After Double Side Arc Welding (DSAW), the ring stiffener undergoes significant radial bending deformation due to the release of residual plastic stress, which severely impacts the dimensional quality of the welded component. This type of stress release-induced deformation is difficult to control through the application of external constraints. In this paper, a method for designing reverse deformation to compensate for bending deformation is proposed, based on the Distribution Function based Inherent Strain Method (DFISM). By leveraging the rapid calculations from DFISM and parametric modeling, welding deformation samples of ring stiffeners of different sizes were obtained in sample, and the optimal reverse deformation amount for the ring stiffener was determined using parameter evaluation criteria. The compensation effect of the designed reverse deformation was tested through DSAW experiments, where the calculation and experimental error were less than 1.0 mm (7.8 % of the total deformation), and the maximum error between the welded ring stiffener and the theoretical profile after reverse deformation design was within 1.2 mm (0.03 % of the theoretical radius). The Reverse Deformation Design Method (RDDM), based on rapid calculations and parametric modeling, effectively compensates for the bending deformation of the ring stiffener.
{"title":"Reverse deformation design for bending control in welding of ring stiffeners","authors":"Hanling Wu , Huiyue Dong , Yingjie Guo , Fei Yuan , Yinglin Ke","doi":"10.1016/j.ijpvp.2024.105362","DOIUrl":"10.1016/j.ijpvp.2024.105362","url":null,"abstract":"<div><div>After Double Side Arc Welding (DSAW), the ring stiffener undergoes significant radial bending deformation due to the release of residual plastic stress, which severely impacts the dimensional quality of the welded component. This type of stress release-induced deformation is difficult to control through the application of external constraints. In this paper, a method for designing reverse deformation to compensate for bending deformation is proposed, based on the Distribution Function based Inherent Strain Method (DFISM). By leveraging the rapid calculations from DFISM and parametric modeling, welding deformation samples of ring stiffeners of different sizes were obtained in sample, and the optimal reverse deformation amount for the ring stiffener was determined using parameter evaluation criteria. The compensation effect of the designed reverse deformation was tested through DSAW experiments, where the calculation and experimental error were less than 1.0 mm (7.8 % of the total deformation), and the maximum error between the welded ring stiffener and the theoretical profile after reverse deformation design was within 1.2 mm (0.03 % of the theoretical radius). The Reverse Deformation Design Method (RDDM), based on rapid calculations and parametric modeling, effectively compensates for the bending deformation of the ring stiffener.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"213 ","pages":"Article 105362"},"PeriodicalIF":3.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.ijpvp.2024.105363
Shang Lv , Wei Sun , Dongxu Du , Hongwei Ma , Xuedong Sun , Shihao Ma
In aero-engines, small changes in the clamp position can sometimes significantly alter the vibration stress of the pipeline system, so there is an urgent need to study the influence of clamp position on pipeline vibration stress. Firstly, a dynamic modeling method of spatial pipeline system is proposed based on the finite element method, the modeling method can more accurately simulate the complex boundary constraints caused by multiple clamps and pipe fittings. Then, an improved dynamic substructure method (reduced-order method) is developed by combining the dynamic substructure method with the clamp position parametric model to improve the efficiency of the subsequent clamp position parameters influence analysis. Further, the rationality and efficiency of the reduced-order modeling approach are verified by numerical and experimental studies. Finally, the influence of the clamp position and the key parameters of different components (pipe body, clamps, fittings) on the pipeline vibration stress is investigated. The results show that when the main vibration region of the pipeline system coincides with the installation region of the clamp, the vibration stress can be significantly reduced by installing the clamp in the maximum modal displacement region of the corresponding pipe segment. The related modeling methods and conclusions can provide valuable references for the dynamics design of pipeline system in engineering practice.
{"title":"Analysis of the influence of clamp installation position on vibration stress for spatial pipeline","authors":"Shang Lv , Wei Sun , Dongxu Du , Hongwei Ma , Xuedong Sun , Shihao Ma","doi":"10.1016/j.ijpvp.2024.105363","DOIUrl":"10.1016/j.ijpvp.2024.105363","url":null,"abstract":"<div><div>In aero-engines, small changes in the clamp position can sometimes significantly alter the vibration stress of the pipeline system, so there is an urgent need to study the influence of clamp position on pipeline vibration stress. Firstly, a dynamic modeling method of spatial pipeline system is proposed based on the finite element method, the modeling method can more accurately simulate the complex boundary constraints caused by multiple clamps and pipe fittings. Then, an improved dynamic substructure method (reduced-order method) is developed by combining the dynamic substructure method with the clamp position parametric model to improve the efficiency of the subsequent clamp position parameters influence analysis. Further, the rationality and efficiency of the reduced-order modeling approach are verified by numerical and experimental studies. Finally, the influence of the clamp position and the key parameters of different components (pipe body, clamps, fittings) on the pipeline vibration stress is investigated. The results show that when the main vibration region of the pipeline system coincides with the installation region of the clamp, the vibration stress can be significantly reduced by installing the clamp in the maximum modal displacement region of the corresponding pipe segment. The related modeling methods and conclusions can provide valuable references for the dynamics design of pipeline system in engineering practice.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105363"},"PeriodicalIF":3.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.ijpvp.2024.105361
Zhengman Gu , Ming Zhong , Artem Minkov , Fedor Panteleyenko , Cong Wang
P91 steel weldments are susceptible to Type IV creep cracking during high-temperature service, significantly reducing the creep lifetime of impacted components. For enhancing the creep lifetime of P91 steel weldments, the present work proposes a novel post-weld heat treatment strategy to stabilize the tempered martensite structure and avoid Type IV creep cracking. Compared to conventional post-weld tempered treatment weldments, the creep lifetime of as-welded weldment is improved by 1.7 times, while the creep lifetime of weldment subjected to post-weld normalizing followed by tempering is enhanced by 4.6 times, effectively preventing Type IV cracking. It has been revealed that creep weakness zones, that is, soft zones, occur in as-welded weldment and post-welded tempering treatment weldment, where the microstructure is predominantly recrystallized ferrites. Creep fracture always occurs in the region of the highest fraction of recrystallized grains. Post-weld normalizing and subsequent tempering can enhance prior austenite grain size and stabilize tempered martensite structure. For as-welded weldment and post-welded tempering treatment weldment, creep cavities preferentially grow along ferrite grain boundaries as compared to prior austenite grain boundaries, which could easily lead to intergranular premature cracking. For post-weld normalizing and subsequent tempering weldment, cavities form along prior austenite grain boundaries of base metal and are elongated together with martensitic packets/blocks under stress. Finally, the final fracture is caused by the rupture of elongated grains.
P91 钢焊接件在高温服役期间容易出现 IV 型蠕变裂纹,从而大大降低受影响部件的蠕变寿命。为提高 P91 钢焊接件的蠕变寿命,本研究提出了一种新型焊后热处理策略,以稳定回火马氏体结构,避免 IV 型蠕变裂纹。与传统的焊后回火处理焊件相比,焊接后焊件的蠕变寿命提高了 1.7 倍,而经过焊后正火再回火处理的焊件的蠕变寿命提高了 4.6 倍,有效防止了 IV 型裂纹的产生。研究发现,在焊接后的焊件和焊接后回火处理的焊件中会出现蠕变薄弱区,即软区,其微观结构主要是再结晶铁素体。蠕变断裂总是发生在再结晶晶粒比例最高的区域。焊后正火和随后的回火可提高奥氏体晶粒尺寸并稳定回火马氏体结构。对于焊接后的焊接件和焊接后回火处理的焊接件,蠕变空穴会沿着铁素体晶界生长,而不是之前的奥氏体晶界,这很容易导致晶间过早开裂。在焊后正火和随后的回火焊接中,空穴沿着母材之前的奥氏体晶界形成,并在应力作用下与马氏体包/块一起伸长。最后,拉长的晶粒破裂导致最终断裂。
{"title":"Enhanced creep lifetime in P91 steel weldments via stabilizing tempered martensite structure","authors":"Zhengman Gu , Ming Zhong , Artem Minkov , Fedor Panteleyenko , Cong Wang","doi":"10.1016/j.ijpvp.2024.105361","DOIUrl":"10.1016/j.ijpvp.2024.105361","url":null,"abstract":"<div><div>P91 steel weldments are susceptible to Type IV creep cracking during high-temperature service, significantly reducing the creep lifetime of impacted components. For enhancing the creep lifetime of P91 steel weldments, the present work proposes a novel post-weld heat treatment strategy to stabilize the tempered martensite structure and avoid Type IV creep cracking. Compared to conventional post-weld tempered treatment weldments, the creep lifetime of as-welded weldment is improved by 1.7 times, while the creep lifetime of weldment subjected to post-weld normalizing followed by tempering is enhanced by 4.6 times, effectively preventing Type IV cracking. It has been revealed that creep weakness zones, that is, soft zones, occur in as-welded weldment and post-welded tempering treatment weldment, where the microstructure is predominantly recrystallized ferrites. Creep fracture always occurs in the region of the highest fraction of recrystallized grains. Post-weld normalizing and subsequent tempering can enhance prior austenite grain size and stabilize tempered martensite structure. For as-welded weldment and post-welded tempering treatment weldment, creep cavities preferentially grow along ferrite grain boundaries as compared to prior austenite grain boundaries, which could easily lead to intergranular premature cracking. For post-weld normalizing and subsequent tempering weldment, cavities form along prior austenite grain boundaries of base metal and are elongated together with martensitic packets/blocks under stress. Finally, the final fracture is caused by the rupture of elongated grains.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105361"},"PeriodicalIF":3.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.ijpvp.2024.105360
Qiang Zhang , Hao Li , Feng Wang , Liangliang Ding , Xianfu Wang , Zhanghua Lian
The indentation caused by slip on the outer wall of tubing is a significant contributor to stress concentration and, consequently, fatigue failure in the tubing string. Through an analysis of the interaction between slips and tubing, a mathematical model to predict slip-tubing interaction and slip crushing load is formulated, accounting for external pressure, internal pressure, and axial forces. On this basis, the influence factors and influence rules of slip crushing load are studied, and three-dimensional yield surface and tri-axial stress ellipse of tubing are investigated, considering different transverse load factors and design factors. To accurately forecast the fatigue life of tubing subjected to slip indentation, two models are established: one for fatigue life prediction and the other for tubing string vibration. In order to quantitatively assess the stress concentration arising from slip indentation, a finite element model of tubing featuring slip indentation is established. Finite element analysis reveals that stress concentration and non-uniformity are evident in the vicinity of slip indentation, with their severity intensifying as the indentation depth grows. The initial step in assessing fatigue life involves fatigue life tests on tubing material subjected to varying stress levels. Subsequently, a case study is conducted and the variations of wellhead pressure and axial stress are evaluated. Fatigue life analysis reveals that the fatigue life is notably sensitive to variations in stress amplitude and slip indentation depth. An increase in the magnitude of alternating stress and the depth of slip indentation will result in a significant reduction in the fatigue lifespan. The methodologies employed in this research, along with the resulting findings, offer a robust theoretical framework and a solid practical basis for forecasting and managing stress concentration and fatigue durability in tubing affected by slip indentation.
{"title":"Study on stress concentration and fatigue life of tubing with slip indentation","authors":"Qiang Zhang , Hao Li , Feng Wang , Liangliang Ding , Xianfu Wang , Zhanghua Lian","doi":"10.1016/j.ijpvp.2024.105360","DOIUrl":"10.1016/j.ijpvp.2024.105360","url":null,"abstract":"<div><div>The indentation caused by slip on the outer wall of tubing is a significant contributor to stress concentration and, consequently, fatigue failure in the tubing string. Through an analysis of the interaction between slips and tubing, a mathematical model to predict slip-tubing interaction and slip crushing load is formulated, accounting for external pressure, internal pressure, and axial forces. On this basis, the influence factors and influence rules of slip crushing load are studied, and three-dimensional yield surface and tri-axial stress ellipse of tubing are investigated, considering different transverse load factors and design factors. To accurately forecast the fatigue life of tubing subjected to slip indentation, two models are established: one for fatigue life prediction and the other for tubing string vibration. In order to quantitatively assess the stress concentration arising from slip indentation, a finite element model of tubing featuring slip indentation is established. Finite element analysis reveals that stress concentration and non-uniformity are evident in the vicinity of slip indentation, with their severity intensifying as the indentation depth grows. The initial step in assessing fatigue life involves fatigue life tests on tubing material subjected to varying stress levels. Subsequently, a case study is conducted and the variations of wellhead pressure and axial stress are evaluated. Fatigue life analysis reveals that the fatigue life is notably sensitive to variations in stress amplitude and slip indentation depth. An increase in the magnitude of alternating stress and the depth of slip indentation will result in a significant reduction in the fatigue lifespan. The methodologies employed in this research, along with the resulting findings, offer a robust theoretical framework and a solid practical basis for forecasting and managing stress concentration and fatigue durability in tubing affected by slip indentation.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105360"},"PeriodicalIF":3.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.ijpvp.2024.105359
Jingwen Ren , Hanxiang Wang , Yanxin Liu , Jiaqi Che , Yanwen Zhang
As deep-sea oil and gas extraction technologies advance, the demand for high-performance joints in reinforced thermoplastic pipes (RTPs) has increased. This study introduces a novel fusion-reinforced joint for RTPs and analyzes its tensile failure mechanism. Two user-defined material (VUMAT) subroutines were developed for unidirectional fiber composites and plain fabric composites to analyze the damage of RTPs and joints. The tensile damage mechanisms were evaluated using the 3D Hashin failure criterion, the maximum strain failure criterion, the residual stiffness model, and the cohesive zone model (CZM). To validate the numerical model, fusion-reinforced joints were designed, machined, and subjected to uniaxial tensile tests. Findings suggest that matrix damage in RTPs is the primary factor contributing to stiffness degradation. The shear stress in the adhesive layer at both ends of the joint reaches the shear strength, resulting in the failure of the adhesive. The tensile process can be divided into four distinct stages: the no-damage stage, the bonding damage stage, the matrix damage stage, and the failure stage. Initially, damage in the adhesive layer leads to a minor decrease in tensile stiffness, followed by significant matrix damage in the RTPs. Failure of the adhesive layer at both ends of the joint gradually propagates to the middle, culminating in the failure of the fusion zone. The time required to reach maximum strain in the central joint region is longer than at the ends.
{"title":"Failure mechanisms of fusion-bonded reinforcement joints in reinforced thermoplastic pipes under uniaxial tensile conditions","authors":"Jingwen Ren , Hanxiang Wang , Yanxin Liu , Jiaqi Che , Yanwen Zhang","doi":"10.1016/j.ijpvp.2024.105359","DOIUrl":"10.1016/j.ijpvp.2024.105359","url":null,"abstract":"<div><div>As deep-sea oil and gas extraction technologies advance, the demand for high-performance joints in reinforced thermoplastic pipes (RTPs) has increased. This study introduces a novel fusion-reinforced joint for RTPs and analyzes its tensile failure mechanism. Two user-defined material (VUMAT) subroutines were developed for unidirectional fiber composites and plain fabric composites to analyze the damage of RTPs and joints. The tensile damage mechanisms were evaluated using the 3D Hashin failure criterion, the maximum strain failure criterion, the residual stiffness model, and the cohesive zone model (CZM). To validate the numerical model, fusion-reinforced joints were designed, machined, and subjected to uniaxial tensile tests. Findings suggest that matrix damage in RTPs is the primary factor contributing to stiffness degradation. The shear stress in the adhesive layer at both ends of the joint reaches the shear strength, resulting in the failure of the adhesive. The tensile process can be divided into four distinct stages: the no-damage stage, the bonding damage stage, the matrix damage stage, and the failure stage. Initially, damage in the adhesive layer leads to a minor decrease in tensile stiffness, followed by significant matrix damage in the RTPs. Failure of the adhesive layer at both ends of the joint gradually propagates to the middle, culminating in the failure of the fusion zone. The time required to reach maximum strain in the central joint region is longer than at the ends.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105359"},"PeriodicalIF":3.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.ijpvp.2024.105358
Ameer Alaa Oleiwi, Hamed Afrasiab, Abbas Zolfaghari
While PEX-Al-PEX composite pipes are widely used in various applications, suitable tools and models for simulating their performance under different working conditions have not been made available. Therefore, the present study aims to develop a comprehensive finite element model to study the behavior of PEX-AL-PEX pipes at different temperatures and strain-rates. To achieve this, the properties of the pipe layers have been obtained for different temperature and strain-rate values through experimental tests. To assess the accuracy of the developed finite element model, the lateral compression and the split-disc tension tests have been performed under different conditions using both experimental and finite element analysis methods, and their results have been compared. The proposed model can be used to study the behavior of PEX-AL-PEX pipes with different materials and geometries in various conditions and applications, as well as for optimizing the design and manufacturing of these pipes.
{"title":"A comprehensive finite element framework for modeling of PEX-Al-PEX composite pipes","authors":"Ameer Alaa Oleiwi, Hamed Afrasiab, Abbas Zolfaghari","doi":"10.1016/j.ijpvp.2024.105358","DOIUrl":"10.1016/j.ijpvp.2024.105358","url":null,"abstract":"<div><div>While PEX-Al-PEX composite pipes are widely used in various applications, suitable tools and models for simulating their performance under different working conditions have not been made available. Therefore, the present study aims to develop a comprehensive finite element model to study the behavior of PEX-AL-PEX pipes at different temperatures and strain-rates. To achieve this, the properties of the pipe layers have been obtained for different temperature and strain-rate values through experimental tests. To assess the accuracy of the developed finite element model, the lateral compression and the split-disc tension tests have been performed under different conditions using both experimental and finite element analysis methods, and their results have been compared. The proposed model can be used to study the behavior of PEX-AL-PEX pipes with different materials and geometries in various conditions and applications, as well as for optimizing the design and manufacturing of these pipes.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105358"},"PeriodicalIF":3.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.ijpvp.2024.105352
A.N. Romanov
Based on the strain criterion for fatigue fracture and experimental studies, the damage accumulation kinetics from recoverable plastic strain (plastic strain in the tensile half-cycle), from the unilateral accumulation and elastic strain with the increasing number of loading cycles was studied. The influence of stress ageing on the redistribution of the levels of these components of damage, depending on the number of cycles before destruction, was studied. Depending on the load level, the limit states (formation of a surface macro-crack or buckling failure of strain stability due to the formation of an internal crack in the quasi-static fracture range) were established. Strain ageing reduces the range of quasi-static fracture. It is shown that the critical values of strains and stresses correspond to the limit states. The parameters determining the capacity of structural materials under static and cyclic loading under conditions of stress ageing are confirmed.
{"title":"Damage accumulation in carbon steel under low-cycle loading at the crack initiation stage and strain ageing temperature","authors":"A.N. Romanov","doi":"10.1016/j.ijpvp.2024.105352","DOIUrl":"10.1016/j.ijpvp.2024.105352","url":null,"abstract":"<div><div>Based on the strain criterion for fatigue fracture and experimental studies, the damage accumulation kinetics from recoverable plastic strain (plastic strain in the tensile half-cycle), from the unilateral accumulation and elastic strain with the increasing number of loading cycles was studied. The influence of stress ageing on the redistribution of the levels of these components of damage, depending on the number of cycles before destruction, was studied. Depending on the load level, the limit states (formation of a surface macro-crack or buckling failure of strain stability due to the formation of an internal crack in the quasi-static fracture range) were established. Strain ageing reduces the range of quasi-static fracture. It is shown that the critical values of strains and stresses correspond to the limit states. The parameters determining the capacity of structural materials under static and cyclic loading under conditions of stress ageing are confirmed.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105352"},"PeriodicalIF":3.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.ijpvp.2024.105355
Hao Wang , Sida Li , Shangxian Hu , Youde Wang , Haijiang Zhang , Xiaogang Liu
The purpose of this paper is to investigate the effects of different types of corrosion on seismic performances of circular hollow section (CHS) T-joints subjected to in-plane cyclic load. Firstly, the validity of a numerical modeling method introducing the actual corrosion morphological characteristics was verified by comparing with experimental results. Subsequently, the influences of different corrosion characteristic parameters (corrosion types, corrosion position and corrosion level) on the hysteresis behaviors of CHS T-joints under the cyclic bending load were discussed in detail, and the analysis results indicated: 1) compared with the pitting damage, the degradation behavior of CHS T-joints with the equivalent uniform corrosion was closer to that of the CHS T-joints with the actual corrosion morphology; 2) the degradation level of cyclic bearing capacities of CHS T-joints with the general corrosion was higher than that of CHS T-joints with brace or chord corrosion under the same condition; 3) the increase in dimension of the single pit had little influence on affecting the hysteresis behavior of CHS T-joints, the bearing capacities and energy dissipation of CHS T-joints significantly decreased with the increasing distribution density of pits, even leading to the change of failure mode of CHS T-joint under cyclic bending load; 4) when the volume loss of different types of corrosion was similar, the higher the local corrosion damage, the more serious the seismic performance degradation of CHS T-joints. When the volume loss caused by different types of corrosion was transferred to the thickness loss, the ultimate capacities of corroded CHS T-joints could be calculated by applying the existing formulas. However, the calculation value was lower than the numerical results due to overestimating the adverse effects of corrosion on the axial bearing capacity of CHS T-joints.
本文旨在研究不同类型的腐蚀对承受面内循环载荷的圆形空心截面(CHS)T 型接头抗震性能的影响。首先,通过与实验结果比较,验证了引入实际腐蚀形态特征的数值建模方法的有效性。随后,详细讨论了不同腐蚀特征参数(腐蚀类型、腐蚀位置和腐蚀程度)对循环弯曲载荷下 CHS T 型接头滞后行为的影响,分析结果表明1)与点蚀破坏相比,等效均匀腐蚀的 CHS T 型接头的退化行为更接近于实际腐蚀形态的 CHS T 型接头;2)在相同条件下,一般腐蚀的 CHS T 型接头的循环承载力退化程度高于支撑或弦腐蚀的 CHS T 型接头;3)单个凹坑尺寸的增大对 CHS T 型接头的滞回行为影响不大,随着凹坑分布密度的增大,CHS T 型接头的承载力和耗能明显降低,甚至导致循环弯曲荷载作用下 CHS T 型接头破坏模式的改变;4)当不同类型腐蚀造成的体积损失相近时,局部腐蚀破坏程度越高,CHS T 型接头的抗震性能退化越严重。当不同类型腐蚀造成的体积损失转移到厚度损失时,可以通过应用现有公式计算出腐蚀 CHS T 型接头的极限承载力。然而,由于高估了腐蚀对 CHS T 型接头轴向承载能力的不利影响,计算值低于数值结果。
{"title":"Effects of different types of corrosion on seismic performance of circular hollow section T-joints subjected to coupling load","authors":"Hao Wang , Sida Li , Shangxian Hu , Youde Wang , Haijiang Zhang , Xiaogang Liu","doi":"10.1016/j.ijpvp.2024.105355","DOIUrl":"10.1016/j.ijpvp.2024.105355","url":null,"abstract":"<div><div>The purpose of this paper is to investigate the effects of different types of corrosion on seismic performances of circular hollow section (CHS) T-joints subjected to in-plane cyclic load. Firstly, the validity of a numerical modeling method introducing the actual corrosion morphological characteristics was verified by comparing with experimental results. Subsequently, the influences of different corrosion characteristic parameters (corrosion types, corrosion position and corrosion level) on the hysteresis behaviors of CHS T-joints under the cyclic bending load were discussed in detail, and the analysis results indicated: 1) compared with the pitting damage, the degradation behavior of CHS T-joints with the equivalent uniform corrosion was closer to that of the CHS T-joints with the actual corrosion morphology; 2) the degradation level of cyclic bearing capacities of CHS T-joints with the general corrosion was higher than that of CHS T-joints with brace or chord corrosion under the same condition; 3) the increase in dimension of the single pit had little influence on affecting the hysteresis behavior of CHS T-joints, the bearing capacities and energy dissipation of CHS T-joints significantly decreased with the increasing distribution density of pits, even leading to the change of failure mode of CHS T-joint under cyclic bending load; 4) when the volume loss of different types of corrosion was similar, the higher the local corrosion damage, the more serious the seismic performance degradation of CHS T-joints. When the volume loss caused by different types of corrosion was transferred to the thickness loss, the ultimate capacities of corroded CHS T-joints could be calculated by applying the existing formulas. However, the calculation value was lower than the numerical results due to overestimating the adverse effects of corrosion on the axial bearing capacity of CHS T-joints.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105355"},"PeriodicalIF":3.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.ijpvp.2024.105357
Weiwei Yu , Lu Zhang , Weipeng Li , Mingya Chen , Qunjia Peng , Yaolei Han , Han Liu , Tairui Zhang
The occurrence of carbon segregation in steam generator (SG) often leads to a decrease in fracture toughness and an increase in failure risk. To ensure the service safety of SG, a non-destructive testing method for quantitative evaluation of fracture toughness reduction with carbon segregation is necessary. To this end, this study provides an experimental investigation on whether the spherical indentation tests (SITs) are capable of revealing the fracture toughness reduction with the increasing carbon content. Solidarity of the existing fracture toughness prediction models has been extensively investigated through experiments on four carbon segregation samples with carbon content 0.21 %, 0.31 %, 0.35 %, and 0.39 %, respectively. It is found that both the critical strain and critical damage criteria, depending on phenomenologically summarized fixed critical values, failed in reproducing the decreasing trend of fracture toughness with increasing carbon content. For the critical stress criterion, the updated critical value, achieved by comparing the results of conventional fracture toughness and indentation tests on the steel with 0.21 % carbon content, can improve the prediction accuracy and successfully reproduce of variation of fracture toughness with carbon contents. However, consistency of three repeated predictions from the critical stress criteria is poor, which may hinder its engineering application. By contrast, the energy release rate model independent of phenomenologically summarized critical values can yield roughly well predictions, from viewpoints of both decreasing trend of fracture toughness with increasing carbon content and the repeatability of three tests. This experimental investigation can provide methodological guidance for nondestructive fracture toughness evaluation on SG facing carbon segregation.
{"title":"An experimental investigation on fracture toughness predictions for carbon segregation metals using spherical indentation tests","authors":"Weiwei Yu , Lu Zhang , Weipeng Li , Mingya Chen , Qunjia Peng , Yaolei Han , Han Liu , Tairui Zhang","doi":"10.1016/j.ijpvp.2024.105357","DOIUrl":"10.1016/j.ijpvp.2024.105357","url":null,"abstract":"<div><div>The occurrence of carbon segregation in steam generator (SG) often leads to a decrease in fracture toughness and an increase in failure risk. To ensure the service safety of SG, a non-destructive testing method for quantitative evaluation of fracture toughness reduction with carbon segregation is necessary. To this end, this study provides an experimental investigation on whether the spherical indentation tests (SITs) are capable of revealing the fracture toughness reduction with the increasing carbon content. Solidarity of the existing fracture toughness prediction models has been extensively investigated through experiments on four carbon segregation samples with carbon content 0.21 %, 0.31 %, 0.35 %, and 0.39 %, respectively. It is found that both the critical strain and critical damage criteria, depending on phenomenologically summarized fixed critical values, failed in reproducing the decreasing trend of fracture toughness with increasing carbon content. For the critical stress criterion, the updated critical value, achieved by comparing the results of conventional fracture toughness and indentation tests on the steel with 0.21 % carbon content, can improve the prediction accuracy and successfully reproduce of variation of fracture toughness with carbon contents. However, consistency of three repeated predictions from the critical stress criteria is poor, which may hinder its engineering application. By contrast, the energy release rate model independent of phenomenologically summarized critical values can yield roughly well predictions, from viewpoints of both decreasing trend of fracture toughness with increasing carbon content and the repeatability of three tests. This experimental investigation can provide methodological guidance for nondestructive fracture toughness evaluation on SG facing carbon segregation.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105357"},"PeriodicalIF":3.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.ijpvp.2024.105356
V. Salarvand , F. Ahmadian , M. Torabpour , M. EsmaeilZadeh , M.H. Abidi , O. Mehrabi , H. Sohrabpoor , A. Mostafaei , D. Brabazon
The microstructure, mechanical characteristics, and corrosion resistance of dissimilar gas tungsten arc welding (GTAW) joints of 304 stainless steel (SS304) to Inconel 600 (IN600) with Inconel 600, using ERNiCr-3 and ERSS308 filler metals were investigated. The welding process was executed at a current of 110 Amps under argon shielding gas, and all fabricated welds successfully joined SS304 to Inconel 600 without visible cracks or porosity at the weld metal interface. Microstructural analysis with optical and scanning electron microscopy revealed a mix of columnar and equiaxed dendritic structures in the weld zone for all samples. An unmixed zone was noted at the interface on the SS304 side when welded with Inconel 600 and ERNiCr-3, attributed to the differing melting points and chemical compositions of these fillers compared to SS304. The presence of Nb and Ti in the ERNiCr-3 filler facilitated the formation of TiC and NbC carbides in the welded metal structure, resulting in higher hardness compared to other specimens. Mechanically, the ERNiCr-3 welded sample exhibited superior hardness, with the highest microhardness values recorded in the ERNiCr-3 weld metal (197–207 HV) and higher values on the SS304 side (176–194 HV) compared to the IN600 side (164–176 HV). Corrosion tests, including Tafel and Electrochemical Impedance Spectroscopy, indicated that the ERNiCr-3 weld metal had better corrosion resistance than the IN600 weld metal. Due to the differences in chemical compositions of the base metals SS304 and IN600, it is necessary to consider an appropriate filler for welding these materials. ERNiCr-3 demonstrated increased hardness due to the formation of TiC and NbC carbides, along with enhanced corrosion resistance. These properties make it a promising material for industrial applications that require durability, strength, and resistance to corrosion, particularly in high-temperature or corrosive environments.
{"title":"Microstructure, mechanical properties, and corrosion resistance of dissimilar weld joints between SS304 and Inconel 600 welded using gas tungsten arc welding","authors":"V. Salarvand , F. Ahmadian , M. Torabpour , M. EsmaeilZadeh , M.H. Abidi , O. Mehrabi , H. Sohrabpoor , A. Mostafaei , D. Brabazon","doi":"10.1016/j.ijpvp.2024.105356","DOIUrl":"10.1016/j.ijpvp.2024.105356","url":null,"abstract":"<div><div>The microstructure, mechanical characteristics, and corrosion resistance of dissimilar gas tungsten arc welding (GTAW) joints of 304 stainless steel (SS304) to Inconel 600 (IN600) with Inconel 600, using ERNiCr-3 and ERSS308 filler metals were investigated. The welding process was executed at a current of 110 Amps under argon shielding gas, and all fabricated welds successfully joined SS304 to Inconel 600 without visible cracks or porosity at the weld metal interface. Microstructural analysis with optical and scanning electron microscopy revealed a mix of columnar and equiaxed dendritic structures in the weld zone for all samples. An unmixed zone was noted at the interface on the SS304 side when welded with Inconel 600 and ERNiCr-3, attributed to the differing melting points and chemical compositions of these fillers compared to SS304. The presence of Nb and Ti in the ERNiCr-3 filler facilitated the formation of TiC and NbC carbides in the welded metal structure, resulting in higher hardness compared to other specimens. Mechanically, the ERNiCr-3 welded sample exhibited superior hardness, with the highest microhardness values recorded in the ERNiCr-3 weld metal (197–207 HV) and higher values on the SS304 side (176–194 HV) compared to the IN600 side (164–176 HV). Corrosion tests, including Tafel and Electrochemical Impedance Spectroscopy, indicated that the ERNiCr-3 weld metal had better corrosion resistance than the IN600 weld metal. Due to the differences in chemical compositions of the base metals SS304 and IN600, it is necessary to consider an appropriate filler for welding these materials. ERNiCr-3 demonstrated increased hardness due to the formation of TiC and NbC carbides, along with enhanced corrosion resistance. These properties make it a promising material for industrial applications that require durability, strength, and resistance to corrosion, particularly in high-temperature or corrosive environments.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105356"},"PeriodicalIF":3.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}