bolan, B. Ko, C. Anderson, I. Vogeler
Unlike organic contaminants, most metals do not undergo microbial or chemical degradation and the total concentration of these metals in soils persists for a long time after their introduction (Adriano, 2003). With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest amongst the scientific community in the development of technologies to remediate contaminated sites. For diffuse distribution of metals (e.g. fertilizer-derived Cd input in pasture soils), remediation options generally include amelioration of soils to minimize the metal bioavailability. Bioavailability can be minimized through chemical and biological immobilisation of metals using a range of inorganic compounds, such as lime and phosphate (P) compounds (e.g. apatite rocks), and organic compounds, such as ‘exceptional quality’ biosolid (Figure 1; Bolan and Duraisamy, 2003). Reducing metal availability and maximizing plant growth through inactivation may also prove to be an effective method of
与有机污染物不同,大多数金属不会经历微生物或化学降解,这些金属在进入土壤后的总浓度会持续很长时间(Adriano, 2003)。随着公众越来越认识到受污染土壤对人类和动物健康的影响,科学界对开发修复受污染场地的技术越来越感兴趣。对于金属的弥漫性分布(例如,牧场土壤中肥料来源的Cd输入),补救方案通常包括改善土壤以尽量减少金属的生物可利用性。生物利用度可以通过使用一系列无机化合物(如石灰和磷酸盐(P)化合物(如磷灰石岩石)和有机化合物(如“优质”生物固体)对金属进行化学和生物固定来最小化(图1;Bolan and Duraisamy, 2003)。通过失活降低金属可利用性和最大化植物生长也可能被证明是一种有效的方法
{"title":"Solute Interactions in Soils in Relation to Bioavailability and Remediation of the Environment","authors":"N. Bolan, B. Ko, C. Anderson, I. Vogeler","doi":"10.4067/S0718-27912008000400002","DOIUrl":"https://doi.org/10.4067/S0718-27912008000400002","url":null,"abstract":"Unlike organic contaminants, most metals do not undergo microbial or chemical degradation and the total concentration of these metals in soils persists for a long time after their introduction (Adriano, 2003). With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest amongst the scientific community in the development of technologies to remediate contaminated sites. For diffuse distribution of metals (e.g. fertilizer-derived Cd input in pasture soils), remediation options generally include amelioration of soils to minimize the metal bioavailability. Bioavailability can be minimized through chemical and biological immobilisation of metals using a range of inorganic compounds, such as lime and phosphate (P) compounds (e.g. apatite rocks), and organic compounds, such as ‘exceptional quality’ biosolid (Figure 1; Bolan and Duraisamy, 2003). Reducing metal availability and maximizing plant growth through inactivation may also prove to be an effective method of","PeriodicalId":54472,"journal":{"name":"Revista De La Ciencia Del Suelo Y Nutricion Vegetal","volume":"36 2 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74097203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}