Pub Date : 2024-05-01DOI: 10.1016/j.paerosci.2024.101008
A. Zolghadri
The academic community has extensively studied fault management in dynamical and cyber-physical systems, leading to the development of various model-based and data-driven/learning-enabled methods. Although these advanced designs show promise for improving conventional practices in aircraft systems, there is a noticeable disparity between academic methodologies and the specific needs of the aviation industry. The paper begins with an examination of the current practices within the aviation industry alongside the academic state of the art. It highlights commonly overlooked issues that hinder the transition from laboratory development to practical flight applications. Looking ahead, the paper anticipates evolving needs driven by the transition towards greater autonomy and intelligence within connected and distributed cyber-physical flight environments. This includes the emerging trend towards the introduction of Single Pilot Operations (SPO). The paper presents an outline of a combined model-based/data-driven vision, under human oversight, to navigate this complex transition.
{"title":"A review of fault management issues in aircraft systems: Current status and future directions","authors":"A. Zolghadri","doi":"10.1016/j.paerosci.2024.101008","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101008","url":null,"abstract":"<div><p>The academic community has extensively studied fault management in dynamical and cyber-physical systems, leading to the development of various model-based and data-driven/learning-enabled methods. Although these advanced designs show promise for improving conventional practices in aircraft systems, there is a noticeable disparity between academic methodologies and the specific needs of the aviation industry. The paper begins with an examination of the current practices within the aviation industry alongside the academic state of the art. It highlights commonly overlooked issues that hinder the transition from laboratory development to practical flight applications. Looking ahead, the paper anticipates evolving needs driven by the transition towards greater autonomy and intelligence within connected and distributed cyber-physical flight environments. This includes the emerging trend towards the introduction of Single Pilot Operations (SPO). The paper presents an outline of a combined model-based/data-driven vision, under human oversight, to navigate this complex transition.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101008"},"PeriodicalIF":9.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.paerosci.2024.101020
Bo Zhang
Compared with traditional deflagration-based systems, detonation-based propulsion systems offer significant potential benefits in terms of efficiency and specific impulses in the field of advanced aerospace propulsion technologies. However, the successful implementation of these technologies faces several key challenges, particularly in achieving reliable, stable, and robust detonation wave propagation. This paper examines the use of Jet in Cross-Flow (JICF) as a means of enhancing detonation propulsion performance. The fundamental principles of the three main detonation propulsion systems are first outlined, along with the primary techniques employed to stimulate detonation wave propagation, such as the use of solid and fluidic obstacles. This paper provides an in-depth analysis of how JICF can be leveraged to improve the deflagration-to-detonation transition (DDT) and overall detonation propulsion. The influences of key JICF parameters, including the jet delay time, pressure, temperature, nozzle width, and location, are investigated in detail. The underlying flow physics and mechanisms by which the JICF enhances detonation are also explored, encompassing the formation of precursor shock waves, flow instabilities, flame evolution dynamics, etc. Finally, the practical application of the JICF in different detonation engines is discussed, highlighting the benefits it can provide in terms of improved operation, efficiency, and reliability. The current research challenges and future research directions for the application of JICF in detonation propulsion are discussed. The results present a thorough and up-to-date assessment of the state-of-the-art in utilizing JICF to advance the development of high-performance detonation-based propulsion systems.
{"title":"Enhancing detonation propulsion with jet in cross-flow: A comprehensive review","authors":"Bo Zhang","doi":"10.1016/j.paerosci.2024.101020","DOIUrl":"10.1016/j.paerosci.2024.101020","url":null,"abstract":"<div><p><span>Compared with traditional deflagration-based systems, detonation-based propulsion systems<span><span><span> offer significant potential benefits in terms of efficiency and specific impulses in the field of advanced aerospace propulsion technologies. However, the successful implementation of these technologies faces several key challenges, particularly in achieving reliable, stable, and robust </span>detonation wave<span> propagation. This paper examines the use of Jet in Cross-Flow (JICF) as a means of enhancing detonation propulsion performance. The fundamental principles of the three main detonation propulsion systems are first outlined, along with the primary techniques employed to stimulate detonation wave propagation, such as the use of solid and </span></span>fluidic obstacles. This paper provides an in-depth analysis of how JICF can be leveraged to improve the deflagration-to-detonation transition (DDT) and overall detonation propulsion. The influences of key JICF parameters, including the jet delay time, pressure, temperature, nozzle width, and location, are investigated in detail. The underlying flow </span></span>physics and mechanisms by which the JICF enhances detonation are also explored, encompassing the formation of precursor shock waves, flow instabilities, flame evolution dynamics, etc. Finally, the practical application of the JICF in different detonation engines is discussed, highlighting the benefits it can provide in terms of improved operation, efficiency, and reliability. The current research challenges and future research directions for the application of JICF in detonation propulsion are discussed. The results present a thorough and up-to-date assessment of the state-of-the-art in utilizing JICF to advance the development of high-performance detonation-based propulsion systems.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101020"},"PeriodicalIF":11.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.paerosci.2024.101018
Jie Yuan , Chiara Gastaldi , Enora Denimal Goy , Benjamin Chouvion
This paper presents a comprehensive review of recent advancements in modelling approaches, design strategies, and testing techniques applied to friction damping in turbomachinery. It critically evaluates experimental testing, design processes, and optimisation studies, along with the latest developments in numerical modelling techniques. The review begins with an overview of vibration mitigation methods and the historical development of friction dampers for bladed disk systems. Subsequent sections explore research efforts aimed at enhancing numerical and simulation modelling capabilities, encompassing contact friction models, reduced-order modelling methods, and numerical solvers suitable for real-world applications and industrial high-fidelity models. The paper also delves into available testing rigs for experimental validation and characterisation of various friction damper types, as well as the literature on uncertainty quantification in friction damping. It concludes by highlighting recent trends in novel concepts, modelling techniques, and testing technologies shaping the design of next-generation friction dampers.
{"title":"Friction damping for turbomachinery: A comprehensive review of modelling, design strategies, and testing capabilities","authors":"Jie Yuan , Chiara Gastaldi , Enora Denimal Goy , Benjamin Chouvion","doi":"10.1016/j.paerosci.2024.101018","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101018","url":null,"abstract":"<div><p>This paper presents a comprehensive review of recent advancements in modelling approaches, design strategies, and testing techniques applied to friction damping in turbomachinery. It critically evaluates experimental testing, design processes, and optimisation studies, along with the latest developments in numerical modelling techniques. The review begins with an overview of vibration mitigation methods and the historical development of friction dampers for bladed disk systems. Subsequent sections explore research efforts aimed at enhancing numerical and simulation modelling capabilities, encompassing contact friction models, reduced-order modelling methods, and numerical solvers suitable for real-world applications and industrial high-fidelity models. The paper also delves into available testing rigs for experimental validation and characterisation of various friction damper types, as well as the literature on uncertainty quantification in friction damping. It concludes by highlighting recent trends in novel concepts, modelling techniques, and testing technologies shaping the design of next-generation friction dampers.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101018"},"PeriodicalIF":9.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000447/pdfft?md5=86f88d315071120aa1d1bdfaa67b6d6e&pid=1-s2.0-S0376042124000447-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1016/j.paerosci.2024.100999
Dominique S. Hoskin, R. Loek Van Heyningen, Ngoc Cuong Nguyen, Jordi Vila-Pérez, Wesley L. Harris, Jaime Peraire
In recent years, high-order discontinuous Galerkin (DG) methods have emerged as an attractive approach for numerical simulations of compressible flows. This paper presents an overview of the recent development of DG methods for compressible flows with particular focus on hypersonic flows. First, we survey state-of-the-art DG methods for computational fluid dynamics. Next, we discuss both matrix-based and matrix-free iterative methods for the solution of discrete systems stemming from the spatial DG discretizations of the compressible Navier–Stokes equations. We then describe various shock capturing methods to deal with strong shock waves in hypersonic flows. We discuss adaptivity techniques to refine high-order meshes, and synthetic boundary conditions to simulate free-stream disturbances in hypersonic boundary layers. We present a few examples to demonstrate the ability of high-order DG methods to provide accurate solutions of hypersonic laminar flows. Furthermore, we present direct numerical simulations of hypersonic transitional flow past a flared cone at Reynolds number , and hypersonic transitional shock wave boundary layer interaction flow over a flat plate at Reynolds number . These simulations run entirely on hundreds of graphics processing units (GPUs) and demonstrate the ability of DG methods to directly resolve hypersonic transitional flows, even at high Reynolds numbers, without relying on transition or turbulence models. We end the paper by offering our perspectives on error estimation, turbulence modeling, and real gas effects in hypersonic flows.
{"title":"Discontinuous Galerkin methods for hypersonic flows","authors":"Dominique S. Hoskin, R. Loek Van Heyningen, Ngoc Cuong Nguyen, Jordi Vila-Pérez, Wesley L. Harris, Jaime Peraire","doi":"10.1016/j.paerosci.2024.100999","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.100999","url":null,"abstract":"<div><p>In recent years, high-order discontinuous Galerkin (DG) methods have emerged as an attractive approach for numerical simulations of compressible flows. This paper presents an overview of the recent development of DG methods for compressible flows with particular focus on hypersonic flows. First, we survey state-of-the-art DG methods for computational fluid dynamics. Next, we discuss both matrix-based and matrix-free iterative methods for the solution of discrete systems stemming from the spatial DG discretizations of the compressible Navier–Stokes equations. We then describe various shock capturing methods to deal with strong shock waves in hypersonic flows. We discuss adaptivity techniques to refine high-order meshes, and synthetic boundary conditions to simulate free-stream disturbances in hypersonic boundary layers. We present a few examples to demonstrate the ability of high-order DG methods to provide accurate solutions of hypersonic laminar flows. Furthermore, we present direct numerical simulations of hypersonic transitional flow past a flared cone at Reynolds number <span><math><mrow><mn>10</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>, and hypersonic transitional shock wave boundary layer interaction flow over a flat plate at Reynolds number <span><math><mrow><mn>3</mn><mo>.</mo><mn>97</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. These simulations run entirely on hundreds of graphics processing units (GPUs) and demonstrate the ability of DG methods to directly resolve hypersonic transitional flows, even at high Reynolds numbers, without relying on transition or turbulence models. We end the paper by offering our perspectives on error estimation, turbulence modeling, and real gas effects in hypersonic flows.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 100999"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1016/j.paerosci.2024.101007
Zhonghua Han , Jianling Qiao , Liwen Zhang , Qing Chen , Han Yang , Yulin Ding , Keshi Zhang , Wenping Song , Bifeng Song
Reducing the sonic boom to a community-acceptable level is a fundamental challenge in the configuration design of the next-generation supersonic transport aircraft. This paper conducts a survey of recent progress in developing efficient low-boom design and optimization methods, and provides a perspective on the state-of-the-art and future directions. First, the low- and high-fidelity sonic boom prediction methods used in metric of low-boom design are briefly introduced. Second, efficient low-boom inverse design methods are reviewed, such as the classic Jones–Seebass–George–Darden (JSGD) method (and its variants), the high-fidelity near-field-overpressure-based method, and the mixed-fidelity method. Third, direct numerical optimization methods for low-boom designs, including the gradient-, surrogate-, and deep-learning-based optimization methods, are reviewed. Fourth, the applications of low-boom design and optimization methods to representative low-boom configurations are discussed, and the challenging demands for commercially viable supersonic transports are presented. In addition to providing a comprehensive summary of the existing research, the practicality and effectiveness of the developed methods are assessed. Finally, key challenges are identified, and further research directions such as full-carpet-low-boom-driven multidisciplinary design optimization considering mission requirements are recommended.
{"title":"Recent progress of efficient low-boom design and optimization methods","authors":"Zhonghua Han , Jianling Qiao , Liwen Zhang , Qing Chen , Han Yang , Yulin Ding , Keshi Zhang , Wenping Song , Bifeng Song","doi":"10.1016/j.paerosci.2024.101007","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101007","url":null,"abstract":"<div><p>Reducing the sonic boom to a community-acceptable level is a fundamental challenge in the configuration design of the next-generation supersonic transport aircraft. This paper conducts a survey of recent progress in developing efficient low-boom design and optimization methods, and provides a perspective on the state-of-the-art and future directions. First, the low- and high-fidelity sonic boom prediction methods used in metric of low-boom design are briefly introduced. Second, efficient low-boom inverse design methods are reviewed, such as the classic Jones–Seebass–George–Darden (JSGD) method (and its variants), the high-fidelity near-field-overpressure-based method, and the mixed-fidelity method. Third, direct numerical optimization methods for low-boom designs, including the gradient-, surrogate-, and deep-learning-based optimization methods, are reviewed. Fourth, the applications of low-boom design and optimization methods to representative low-boom configurations are discussed, and the challenging demands for commercially viable supersonic transports are presented. In addition to providing a comprehensive summary of the existing research, the practicality and effectiveness of the developed methods are assessed. Finally, key challenges are identified, and further research directions such as full-carpet-low-boom-driven multidisciplinary design optimization considering mission requirements are recommended.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 101007"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000332/pdfft?md5=1c50a50d52fa19275511969b31171690&pid=1-s2.0-S0376042124000332-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The history of satellite development is at an inflection point: around half of all countries have made and launched satellites, while another half has not. In this context, the time appears right to take stock of lessons learnt from the development of country-first domestic satellites. These are defined as the first to have been designed, assembled, integrated, and/or tested with significant input from local engineers. This paper reviews, for the first time, the genealogy of the 90 country-first domestic satellites launched into orbit to date. The comprehensive, trans-disciplinary analysis is based on an extensive literature review in multiple languages. Firstly, a family tree of country-first domestic satellites is constructed, mapping out important stakeholders and lineages. Four major generations are identified. Although country-first domestic satellites are often associated with domestic identity, they are without exception the product of international collaboration and technological exchanges. In parallel, a growing global market for satellite development and launch services has played an increasingly important role in their development even in the absence of official country-to-country collaborations. Secondly, the birth traits, life, death, and legacy of such satellites is reviewed in detail. Sustainability of the Earth’s orbital environment has typically not been prioritised by mission teams. Most countries having developed a first domestic satellite have also developed a second, but there have been more one-off firsts since the 1990s: microsatellites and CubeSats can be used to test the waters of space engineering without having to make a big commitment. Looking to the future, access to a domestic satellite is becoming easier and easier. The challenge is instead shifting towards ensuring that such an initiative is actually aligned with domestic industry, technologies, and STEM education, as well as sustainability of the Earth’s orbital environment. Long-term planning and vision are important in this regard. It is hoped that this review paper will provide a useful reference point for space historians, policymakers, and the pioneers of diverse new satellite missions.
{"title":"Country-first domestic satellites: A family tree","authors":"Maximilien Berthet , Shinichi Nakasuka , Mengu Cho , Kojiro Suzuki","doi":"10.1016/j.paerosci.2024.100997","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.100997","url":null,"abstract":"<div><p>The history of satellite development is at an inflection point: around half of all countries have made and launched satellites, while another half has not. In this context, the time appears right to take stock of lessons learnt from the development of country-first domestic satellites. These are defined as the first to have been designed, assembled, integrated, and/or tested with significant input from local engineers. This paper reviews, for the first time, the genealogy of the 90 country-first domestic satellites launched into orbit to date. The comprehensive, trans-disciplinary analysis is based on an extensive literature review in multiple languages. Firstly, a family tree of country-first domestic satellites is constructed, mapping out important stakeholders and lineages. Four major generations are identified. Although country-first domestic satellites are often associated with domestic identity, they are without exception the product of international collaboration and technological exchanges. In parallel, a growing global market for satellite development and launch services has played an increasingly important role in their development even in the absence of official country-to-country collaborations. Secondly, the birth traits, life, death, and legacy of such satellites is reviewed in detail. Sustainability of the Earth’s orbital environment has typically not been prioritised by mission teams. Most countries having developed a first domestic satellite have also developed a second, but there have been more one-off firsts since the 1990s: microsatellites and CubeSats can be used to test the waters of space engineering without having to make a big commitment. Looking to the future, access to a domestic satellite is becoming easier and easier. The challenge is instead shifting towards ensuring that such an initiative is actually aligned with domestic industry, technologies, and STEM education, as well as sustainability of the Earth’s orbital environment. Long-term planning and vision are important in this regard. It is hoped that this review paper will provide a useful reference point for space historians, policymakers, and the pioneers of diverse new satellite missions.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 100997"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140547147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review article offers an in-depth analysis of cooperative motion planning and control in aerial-ground autonomous systems, emphasizing their methods and applications. It explores the integration of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), focusing on their synchronized planning and control mechanisms that enable efficient task execution in various settings, such as disaster response, environmental monitoring, and urban surveillance. The article addresses the motion planning strategies, and control mechanisms, while also highlighting the challenges and future trends in this domain. It serves as a comprehensive resource, shedding light on both the potentials and limitations of these systems, thereby providing valuable insights for researchers and practitioners in the field of autonomous systems.
{"title":"Cooperative motion planning and control for aerial-ground autonomous systems: Methods and applications","authors":"Runqi Chai , Yunlong Guo , Zongyu Zuo , Kaiyuan Chen , Hyo-Sang Shin , Antonios Tsourdos","doi":"10.1016/j.paerosci.2024.101005","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101005","url":null,"abstract":"<div><p>This review article offers an in-depth analysis of cooperative motion planning and control in aerial-ground autonomous systems, emphasizing their methods and applications. It explores the integration of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), focusing on their synchronized planning and control mechanisms that enable efficient task execution in various settings, such as disaster response, environmental monitoring, and urban surveillance. The article addresses the motion planning strategies, and control mechanisms, while also highlighting the challenges and future trends in this domain. It serves as a comprehensive resource, shedding light on both the potentials and limitations of these systems, thereby providing valuable insights for researchers and practitioners in the field of autonomous systems.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 101005"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140548834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aero-optical effects have received increasing attention in recent decades with the continuous development of high-speed missiles’ imaging guidance systems, airborne laser systems, and laser communication systems. Numerous experiments and engineering practices have shown that the aero-optical effects of the supersonic turbulent shear layer can reveal the essential characteristics of general aero-optical effects. Practical engineering problems related to aero-optical effects are often the result of the superposition of the aero-optical effects of multiple shear layers. This paper mainly studies the shear layers represented by the supersonic turbulent boundary layers, mixing layers, and wall jets. The latest research progress on aero-optical effects is summarized to provide a reference for suppressing aero-optical distortion through flow control and adaptive optical correction.
{"title":"Research progress in aero-optical effects of supersonic turbulent shear layers","authors":"Hao-lin Ding , Zi-hao Xia , Shi-he Yi , Qiong Gao , Tian Jiang","doi":"10.1016/j.paerosci.2024.101006","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101006","url":null,"abstract":"<div><p>Aero-optical effects have received increasing attention in recent decades with the continuous development of high-speed missiles’ imaging guidance systems, airborne laser systems, and laser communication systems. Numerous experiments and engineering practices have shown that the aero-optical effects of the supersonic turbulent shear layer can reveal the essential characteristics of general aero-optical effects. Practical engineering problems related to aero-optical effects are often the result of the superposition of the aero-optical effects of multiple shear layers. This paper mainly studies the shear layers represented by the supersonic turbulent boundary layers, mixing layers, and wall jets. The latest research progress on aero-optical effects is summarized to provide a reference for suppressing aero-optical distortion through flow control and adaptive optical correction.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 101006"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-29DOI: 10.1016/j.paerosci.2024.100995
Israel Wygnanski
The pressure distribution on a surface, over which a wall-jet is blowing, is altered by the wall jet's entrainment. It renders the boundary layer approximation – that justifies the use of an inviscid flow solution to determine the pressure over the surface – invalid. Thus, in order for Active Flow Control (AFC) by blowing to become a viable technology, some of the preconceptions associated with Boundary Layer Control (BLC) for many decades must be discarded. In particular, the momentum coefficient used to characterize BLC should be replaced by another variable that represents a conserved quantity that is independent of specific installations. Injected momentum is a vector quantity whose effect on a surface like a wing depends on its specific design, location, and orientation. Therefore, a new approach is proposed based on the AFC system's power consumption and its mass flowrate. Moreover, all flow installations suffer from unavoidable losses, which must be determined in an unambiguous manner, allowing for an impartial comparison of AFC systems. The present article provides examples from tests carried out at various universities and at NASA, exposing some popular misconceptions. It does not provide a design tool due to the complexity of the needed approach, but a method to assess the efficacy and efficiency of an evolving platform that includes AFC is suggested.
壁面喷流吹过的表面上的压力分布会因壁面喷流的夹带而改变。这使得边界层近似值失效,而边界层近似值正是使用不粘性流解决方案来确定表面压力的依据。因此,为了使吹气主动流控制(AFC)成为一项可行的技术,必须摒弃几十年来与边界层控制(BLC)相关的一些先入之见。特别是,用于描述 BLC 特性的动量系数应由另一个变量取代,该变量代表一个与具体安装无关的守恒量。注入动量是一个矢量,它对机翼等表面的影响取决于机翼的具体设计、位置和方向。因此,我们提出了一种基于 AFC 系统功耗和质量流量的新方法。此外,所有流量装置都会产生不可避免的损耗,必须以明确的方式确定这些损耗,以便对 AFC 系统进行公正的比较。本文提供了在多所大学和美国国家航空航天局(NASA)进行的测试实例,揭露了一些普遍存在的误解。由于所需方法的复杂性,本文并未提供设计工具,但提出了一种方法,用于评估包含自动变流控制器的不断发展的平台的功效和效率。
{"title":"On the need to reassess the design tools for active flow control","authors":"Israel Wygnanski","doi":"10.1016/j.paerosci.2024.100995","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.100995","url":null,"abstract":"<div><p>The pressure distribution on a surface, over which a wall-jet is blowing, is altered by the wall jet's entrainment. It renders the boundary layer approximation – that justifies the use of an inviscid flow solution to determine the pressure over the surface – invalid. Thus, in order for Active Flow Control (AFC) by blowing to become a viable technology, some of the preconceptions associated with Boundary Layer Control (BLC) for many decades must be discarded. In particular, the momentum coefficient used to characterize BLC should be replaced by another variable that represents a conserved quantity that is independent of specific installations. Injected momentum is a vector quantity whose effect on a surface like a wing depends on its specific design, location, and orientation. Therefore, a new approach is proposed based on the AFC system's power consumption and its mass flowrate. Moreover, all flow installations suffer from unavoidable losses, which must be determined in an unambiguous manner, allowing for an impartial comparison of AFC systems. The present article provides examples from tests carried out at various universities and at NASA, exposing some popular misconceptions. It does not provide a design tool due to the complexity of the needed approach, but a method to assess the efficacy and efficiency of an evolving platform that includes AFC is suggested.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 100995"},"PeriodicalIF":9.6,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-18DOI: 10.1016/j.paerosci.2024.100996
Yang Zhang , Louis Cattafesta , Kyle Pascioni , Meelan Choudhari
This paper reviews several decades’ worth of research on the topic of slat noise arising from high-lift systems of commercial aircraft. A high-lift system is commonly used for providing additional lift by deploying the leading-edge slat(s) and trailing-edge flap(s) during the takeoff and landing phases of flight. Slat noise can be one of the main sources of airframe noise, along with the deployed landing gear, and airframe noise can be dominant during the approach phase when aircraft engine noise is reduced. This review synthesizes historical investigations related to the generation/radiation of slat noise, including both experimental and numerical approaches. Characteristics of noise and corresponding generation mechanisms have been well investigated, and numerical tools have been developed to predict noise levels. Scaling laws to map the results from models to real aircraft are proposed based on the combined analytical and experimental investigations. Noise-reduction technologies are also discussed.
{"title":"Slat noise in high-lift systems","authors":"Yang Zhang , Louis Cattafesta , Kyle Pascioni , Meelan Choudhari","doi":"10.1016/j.paerosci.2024.100996","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.100996","url":null,"abstract":"<div><p>This paper reviews several decades’ worth of research on the topic of slat noise arising from high-lift systems of commercial aircraft. A high-lift system is commonly used for providing additional lift by deploying the leading-edge slat(s) and trailing-edge flap(s) during the takeoff and landing phases of flight. Slat noise can be one of the main sources of airframe noise, along with the deployed landing gear, and airframe noise can be dominant during the approach phase when aircraft engine noise is reduced. This review synthesizes historical investigations related to the generation/radiation of slat noise, including both experimental and numerical approaches. Characteristics of noise and corresponding generation mechanisms have been well investigated, and numerical tools have been developed to predict noise levels. Scaling laws to map the results from models to real aircraft are proposed based on the combined analytical and experimental investigations. Noise-reduction technologies are also discussed.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 100996"},"PeriodicalIF":9.6,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140160777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}