Pub Date : 2024-05-14DOI: 10.1016/j.bandc.2024.106177
Hadi Mohamadpour , Farhad Farkhondeh Tale Navi , Fatemeh Asgharian Asl , Soomaayeh Heysieattalab , Elmira Shakeri , Leyla Karami Isheqlou
Numerous studies have explored the concept of social dominance and its implications for leadership within the behavioral and cognitive sciences in recent years. The current study aims to address the gap regarding the neural correlates of social dominance by investigating the associations between psychological measures of social dominance and neural features among a sample of leaders. Thirty healthy male volunteers engaged in a monetary gambling task while their resting-state and task-based electroencephalography data were recorded. The results revealed a positive association between social dominance and resting-state beta oscillations in central electrodes. Furthermore, a negative association was observed between social dominance and task-based reaction time as well as the amplitude of the feedback-related negativity component of the event-related potentials during the gain, but not the loss condition. These findings suggest that social dominance is associated with enhanced reward processing which has implications for social and interpersonal interactions.
{"title":"Exploring neural correlates of social dominance: Insights from behavioral, resting- state EEG, and ERP indices","authors":"Hadi Mohamadpour , Farhad Farkhondeh Tale Navi , Fatemeh Asgharian Asl , Soomaayeh Heysieattalab , Elmira Shakeri , Leyla Karami Isheqlou","doi":"10.1016/j.bandc.2024.106177","DOIUrl":"10.1016/j.bandc.2024.106177","url":null,"abstract":"<div><p>Numerous studies have explored the concept of social dominance and its implications for leadership within the behavioral and cognitive sciences in recent years. The current study aims to address the gap regarding the neural correlates of social dominance by investigating the associations between psychological measures of social dominance and neural features among a sample of leaders. Thirty healthy male volunteers engaged in a monetary gambling task while their resting-state and task-based electroencephalography data were recorded. The results revealed a positive association between social dominance and resting-state beta oscillations in central electrodes. Furthermore, a negative association was observed between social dominance and task-based reaction time as well as the amplitude of the feedback-related negativity component of the event-related potentials during the gain, but not the loss condition. These findings suggest that social dominance is associated with enhanced reward processing which has implications for social and interpersonal interactions.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"178 ","pages":"Article 106177"},"PeriodicalIF":2.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140946610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1016/j.bandc.2024.106166
Zhiya Liu , Lixue Cai , Chen Liu , Carol A. Seger
Although most category learning studies use feedback for training, little attention has been paid to how individuals utilize feedback implemented as gains or losses during categorization. We compared skilled categorization under three different conditions: Gain (earn points for correct answers), Gain and Loss (earn points for correct answers and lose points for wrong answers) and Correct or Wrong (accuracy feedback only). We also manipulated difficulty and point value, with near boundary stimuli having the highest number of points to win or lose, and stimuli far from the boundary having the lowest point value. We found that the tail of the caudate was sensitive to feedback condition, with highest activity when both Gain and Loss feedback were present and least activity when only Gain or accuracy feedback was present. We also found that activity across the caudate was affected by distance from the decision bound, with greatest activity for the near boundary high value stimuli, and lowest for far low value stimuli. Overall these results indicate that the tail of the caudate is sensitive not only to positive rewards but also to loss and punishment, consistent with recent animal research finding tail of the caudate activity in aversive learning.
{"title":"The tail of the caudate is sensitive to both gain and loss feedback during information integration categorization","authors":"Zhiya Liu , Lixue Cai , Chen Liu , Carol A. Seger","doi":"10.1016/j.bandc.2024.106166","DOIUrl":"10.1016/j.bandc.2024.106166","url":null,"abstract":"<div><p>Although most category learning studies use feedback for training, little attention has been paid to how individuals utilize feedback implemented as gains or losses during categorization. We compared skilled categorization under three different conditions: Gain (earn points for correct answers), Gain and Loss (earn points for correct answers and lose points for wrong answers) and Correct or Wrong (accuracy feedback only). We also manipulated difficulty and point value, with near boundary stimuli having the highest number of points to win or lose, and stimuli far from the boundary having the lowest point value. We found that the tail of the caudate was sensitive to feedback condition, with highest activity when both Gain and Loss feedback were present and least activity when only Gain or accuracy feedback was present. We also found that activity across the caudate was affected by distance from the decision bound, with greatest activity for the near boundary high value stimuli, and lowest for far low value stimuli. Overall these results indicate that the tail of the caudate is sensitive not only to positive rewards but also to loss and punishment, consistent with recent animal research finding tail of the caudate activity in aversive learning.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"178 ","pages":"Article 106166"},"PeriodicalIF":2.5,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1016/j.bandc.2024.106167
Yuying He , Xiaoyang Huang , Entao Zhang
Although previous research has shown that social power modulates individuals’ sensitivity to rewards, it is currently unclear whether social power increases or decreases individuals’ sensitivity to rewards. This study employed event-related potentials (ERPs) to investigate the effects of social power on individuals’ neural responses to monetary and social rewards. Specifically, participants underwent an episodic priming task to manipulate social power (high-power vs. low-power) and then completed monetary and social delayed incentive tasks while their behavioral responses and electroencephalograms (EEG) were recorded. According to ERP analysis, during the anticipatory stage, low-power individuals exhibited a greater cue-P3 amplitude than high-power individuals in both monetary and social tasks. In the consummatory stage, though no impact of social power on the reward positivity (RewP) was found, low-power individuals showed a higher feedback-P3 (FB-P3) amplitude than high-power individuals, regardless of task types (the MID and SID tasks). In conclusion, these results provide evidence that social power might decrease one’s sensitivity to monetary and social rewards in both the anticipatory and consummatory stages.
{"title":"Social power modulates individuals’ neural responses to monetary and social rewards","authors":"Yuying He , Xiaoyang Huang , Entao Zhang","doi":"10.1016/j.bandc.2024.106167","DOIUrl":"https://doi.org/10.1016/j.bandc.2024.106167","url":null,"abstract":"<div><p>Although previous research has shown that social power modulates individuals’ sensitivity to rewards, it is currently unclear whether social power increases or decreases individuals’ sensitivity to rewards. This study employed event-related potentials (ERPs) to investigate the effects of social power on individuals’ neural responses to monetary and social rewards. Specifically, participants underwent an episodic priming task to manipulate social power (high-power vs. low-power) and then completed monetary and social delayed incentive tasks while their behavioral responses and electroencephalograms (EEG) were recorded. According to ERP analysis, during the anticipatory stage, low-power individuals exhibited a greater cue-P3 amplitude than high-power individuals in both monetary and social tasks. In the consummatory stage, though no impact of social power on the reward positivity (RewP) was found, low-power individuals showed a higher feedback-P3 (FB-P3) amplitude than high-power individuals, regardless of task types (the MID and SID tasks). In conclusion, these results provide evidence that social power might decrease one’s sensitivity to monetary and social rewards in both the anticipatory and consummatory stages.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"177 ","pages":"Article 106167"},"PeriodicalIF":2.5,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140825250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.bandc.2024.106162
A. Boots , A. Schrantee , A.M. Wiegersma , S. Aflalo , P.F.C. Groot , T.J. Roseboom , S.R. de Rooij
Objective
Poorer performance on the Stroop task has been reported after prenatal famine exposure at age 58, potentially indicating cognitive decline. We investigated whether brain activation during Stroop task performance at age 74 differed between individuals exposed to famine prenatally, individuals born before and individuals conceived after the famine.
Method
In the Dutch famine birth cohort, we performed a Stroop task fMRI study of individuals exposed (n = 22) or unexposed (born before (n = 18) or conceived after (n = 25)) to famine in early gestation. We studied group differences in task-related mean activation of the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC) and posterior parietal cortex (PPC). Additionally, we explored potential disconnectivity of the DLPFC using psychophysiological interaction analysis.
Results
We observed similar activation patterns in the DLPFC, ACC and PPC in individuals born before and individuals exposed to famine, while individuals conceived after famine had generally higher activation patterns. However, activation patterns were not significantly different between groups. Task-related decreases in connectivity were observed between left DLPFC-left PPC and right DLPFC-right PPC, but were not significantly different between groups.
Conclusions
Although not statistically significant, the observed patterns of activation may reflect a combined effect of general brain aging and prenatal famine exposure.
{"title":"Brain activity during Stroop task performance at age 74 after exposure to the Dutch famine during early gestation","authors":"A. Boots , A. Schrantee , A.M. Wiegersma , S. Aflalo , P.F.C. Groot , T.J. Roseboom , S.R. de Rooij","doi":"10.1016/j.bandc.2024.106162","DOIUrl":"https://doi.org/10.1016/j.bandc.2024.106162","url":null,"abstract":"<div><h3>Objective</h3><p>Poorer performance on the Stroop task has been reported after prenatal famine exposure at age 58, potentially indicating cognitive decline. We investigated whether brain activation during Stroop task performance at age 74 differed between individuals exposed to famine prenatally, individuals born before and individuals conceived after the famine.</p></div><div><h3>Method</h3><p>In the Dutch famine birth cohort, we performed a Stroop task fMRI study of individuals exposed (n = 22) or unexposed (born before (n = 18) or conceived after (n = 25)) to famine in early gestation. We studied group differences in task-related mean activation of the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC) and posterior parietal cortex (PPC). Additionally, we explored potential disconnectivity of the DLPFC using psychophysiological interaction analysis.</p></div><div><h3>Results</h3><p>We observed similar activation patterns in the DLPFC, ACC and PPC in individuals born before and individuals exposed to famine, while individuals conceived after famine had generally higher activation patterns. However, activation patterns were not significantly different between groups. Task-related decreases in connectivity were observed between left DLPFC-left PPC and right DLPFC-right PPC, but were not significantly different between groups.</p></div><div><h3>Conclusions</h3><p>Although not statistically significant, the observed patterns of activation may reflect a combined effect of general brain aging and prenatal famine exposure.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"177 ","pages":"Article 106162"},"PeriodicalIF":2.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0278262624000393/pdfft?md5=c0d9ce8dc1325d163b134f56f6050616&pid=1-s2.0-S0278262624000393-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140825251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Narrative comprehension relies on basic sensory processing abilities, such as visual and auditory processing, with recent evidence for utilizing executive functions (EF), which are also engaged during reading. EF was previously related to the “supporter” of engaging the auditory and visual modalities in different cognitive tasks, with evidence of lower efficiency in this process among those with reading difficulties in the absence of a visual stimulus (i.e. while listening to stories). The current study aims to fill out the gap related to the level of reliance on these neural circuits while visual aids (pictures) are involved during story listening in relation to reading skills. Functional MRI data were collected from 44 Hebrew-speaking children aged 8–12 years while listening to stories with vs without visual stimuli (i.e., pictures). Functional connectivity of networks supporting reading was defined in each condition and compared between the conditions against behavioral reading measures. Lower reading skills were related to greater functional connectivity values between EF networks (default mode and memory networks), and between the auditory and memory networks for the stories with vs without the visual stimulation. A greater difference in functional connectivity between the conditions was related to lower reading scores. We conclude that lower reading skills in children may be related to a need for greater scaffolding, i.e., visual stimulation such as pictures describing the narratives when listening to stories, which may guide future intervention approaches.
{"title":"Greater utilization of executive functions networks when listening to stories with visual stimulation is related to lower reading abilities in children","authors":"Michal Appel , Daria Hasin , Rola Farah , Tzipi Horowitz-Kraus","doi":"10.1016/j.bandc.2024.106161","DOIUrl":"https://doi.org/10.1016/j.bandc.2024.106161","url":null,"abstract":"<div><p>Narrative comprehension relies on basic sensory processing abilities, such as visual and auditory processing, with recent evidence for utilizing executive functions (EF), which are also engaged during reading. EF was previously related to the “supporter” of engaging the auditory and visual modalities in different cognitive tasks, with evidence of lower efficiency in this process among those with reading difficulties in the absence of a visual stimulus (i.e. while listening to stories). The current study aims to fill out the gap related to the level of reliance on these neural circuits while visual aids (pictures) are involved during story listening in relation to reading skills. Functional MRI data were collected from 44 Hebrew-speaking children aged 8–12 years while listening to stories with vs without visual stimuli (i.e., pictures). Functional connectivity of networks supporting reading was defined in each condition and compared between the conditions against behavioral reading measures. Lower reading skills were related to greater functional connectivity values between EF networks (default mode and memory networks), and between the auditory and memory networks for the stories with vs without the visual stimulation. A greater difference in functional connectivity between the conditions was related to lower reading scores. We conclude that lower reading skills in children may be related to a need for greater scaffolding, i.e., visual stimulation such as pictures describing the narratives when listening to stories, which may guide future intervention approaches.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"177 ","pages":"Article 106161"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140816992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mounting evidence indicates a close correspondence between episodic memory, mental imagery, and oculomotor behaviour. It remains unclear, however, how oculomotor variables support endogenously driven forms of mental imagery and how this relationship changes across the adult lifespan. In this study we investigated age-related changes in oculomotor signatures during scene construction and explored how task complexity impacts these processes. Younger and cognitively healthy older participants completed a guided scene construction paradigm where scene complexity was manipulated according to the number of elements to be sequentially integrated. We recorded participants' eye movements and collected subjective ratings regarding their phenomenological experience. Overall, older adults rated their constructions as more vivid and more spatially integrated, while also generating more fixations and saccades relative to the younger group, specifically on control trials. Analyses of participants’ total scan paths revealed that, in the early stages of scene construction, oculomotor behaviour changed as a function of task complexity within each group. Following the introduction of a second stimulus, older but not younger adults showed a significant decrease in the production of eye movements. Whether this shift in oculomotor behaviour serves a compensatory function to bolster task performance represents an important question for future research.
{"title":"Scene construction in healthy aging – Exploring the interplay between task complexity and oculomotor behaviour","authors":"Federica Conti , Sarah Carnemolla , Olivier Piguet , Muireann Irish","doi":"10.1016/j.bandc.2024.106163","DOIUrl":"https://doi.org/10.1016/j.bandc.2024.106163","url":null,"abstract":"<div><p>Mounting evidence indicates a close correspondence between episodic memory, mental imagery, and oculomotor behaviour. It remains unclear, however, how oculomotor variables support endogenously driven forms of mental imagery and how this relationship changes across the adult lifespan. In this study we investigated age-related changes in oculomotor signatures during scene construction and explored how task complexity impacts these processes. Younger and cognitively healthy older participants completed a guided scene construction paradigm where scene complexity was manipulated according to the number of elements to be sequentially integrated. We recorded participants' eye movements and collected subjective ratings regarding their phenomenological experience. Overall, older adults rated their constructions as more vivid and more spatially integrated, while also generating more fixations and saccades relative to the younger group, specifically on control trials. Analyses of participants’ total scan paths revealed that, in the early stages of scene construction, oculomotor behaviour changed as a function of task complexity within each group. Following the introduction of a second stimulus, older but not younger adults showed a significant decrease in the production of eye movements. Whether this shift in oculomotor behaviour serves a compensatory function to bolster task performance represents an important question for future research.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"177 ","pages":"Article 106163"},"PeriodicalIF":2.5,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S027826262400040X/pdfft?md5=312024d79cacbeaeee6e1a52a46e8a3c&pid=1-s2.0-S027826262400040X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140807304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.bandc.2024.106160
Kaila M. Bianco , Pamela Barhoun , Jarrad A.G. Lum , Ian Fuelscher , Peter G. Enticott , Jacqueline Williams , Timothy J. Silk , Karen Caeyenberghs , Christian Hyde
While procedural learning (PL) has been implicated in delayed motor skill observed in developmental coordination disorder (DCD), few studies have considered the impact of co-occurring attentional problems. Furthermore, the neurostructural basis of PL in children remains unclear. We investigated PL in children with DCD while controlling for inattention symptoms, and examined the role of fronto-basal ganglia-cerebellar morphology in PL. Fifty-nine children (6–14 years; nDCD = 19, ncontrol = 40) completed the serial reaction time (SRT) task to measure PL. The Attention-Deficit Hyperactivity Disorder Rating Scale-IV was administered to measure inattention symptoms. Structural T1 images were acquired for a subset of participants (nDCD = 10, ncontrol = 28), and processed using FreeSurfer. Volume was extracted for the cerebellum, basal ganglia, and frontal regions. After controlling for inattention symptoms, the reaction time profile of controls was consistent with learning on the SRT task. This was not the case for those with DCD. SRT task performance was positively correlated with cerebellar cortical volume, and children with DCD trended towards lower cerebellar volume compared to controls. Children with DCD may not engage in PL during the SRT task in the same manner as controls, with this differential performance being associated with atypical cerebellar morphology.
{"title":"Atypical procedural learning in children with developmental coordination disorder: A combined behavioral and neuroimaging study","authors":"Kaila M. Bianco , Pamela Barhoun , Jarrad A.G. Lum , Ian Fuelscher , Peter G. Enticott , Jacqueline Williams , Timothy J. Silk , Karen Caeyenberghs , Christian Hyde","doi":"10.1016/j.bandc.2024.106160","DOIUrl":"https://doi.org/10.1016/j.bandc.2024.106160","url":null,"abstract":"<div><p>While procedural learning (PL) has been implicated in delayed motor skill observed in developmental coordination disorder (DCD), few studies have considered the impact of co-occurring attentional problems. Furthermore, the neurostructural basis of PL in children remains unclear. We investigated PL in children with DCD while controlling for inattention symptoms, and examined the role of fronto-basal ganglia-cerebellar morphology in PL. Fifty-nine children (6–14 years; <em>n</em><sub>DCD</sub> = 19, <em>n</em><sub>control</sub> = 40) completed the serial reaction time (SRT) task to measure PL. The Attention-Deficit Hyperactivity Disorder Rating Scale-IV was administered to measure inattention symptoms. Structural T1 images were acquired for a subset of participants (<em>n</em><sub>DCD</sub> = 10, <em>n</em><sub>control</sub> = 28), and processed using FreeSurfer. Volume was extracted for the cerebellum, basal ganglia, and frontal regions. After controlling for inattention symptoms, the reaction time profile of controls was consistent with learning on the SRT task. This was not the case for those with DCD. SRT task performance was positively correlated with cerebellar cortical volume, and children with DCD trended towards lower cerebellar volume compared to controls. Children with DCD may not engage in PL during the SRT task in the same manner as controls, with this differential performance being associated with atypical cerebellar morphology.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"177 ","pages":"Article 106160"},"PeriodicalIF":2.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S027826262400037X/pdfft?md5=359fd74e6387610985c723fc453f9127&pid=1-s2.0-S027826262400037X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140646437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.bandc.2024.106164
Brian C. Kavanaugh , Megan M. Vigne , Eric Tirrell , W. Luke Acuff , Andrew M. Fukuda , Ryan Thorpe , Anna Sherman , Stephanie R. Jones , Linda L. Carpenter , Audrey R. Tyrka
Recent work has found that the presence of transient, oscillatory burst-like events, particularly within the beta band (15–29 Hz), is more closely tied to disease state and behavior across species than traditional electroencephalography (EEG) power metrics. This study sought to examine whether features of beta events over frontoparietal electrodes were associated with early life stress (ELS) and the related clinical presentation. Eighteen adults with documented ELS (n = 18; ELS + ) and eighteen adults without documented ELS (n = 18; ELS-) completed eyes-closed resting state EEG as part of their participation in a larger childhood stress study. The rate, power, duration, and frequency span of transient oscillatory events were calculated within the beta band at five frontoparietal electrodes. ELS variables were positively associated with beta event rate at Fp2 and beta event duration at Pz, in that greater ELS was associated with higher resting rates and longer durations. These beta event characteristics were used to successfully distinguish between ELS + and ELS- groups. In an independent clinical dataset (n = 25), beta event power at Pz was positively correlated with ELS. Beta events deserve ongoing investigation as a potential disease marker of ELS and subsequent psychiatric treatment outcomes.
最近的研究发现,与传统的脑电图(EEG)功率指标相比,瞬时振荡猝发样事件的存在,尤其是β波段(15-29赫兹)内的瞬时振荡猝发样事件,与不同物种的疾病状态和行为关系更为密切。本研究试图探讨额顶电极上的β事件特征是否与早期生活压力(ELS)及相关临床表现有关。18 名有 ELS 记录的成年人(n = 18;ELS + )和 18 名没有 ELS 记录的成年人(n = 18;ELS-)完成了闭眼静息状态脑电图,作为他们参与更大规模的儿童压力研究的一部分。在五个额顶电极上计算了β波段内瞬态振荡事件的速率、功率、持续时间和频率跨度。ELS变量与Fp2处的β事件速率和Pz处的β事件持续时间呈正相关,即ELS越大,静息速率越高,持续时间越长。这些β事件特征被用来成功区分 ELS + 组和 ELS- 组。在一个独立的临床数据集中(n = 25),Pz 处的β事件功率与 ELS 呈正相关。贝塔事件作为 ELS 和后续精神治疗结果的潜在疾病标志物,值得继续研究。
{"title":"Frontoparietal beta event characteristics are associated with early life stress and psychiatric symptoms in adults","authors":"Brian C. Kavanaugh , Megan M. Vigne , Eric Tirrell , W. Luke Acuff , Andrew M. Fukuda , Ryan Thorpe , Anna Sherman , Stephanie R. Jones , Linda L. Carpenter , Audrey R. Tyrka","doi":"10.1016/j.bandc.2024.106164","DOIUrl":"https://doi.org/10.1016/j.bandc.2024.106164","url":null,"abstract":"<div><p>Recent work has found that the presence of transient, oscillatory burst-like events, particularly within the beta band (15–29 Hz), is more closely tied to disease state and behavior across species than traditional electroencephalography (EEG) power metrics. This study sought to examine whether features of beta events over frontoparietal electrodes were associated with early life stress (ELS) and the related clinical presentation. Eighteen adults with documented ELS (n = 18; ELS + ) and eighteen adults without documented ELS (n = 18; ELS-) completed eyes-closed resting state EEG as part of their participation in a larger childhood stress study. The rate, power, duration, and frequency span of transient oscillatory events were calculated within the beta band at five frontoparietal electrodes. ELS variables were positively associated with beta event rate at Fp2 and beta event duration at Pz, in that greater ELS was associated with higher resting rates and longer durations. These beta event characteristics were used to successfully distinguish between ELS + and ELS- groups. In an independent clinical dataset (n = 25), beta event power at Pz was positively correlated with ELS. Beta events deserve ongoing investigation as a potential disease marker of ELS and subsequent psychiatric treatment outcomes.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"177 ","pages":"Article 106164"},"PeriodicalIF":2.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140646438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute physical activity influences cognitive performance. However, the relationship between exercise intensity, neural network activity, and cognitive performance remains poorly understood. This study examined the effects of different exercise intensities on resting-state functional connectivity (rsFC) and cognitive performance. Twenty male athletes (27.3 ± 3.6 years) underwent cycling exercises of different intensities (high, low, rest/control) on different days in randomized order. Before and after, subjects performed resting-state functional magnetic resonance imaging and a behavioral Attention Network Test (ANT). Independent component analysis and Linear mixed effects models examined rsFC changes within ten resting-state networks. No significant changes were identified in ANT performance. Resting-state analyses revealed a significant interaction in the Left Frontoparietal Network, driven by a non-significant rsFC increase after low-intensity and a significant rsFC decrease after high-intensity exercise, suggestive of an inverted U-shape relationship between exercise intensity and rsFC. Similar but trend-level rsFC interactions were observed in the Dorsal Attention Network (DAN) and the Cerebellar Basal Ganglia Network. Explorative correlation analysis revealed a significant positive association between rsFC increases in the right superior parietal lobule (part of DAN) and better ANT orienting in the low-intensity condition. Results indicate exercise intensity-dependent subacute rsFC changes in cognition-related networks, but their cognitive-behavioral relevance needs further investigation.
{"title":"Inverted U-shape-like functional connectivity alterations in cognitive resting-state networks depending on exercise intensity: An fMRI study","authors":"Luisa Bodensohn , Angelika Maurer , Marcel Daamen , Neeraj Upadhyay , Judith Werkhausen , Marvin Lohaus , Ursula Manunzio , Christian Manunzio , Alexander Radbruch , Ulrike Attenberger , Henning Boecker","doi":"10.1016/j.bandc.2024.106156","DOIUrl":"https://doi.org/10.1016/j.bandc.2024.106156","url":null,"abstract":"<div><p>Acute physical activity influences cognitive performance. However, the relationship between exercise intensity, neural network activity, and cognitive performance remains poorly understood. This study examined the effects of different exercise intensities on resting-state functional connectivity (rsFC) and cognitive performance. Twenty male athletes (27.3 ± 3.6 years) underwent cycling exercises of different intensities (high, low, rest/control) on different days in randomized order. Before and after, subjects performed resting-state functional magnetic resonance imaging and a behavioral Attention Network Test (ANT). Independent component analysis and Linear mixed effects models examined rsFC changes within ten resting-state networks. No significant changes were identified in ANT performance. Resting-state analyses revealed a significant interaction in the Left Frontoparietal Network, driven by a non-significant rsFC increase after low-intensity and a significant rsFC decrease after high-intensity exercise, suggestive of an inverted U-shape relationship between exercise intensity and rsFC. Similar but trend-level rsFC interactions were observed in the Dorsal Attention Network (DAN) and the Cerebellar Basal Ganglia Network. Explorative correlation analysis revealed a significant positive association between rsFC increases in the right superior parietal lobule (part of DAN) and better ANT orienting in the low-intensity condition. Results indicate exercise intensity-dependent subacute rsFC changes in cognition-related networks, but their cognitive-behavioral relevance needs further investigation.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"177 ","pages":"Article 106156"},"PeriodicalIF":2.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0278262624000332/pdfft?md5=0051dc183dc8c2af268c437b703b4030&pid=1-s2.0-S0278262624000332-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140549837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1016/j.bandc.2024.106159
Anting Yang , Hui Jing Lu , Lei Chang
Early adverse experiences or exposures have a profound impact on neurophysiological, cognitive, and somatic development. Evidence across disciplines uncovers adversity-induced alternations in cortical structures, cognitive functions, and related behavioral manifestations, as well as an energetic trade-off between the brain and body. Based on the life history (LH) framework, the present research aims to explore the adversity-adapted cognitive-behavioral mechanism and investigate the relation between cognitive functioning and somatic energy reserve (i.e., body mass index; BMI). A structural equation modeling (SEM) analysis was performed with longitudinal self-reported, anthropometric, and task-based data drawn from a cohort of 2,607 8- to 11-year-old youths and their primary caregivers recruited by the Adolescent Brain Cognitive Development (ABCDSM) study. The results showed that early environmental adversity was positively associated with fast LH behavioral profiles and negatively with cognitive functioning. Moreover, cognitive functioning mediated the relationship between adversity and fast LH behavioral profiles. Additionally, we found that early environmental adversity positively predicted BMI, which was inversely correlated with cognitive functioning. These results revealed an adversity-adapted cognitive-behavioral mechanism and energy-allocation pathways, and add to the existing knowledge of LH trade-off and developmental plasticity.
{"title":"The impacts of early environmental adversity on cognitive functioning, body mass, and life-history behavioral profiles","authors":"Anting Yang , Hui Jing Lu , Lei Chang","doi":"10.1016/j.bandc.2024.106159","DOIUrl":"https://doi.org/10.1016/j.bandc.2024.106159","url":null,"abstract":"<div><p>Early adverse experiences or exposures have a profound impact on neurophysiological, cognitive, and somatic development. Evidence across disciplines uncovers adversity-induced alternations in cortical structures, cognitive functions, and related behavioral manifestations, as well as an energetic trade-off between the brain and body. Based on the life history (LH) framework, the present research aims to explore the adversity-adapted cognitive-behavioral mechanism and investigate the relation between cognitive functioning and somatic energy reserve (i.e., body mass index; BMI). A structural equation modeling (SEM) analysis was performed with longitudinal self-reported, anthropometric, and task-based data drawn from a cohort of 2,607 8- to 11-year-old youths and their primary caregivers recruited by the Adolescent Brain Cognitive Development (ABCD<sup>SM</sup>) study. The results showed that early environmental adversity was positively associated with fast LH behavioral profiles and negatively with cognitive functioning. Moreover, cognitive functioning mediated the relationship between adversity and fast LH behavioral profiles. Additionally, we found that early environmental adversity positively predicted BMI, which was inversely correlated with cognitive functioning. These results revealed an adversity-adapted cognitive-behavioral mechanism and energy-allocation pathways, and add to the existing knowledge of LH trade-off and developmental plasticity.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"177 ","pages":"Article 106159"},"PeriodicalIF":2.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140536542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}