Lihu Wang, Xuemei Liu, Yang Liu, Hairui Li, Jiaqi Liu
Abstract The emergency plans for water diversion projects suffer from weak knowledge correlation, inadequate timeliness, and insufficient support for intelligent decision-making. This study incorporates knowledge graph technology to enable intelligent recommendations for emergency plans in water diversion projects. By employing pre-trained language models (PTMs) with entity masking, the model's ability to recognize domain-specific entities is enhanced. By leveraging matrix-based two-dimensional transformations and feature recombination, an interactive convolutional neural network (ICNN) is constructed to enhance the processing capability of complex relationships. By integrating PTM with ICNN, a PTM–ICNN method for joint extraction of emergency entity relationships is constructed. By utilizing the Neo4j graph database to store emergency entity relationships, an emergency knowledge graph is constructed. By employing the mutual information criterion, intelligent retrieval and recommendation of emergency plans are achieved. The results demonstrate that the proposed approach achieves high extraction accuracy (F1 score of 91.33%) and provides reliable recommendations for emergency plans. This study can significantly enhance the level of intelligent emergency management in water diversion projects, thereby mitigating the impact of unforeseen events on engineering safety.
{"title":"Knowledge-driven intelligent recommendation method for emergency plans in water diversion projects","authors":"Lihu Wang, Xuemei Liu, Yang Liu, Hairui Li, Jiaqi Liu","doi":"10.2166/hydro.2023.251","DOIUrl":"https://doi.org/10.2166/hydro.2023.251","url":null,"abstract":"Abstract The emergency plans for water diversion projects suffer from weak knowledge correlation, inadequate timeliness, and insufficient support for intelligent decision-making. This study incorporates knowledge graph technology to enable intelligent recommendations for emergency plans in water diversion projects. By employing pre-trained language models (PTMs) with entity masking, the model's ability to recognize domain-specific entities is enhanced. By leveraging matrix-based two-dimensional transformations and feature recombination, an interactive convolutional neural network (ICNN) is constructed to enhance the processing capability of complex relationships. By integrating PTM with ICNN, a PTM–ICNN method for joint extraction of emergency entity relationships is constructed. By utilizing the Neo4j graph database to store emergency entity relationships, an emergency knowledge graph is constructed. By employing the mutual information criterion, intelligent retrieval and recommendation of emergency plans are achieved. The results demonstrate that the proposed approach achieves high extraction accuracy (F1 score of 91.33%) and provides reliable recommendations for emergency plans. This study can significantly enhance the level of intelligent emergency management in water diversion projects, thereby mitigating the impact of unforeseen events on engineering safety.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135168283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kegong Diao, Michael Emmerich, Jacob Lan, Iryna Yevseyeva, Robert Sitzenfrei
Abstract This paper introduces a multi-objective optimisation approach for the challenging problem of efficient sensor placement in water distribution networks for contamination detection. An important question is how to identify the minimal number of required sensors without losing the capacity to monitor the system as a whole. In this study, we adapted the NSGA-II multi-objective optimisation method by applying centrality mutation. The approach, with two objectives, namely the minimisation of Expected Time of Detection and maximisation of Detection Network Coverage (which computes the number of detected water contamination events), is tested on a moderate-sized benchmark problem (129 nodes). The resulting Pareto front shows that detection network coverage can improve dramatically by deploying only a few sensors (e.g. increase from one sensor to three sensors). However, after reaching a certain number of sensors (e.g. 20 sensors), the effectiveness of further increasing the number of sensors is not apparent. Further, the results confirm that 40–45 sensors (i.e. 31 − 35% of the total number of nodes) will be sufficient for fully monitoring the benchmark network, i.e. for detection of any contaminant intrusion event no matter where it appears in the network.
{"title":"Sensor placement in water distribution networks using centrality-guided multi-objective optimisation","authors":"Kegong Diao, Michael Emmerich, Jacob Lan, Iryna Yevseyeva, Robert Sitzenfrei","doi":"10.2166/hydro.2023.057","DOIUrl":"https://doi.org/10.2166/hydro.2023.057","url":null,"abstract":"Abstract This paper introduces a multi-objective optimisation approach for the challenging problem of efficient sensor placement in water distribution networks for contamination detection. An important question is how to identify the minimal number of required sensors without losing the capacity to monitor the system as a whole. In this study, we adapted the NSGA-II multi-objective optimisation method by applying centrality mutation. The approach, with two objectives, namely the minimisation of Expected Time of Detection and maximisation of Detection Network Coverage (which computes the number of detected water contamination events), is tested on a moderate-sized benchmark problem (129 nodes). The resulting Pareto front shows that detection network coverage can improve dramatically by deploying only a few sensors (e.g. increase from one sensor to three sensors). However, after reaching a certain number of sensors (e.g. 20 sensors), the effectiveness of further increasing the number of sensors is not apparent. Further, the results confirm that 40–45 sensors (i.e. 31 − 35% of the total number of nodes) will be sufficient for fully monitoring the benchmark network, i.e. for detection of any contaminant intrusion event no matter where it appears in the network.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135273246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bulat Kerimov, Roberto Bentivoglio, Alexander Garzón, Elvin Isufi, Franz Tscheikner-Gratl, David Bernhard Steffelbauer, Riccardo Taormina
Abstract Metamodels accurately reproduce the output of physics-based hydraulic models with a significant reduction in simulation times. They are widely employed in water distribution system (WDS) analysis since they enable computationally expensive applications in the design, control, and optimisation of water networks. Recent machine-learning-based metamodels grant improved fidelity and speed; however, they are only applicable to the water network they were trained on. To address this issue, we investigate graph neural networks (GNNs) as metamodels for WDSs. GNNs leverage the networked structure of WDS by learning shared coefficients and thus offering the potential of transferability. This work evaluates the suitability of GNNs as metamodels for estimating nodal pressures in steady-state EPANET simulations. We first compare the effectiveness of GNN metamodels against multi-layer perceptrons (MLPs) on several benchmark WDSs. Then, we explore the transferability of GNNs by training them concurrently on multiple WDSs. For each configuration, we calculate model accuracy and speedups with respect to the original numerical model. GNNs perform similarly to MLPs in terms of accuracy and take longer to execute but may still provide substantial speedup. Our preliminary results indicate that GNNs can learn shared representations across networks, although assessing the feasibility of truly general metamodels requires further work.
{"title":"Assessing the performances and transferability of graph neural network metamodels for water distribution systems","authors":"Bulat Kerimov, Roberto Bentivoglio, Alexander Garzón, Elvin Isufi, Franz Tscheikner-Gratl, David Bernhard Steffelbauer, Riccardo Taormina","doi":"10.2166/hydro.2023.031","DOIUrl":"https://doi.org/10.2166/hydro.2023.031","url":null,"abstract":"Abstract Metamodels accurately reproduce the output of physics-based hydraulic models with a significant reduction in simulation times. They are widely employed in water distribution system (WDS) analysis since they enable computationally expensive applications in the design, control, and optimisation of water networks. Recent machine-learning-based metamodels grant improved fidelity and speed; however, they are only applicable to the water network they were trained on. To address this issue, we investigate graph neural networks (GNNs) as metamodels for WDSs. GNNs leverage the networked structure of WDS by learning shared coefficients and thus offering the potential of transferability. This work evaluates the suitability of GNNs as metamodels for estimating nodal pressures in steady-state EPANET simulations. We first compare the effectiveness of GNN metamodels against multi-layer perceptrons (MLPs) on several benchmark WDSs. Then, we explore the transferability of GNNs by training them concurrently on multiple WDSs. For each configuration, we calculate model accuracy and speedups with respect to the original numerical model. GNNs perform similarly to MLPs in terms of accuracy and take longer to execute but may still provide substantial speedup. Our preliminary results indicate that GNNs can learn shared representations across networks, although assessing the feasibility of truly general metamodels requires further work.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syed Zohaib Hassan, Peng Patrick Sun, Mert Gokgoz, Jiannan Chen, Debra Reinhart, Sarah Gustitus-Graham
Abstract Municipal solid waste (MSW) landfills need regular monitoring to ensure proper operations and meet environmental protection requirements. One requirement is to monitor landfill gas emissions from the landfill cover while another requirement is to monitor the potential settlement and damage to MSW landfill covers. Current surveying methods on a landfill cover are time- and labor-intensive and have limited spatial coverage. Landfill operators and researchers have developed unmanned aerial vehicle (UAV)-based monitoring over recent years; however, UAV-based automatic detection of water ponding in landfills has not been studied. Hence, this study proposes a UAV-based approach to monitor landfills and detect water ponding issues on covers by using multimodal sensor fusion. Data acquired from sensors mounted on a UAV were combined, leading to the creation of a ponding index (PI). This index was used to detect potential ponding sites or areas of topographical depression. The proposed approach has been applied in a case study of a closed MSW landfill before and after Hurricane Ian. A comparison between the generated PI map and a manual survey revealed a satisfactory performance with an IoU score of 70.74%. Hence, the utilization of UAV-based data fusing and the developed PI offers efficient identification of potential ponding areas.
{"title":"UAV-based approach for municipal solid waste landfill monitoring and water ponding issue detection using sensor fusion","authors":"Syed Zohaib Hassan, Peng Patrick Sun, Mert Gokgoz, Jiannan Chen, Debra Reinhart, Sarah Gustitus-Graham","doi":"10.2166/hydro.2023.195","DOIUrl":"https://doi.org/10.2166/hydro.2023.195","url":null,"abstract":"Abstract Municipal solid waste (MSW) landfills need regular monitoring to ensure proper operations and meet environmental protection requirements. One requirement is to monitor landfill gas emissions from the landfill cover while another requirement is to monitor the potential settlement and damage to MSW landfill covers. Current surveying methods on a landfill cover are time- and labor-intensive and have limited spatial coverage. Landfill operators and researchers have developed unmanned aerial vehicle (UAV)-based monitoring over recent years; however, UAV-based automatic detection of water ponding in landfills has not been studied. Hence, this study proposes a UAV-based approach to monitor landfills and detect water ponding issues on covers by using multimodal sensor fusion. Data acquired from sensors mounted on a UAV were combined, leading to the creation of a ponding index (PI). This index was used to detect potential ponding sites or areas of topographical depression. The proposed approach has been applied in a case study of a closed MSW landfill before and after Hurricane Ian. A comparison between the generated PI map and a manual survey revealed a satisfactory performance with an IoU score of 70.74%. Hence, the utilization of UAV-based data fusing and the developed PI offers efficient identification of potential ponding areas.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136294775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This research introduces a novel nonlinear Muskingum model for river flood routing, aiming to enhance accuracy in modeling. It integrates lateral inflows using the Whale Optimization Algorithm (WOA) and employs a distributed Muskingum model, dividing river reaches into smaller intervals for precise calculations. The primary goal is to minimize the Sum of Square Errors (SSE) between the observed and modeled outflows. Our methodology is applied to six distinct flood hydrographs, revealing its versatility and efficacy. For Lawler's and Dinavar's flood data, the single-reach Muskingum model outperforms multi-reach versions, demonstrating its effectiveness in handling lateral inflows. For Lawler's data, the single-reach model (NR = 1) yields optimal parameters of K = 0.392, x = 0.027, m = 1.511, and β = 0.010, delivering superior results. Conversely, when fitting flood data from Wilson, Wye, Linsley, and Viessman and Lewis, the multi-reach Muskingum model exhibits better overall performance. Remarkably, the model excels with the Viessman and Lewis flood data, especially with two reaches (NR = 2), achieving a 21.6% SSE improvement while employing the same parameter set. This research represents a significant advancement in flood modeling, offering heightened accuracy and adaptability in river flood routing.
摘要为了提高模型的准确性,提出了一种新的非线性河流洪水路径模型。它使用鲸鱼优化算法(WOA)集成横向流入,并采用分布式Muskingum模型,将河流划分为更小的间隔以进行精确计算。主要目标是最小化观测到的和模拟流出之间的平方和误差(SSE)。我们的方法应用于六个不同的洪水水文,揭示了它的多功能性和有效性。对于Lawler和Dinavar的洪水数据,单河段Muskingum模型优于多河段模型,证明了其在处理横向流入方面的有效性。对于Lawler的数据,单步模型(NR = 1)的最优参数为K = 0.392, x = 0.027, m = 1.511, β = 0.010,具有较好的效果。相反,当拟合Wilson、Wye、Linsley、Viessman和Lewis的洪水数据时,多河段Muskingum模型表现出更好的整体性能。值得注意的是,该模型在Viessman和Lewis洪水数据上表现出色,特别是在两条河段(NR = 2)时,在使用相同参数集的情况下,SSE提高了21.6%。这项研究代表了洪水建模的重大进步,提高了河流洪水路径的准确性和适应性。
{"title":"Distributed Muskingum model with a Whale Optimization Algorithm for river flood routing","authors":"Vida Atashi, Reza Barati, Yeo Howe Lim","doi":"10.2166/hydro.2023.029","DOIUrl":"https://doi.org/10.2166/hydro.2023.029","url":null,"abstract":"Abstract This research introduces a novel nonlinear Muskingum model for river flood routing, aiming to enhance accuracy in modeling. It integrates lateral inflows using the Whale Optimization Algorithm (WOA) and employs a distributed Muskingum model, dividing river reaches into smaller intervals for precise calculations. The primary goal is to minimize the Sum of Square Errors (SSE) between the observed and modeled outflows. Our methodology is applied to six distinct flood hydrographs, revealing its versatility and efficacy. For Lawler's and Dinavar's flood data, the single-reach Muskingum model outperforms multi-reach versions, demonstrating its effectiveness in handling lateral inflows. For Lawler's data, the single-reach model (NR = 1) yields optimal parameters of K = 0.392, x = 0.027, m = 1.511, and β = 0.010, delivering superior results. Conversely, when fitting flood data from Wilson, Wye, Linsley, and Viessman and Lewis, the multi-reach Muskingum model exhibits better overall performance. Remarkably, the model excels with the Viessman and Lewis flood data, especially with two reaches (NR = 2), achieving a 21.6% SSE improvement while employing the same parameter set. This research represents a significant advancement in flood modeling, offering heightened accuracy and adaptability in river flood routing.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The discharge estimation in rivers is crucial in implementing flood management techniques and essential flood defence and drainage systems. During the normal flood season, water flows solely in the main channel. During a flood, rivers comprise a main channel and floodplains, collectively called a compound channel. Computing the discharge is challenging in non-prismatic compound channels where the floodplains converge or diverge in a longitudinal direction. Various soft computing techniques have nowadays become popular in the field of water resource engineering to solve these complex problems. This paper uses a hybrid soft computing technique – artificial neural network and particle swarm optimization (ANN–PSO) and multivariate adaptive regression splines (MARS) to model the discharge in non-prismatic compound open channels. The analysis considers nine non-dimensional parameters – bed slope, relative flow depth, relative longitudinal distance, hydraulic radius ratio, angle of convergence or divergence, flow aspect ratio, relative friction factor, and area ratio – as influencing factors. A gamma test is carried out to determine the optimal combination of input variables. The developed MARS model has produced satisfactory results, with a mean absolute percentage error (MAPE) of less than 7% and an R2 value of more than 0.90.
{"title":"Discharge estimation in a compound channel with converging and diverging floodplains using ANN–PSO and MARS","authors":"Divyanshu Shekhar, Bhabani Shankar Das, Kamalini Devi, Jnana Ranjan Khuntia, Tapas Karmaker","doi":"10.2166/hydro.2023.145","DOIUrl":"https://doi.org/10.2166/hydro.2023.145","url":null,"abstract":"Abstract The discharge estimation in rivers is crucial in implementing flood management techniques and essential flood defence and drainage systems. During the normal flood season, water flows solely in the main channel. During a flood, rivers comprise a main channel and floodplains, collectively called a compound channel. Computing the discharge is challenging in non-prismatic compound channels where the floodplains converge or diverge in a longitudinal direction. Various soft computing techniques have nowadays become popular in the field of water resource engineering to solve these complex problems. This paper uses a hybrid soft computing technique – artificial neural network and particle swarm optimization (ANN–PSO) and multivariate adaptive regression splines (MARS) to model the discharge in non-prismatic compound open channels. The analysis considers nine non-dimensional parameters – bed slope, relative flow depth, relative longitudinal distance, hydraulic radius ratio, angle of convergence or divergence, flow aspect ratio, relative friction factor, and area ratio – as influencing factors. A gamma test is carried out to determine the optimal combination of input variables. The developed MARS model has produced satisfactory results, with a mean absolute percentage error (MAPE) of less than 7% and an R2 value of more than 0.90.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135149379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akshita Bassi, Ajaz Ahmad Mir, Bimlesh Kumar, Mahesh Patel
Abstract A fundamental issue in the hydraulics of movable bed channels is the measurement of friction factor (λ), which represents the head loss because of hydraulic resistance. The execution of experiments in the laboratory hinders the predictability of λ over a short period of time. The major challenges that arise with traditional forecasting approaches are due to their subjective nature and reliance on various assumptions. Therefore, advanced machine learning (ML) and artificial intelligence approaches can be utilized to overcome this tedious task. Here, eight different ML techniques have been employed to predict the λ using eight different input features. To compare the performance of models, various error metrics have been assessed and compared. The graphical inferences from heatmap data visualization, Taylor diagram, sensitivity analysis, and parametric analysis with different input scenarios (ISs) have been carried out. Based on the outcome of the study, it has been observed that K Star in the IS1 with correlation coefficient (R2) value equal to 0.9716 followed by M5 Prime (0.9712) and Random Forest (0.9603) in IS2 and IS4, respectively, have provided better results as compared to the other ML models to predict λ in terms of least errors.
{"title":"A comprehensive study of various regressions and deep learning approaches for the prediction of friction factor in mobile bed channels","authors":"Akshita Bassi, Ajaz Ahmad Mir, Bimlesh Kumar, Mahesh Patel","doi":"10.2166/hydro.2023.246","DOIUrl":"https://doi.org/10.2166/hydro.2023.246","url":null,"abstract":"Abstract A fundamental issue in the hydraulics of movable bed channels is the measurement of friction factor (λ), which represents the head loss because of hydraulic resistance. The execution of experiments in the laboratory hinders the predictability of λ over a short period of time. The major challenges that arise with traditional forecasting approaches are due to their subjective nature and reliance on various assumptions. Therefore, advanced machine learning (ML) and artificial intelligence approaches can be utilized to overcome this tedious task. Here, eight different ML techniques have been employed to predict the λ using eight different input features. To compare the performance of models, various error metrics have been assessed and compared. The graphical inferences from heatmap data visualization, Taylor diagram, sensitivity analysis, and parametric analysis with different input scenarios (ISs) have been carried out. Based on the outcome of the study, it has been observed that K Star in the IS1 with correlation coefficient (R2) value equal to 0.9716 followed by M5 Prime (0.9712) and Random Forest (0.9603) in IS2 and IS4, respectively, have provided better results as compared to the other ML models to predict λ in terms of least errors.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135591656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Bezerra Barros, Rui Gabriel Souza, Gustavo Meirelles, Bruno Brentan
Abstract Leakages in water distribution networks (WDNs) affect the hydraulic state of the entire or a large part of the network. Statistical correlation computed among pressure sensors monitoring network nodes aids the detection and localization of such leaks. This opens the possibility to work with water network databases, where graph signal processing (GSP) tools aid in understanding changes in pressure signals due to leakages in the hydraulic system. This paper presents a methodology for time-varying pressure signals on graph structures. The core of this methodology is based on changing of pressure, due to leaks, that modifies the graph structure. Computing for each time step a new topology of the graph and applying centrality analysis based on PageRank, it is possible to identify the presence of new leaks at the water system. A confusion matrix evaluates the precision of the proposed methodology on defining where and when such leakages start and end. Seven leaks are used to validate the process, which presented 86% in accuracy terms. The results show the benefits of the method in terms of speed, computational efficiency, and precision in detecting leakages.
{"title":"Leak detection in water distribution networks based on graph signal processing of pressure data","authors":"Daniel Bezerra Barros, Rui Gabriel Souza, Gustavo Meirelles, Bruno Brentan","doi":"10.2166/hydro.2023.047","DOIUrl":"https://doi.org/10.2166/hydro.2023.047","url":null,"abstract":"Abstract Leakages in water distribution networks (WDNs) affect the hydraulic state of the entire or a large part of the network. Statistical correlation computed among pressure sensors monitoring network nodes aids the detection and localization of such leaks. This opens the possibility to work with water network databases, where graph signal processing (GSP) tools aid in understanding changes in pressure signals due to leakages in the hydraulic system. This paper presents a methodology for time-varying pressure signals on graph structures. The core of this methodology is based on changing of pressure, due to leaks, that modifies the graph structure. Computing for each time step a new topology of the graph and applying centrality analysis based on PageRank, it is possible to identify the presence of new leaks at the water system. A confusion matrix evaluates the precision of the proposed methodology on defining where and when such leakages start and end. Seven leaks are used to validate the process, which presented 86% in accuracy terms. The results show the benefits of the method in terms of speed, computational efficiency, and precision in detecting leakages.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136344090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Asucena Rodriguez-Ramirez, Óscar Arturo Fuentes-Mariles
Abstract The analysis of the spatial and temporal distribution of storm events contributes to a better use of water resources, for example, the supply of drinking water, irrigation practices, electricity generation and management of extreme events to control floods and mitigate droughts, among others. The traditional observation of rainfall fields in Mexico has been carried out using rain gauge network data, but their spatial representativeness is unsatisfactory. Therefore, this study reviewed the possibility of obtaining better estimates of the spatial distribution of daily rainfall considering information from three different databases, which include rain gauge measurements and remotely sensed precipitation products of satellite systems and weather radars. In order to determine a two-dimensional rainfall distribution, the information has been merged with a sequential data assimilation scheme up to the diagnostic stage, paying attention to the benefit that the rain gauge network density has on the estimation. With the application of the Barnes method, historical events in the Mexican territory were analyzed using statistical parameters for the validation of the estimates, with satisfactory results because the assimilated rainfalls turned out to be better approximations than the values calculated with the individual databases, even for a not very low density of surface observations.
{"title":"Daily rainfall assimilation based on satellite and weather radar precipitation products along with rain gauge networks","authors":"Maria Asucena Rodriguez-Ramirez, Óscar Arturo Fuentes-Mariles","doi":"10.2166/hydro.2023.104","DOIUrl":"https://doi.org/10.2166/hydro.2023.104","url":null,"abstract":"Abstract The analysis of the spatial and temporal distribution of storm events contributes to a better use of water resources, for example, the supply of drinking water, irrigation practices, electricity generation and management of extreme events to control floods and mitigate droughts, among others. The traditional observation of rainfall fields in Mexico has been carried out using rain gauge network data, but their spatial representativeness is unsatisfactory. Therefore, this study reviewed the possibility of obtaining better estimates of the spatial distribution of daily rainfall considering information from three different databases, which include rain gauge measurements and remotely sensed precipitation products of satellite systems and weather radars. In order to determine a two-dimensional rainfall distribution, the information has been merged with a sequential data assimilation scheme up to the diagnostic stage, paying attention to the benefit that the rain gauge network density has on the estimation. With the application of the Barnes method, historical events in the Mexican territory were analyzed using statistical parameters for the validation of the estimates, with satisfactory results because the assimilated rainfalls turned out to be better approximations than the values calculated with the individual databases, even for a not very low density of surface observations.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135193449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This study aims to explore the influence of various geometrical and hydraulic parameters on flow behavior and hydraulic conductivity in a single artificial fracture through a series of laboratory experiments. Laboratory experiments were conducted to examine unconfined groundwater flow through an artificially constructed single fracture. The fracture model consisted of varying aperture sizes (3, 9, and 12 mm) and different surface roughness conditions (fine, medium, and coarse sand coatings). Non-Darcian turbulent flow characteristics were observed at different flow rates, and the gradient of Reynolds number versus average flow velocity increased with aperture size. Flow parameters of the Darcian, Izbash, and Forchheimer models were calculated to characterize the flow behavior. Both the Forchheimer and Izbash models were found suitable for describing the non-Darcian flow characteristics under the prevailing conditions. The study revealed that hydraulic conductivity depended on flow length for fractures with different apertures and surface roughnesses, likely due to the presence of 2-D torturous flow within the rough fracture surface. These findings contribute to a better understanding of groundwater flow in fractured rock aquifers and provide valuable insights for modeling and managing such systems.
{"title":"Experimental study on non-Darcian flow through a single artificial fracture for different fracture apertures and surface roughness","authors":"Snigdha Pandey, Pramod Kumar Sharma","doi":"10.2166/hydro.2023.143","DOIUrl":"https://doi.org/10.2166/hydro.2023.143","url":null,"abstract":"Abstract This study aims to explore the influence of various geometrical and hydraulic parameters on flow behavior and hydraulic conductivity in a single artificial fracture through a series of laboratory experiments. Laboratory experiments were conducted to examine unconfined groundwater flow through an artificially constructed single fracture. The fracture model consisted of varying aperture sizes (3, 9, and 12 mm) and different surface roughness conditions (fine, medium, and coarse sand coatings). Non-Darcian turbulent flow characteristics were observed at different flow rates, and the gradient of Reynolds number versus average flow velocity increased with aperture size. Flow parameters of the Darcian, Izbash, and Forchheimer models were calculated to characterize the flow behavior. Both the Forchheimer and Izbash models were found suitable for describing the non-Darcian flow characteristics under the prevailing conditions. The study revealed that hydraulic conductivity depended on flow length for fractures with different apertures and surface roughnesses, likely due to the presence of 2-D torturous flow within the rough fracture surface. These findings contribute to a better understanding of groundwater flow in fractured rock aquifers and provide valuable insights for modeling and managing such systems.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135385598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}