首页 > 最新文献

Biostatistics最新文献

英文 中文
Adaptive Gaussian Markov random fields for child mortality estimation. 用于儿童死亡率估算的自适应高斯马尔可夫随机场。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae030
Serge Aleshin-Guendel, Jon Wakefield

The under-5 mortality rate (U5MR), a critical health indicator, is typically estimated from household surveys in lower and middle income countries. Spatio-temporal disaggregation of household survey data can lead to highly variable estimates of U5MR, necessitating the usage of smoothing models which borrow information across space and time. The assumptions of common smoothing models may be unrealistic when certain time periods or regions are expected to have shocks in mortality relative to their neighbors, which can lead to oversmoothing of U5MR estimates. In this paper, we develop a spatial and temporal smoothing approach based on Gaussian Markov random field models which incorporate knowledge of these expected shocks in mortality. We demonstrate the potential for these models to improve upon alternatives not incorporating knowledge of expected shocks in a simulation study. We apply these models to estimate U5MR in Rwanda at the national level from 1985 to 2019, a time period which includes the Rwandan civil war and genocide.

5 岁以下儿童死亡率(U5MR)是一项重要的健康指标,通常由中低收入国家的住户调查估算得出。对住户调查数据进行时空分类会导致 5 岁以下儿童死亡率的估算值变化很大,因此有必要使用平滑模型来借用跨时空的信息。当某些时间段或地区的死亡率相对于其邻近地区有冲击时,普通平滑模型的假设可能不切实际,从而导致五岁以下幼儿死亡率估计值的过度平滑。在本文中,我们开发了一种基于高斯马尔可夫随机场模型的时空平滑方法,其中包含了这些预期死亡率冲击的知识。在一项模拟研究中,我们展示了这些模型改进未纳入预期冲击知识的替代方法的潜力。我们应用这些模型估算了 1985 年至 2019 年卢旺达全国的五岁以下幼儿死亡率,这一时期包括卢旺达内战和种族灭绝。
{"title":"Adaptive Gaussian Markov random fields for child mortality estimation.","authors":"Serge Aleshin-Guendel, Jon Wakefield","doi":"10.1093/biostatistics/kxae030","DOIUrl":"10.1093/biostatistics/kxae030","url":null,"abstract":"<p><p>The under-5 mortality rate (U5MR), a critical health indicator, is typically estimated from household surveys in lower and middle income countries. Spatio-temporal disaggregation of household survey data can lead to highly variable estimates of U5MR, necessitating the usage of smoothing models which borrow information across space and time. The assumptions of common smoothing models may be unrealistic when certain time periods or regions are expected to have shocks in mortality relative to their neighbors, which can lead to oversmoothing of U5MR estimates. In this paper, we develop a spatial and temporal smoothing approach based on Gaussian Markov random field models which incorporate knowledge of these expected shocks in mortality. We demonstrate the potential for these models to improve upon alternatives not incorporating knowledge of expected shocks in a simulation study. We apply these models to estimate U5MR in Rwanda at the national level from 1985 to 2019, a time period which includes the Rwandan civil war and genocide.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic EM algorithm for partially observed stochastic epidemics with individual heterogeneity. 具有个体异质性的部分观测随机流行病的随机 EM 算法。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae018
Fan Bu, Allison E Aiello, Alexander Volfovsky, Jason Xu

We develop a stochastic epidemic model progressing over dynamic networks, where infection rates are heterogeneous and may vary with individual-level covariates. The joint dynamics are modeled as a continuous-time Markov chain such that disease transmission is constrained by the contact network structure, and network evolution is in turn influenced by individual disease statuses. To accommodate partial epidemic observations commonly seen in real-world data, we propose a stochastic EM algorithm for inference, introducing key innovations that include efficient conditional samplers for imputing missing infection and recovery times which respect the dynamic contact network. Experiments on both synthetic and real datasets demonstrate that our inference method can accurately and efficiently recover model parameters and provide valuable insight at the presence of unobserved disease episodes in epidemic data.

我们建立了一个在动态网络上发展的随机流行病模型,在这个模型中,感染率是异质的,并可能随个体水平的协变量而变化。联合动态模型是一个连续时间马尔可夫链,疾病传播受接触网络结构的制约,而网络演化反过来又受个体疾病状态的影响。为了适应真实世界数据中常见的部分流行病观测数据,我们提出了一种用于推断的随机电磁算法,并引入了一些关键创新,包括有效的条件采样器,用于计算缺失的感染和恢复时间,这些采样器尊重动态接触网络。在合成数据集和真实数据集上进行的实验表明,我们的推理方法可以准确、高效地恢复模型参数,并对流行病数据中未观察到的疾病发作提供有价值的见解。
{"title":"Stochastic EM algorithm for partially observed stochastic epidemics with individual heterogeneity.","authors":"Fan Bu, Allison E Aiello, Alexander Volfovsky, Jason Xu","doi":"10.1093/biostatistics/kxae018","DOIUrl":"10.1093/biostatistics/kxae018","url":null,"abstract":"<p><p>We develop a stochastic epidemic model progressing over dynamic networks, where infection rates are heterogeneous and may vary with individual-level covariates. The joint dynamics are modeled as a continuous-time Markov chain such that disease transmission is constrained by the contact network structure, and network evolution is in turn influenced by individual disease statuses. To accommodate partial epidemic observations commonly seen in real-world data, we propose a stochastic EM algorithm for inference, introducing key innovations that include efficient conditional samplers for imputing missing infection and recovery times which respect the dynamic contact network. Experiments on both synthetic and real datasets demonstrate that our inference method can accurately and efficiently recover model parameters and provide valuable insight at the presence of unobserved disease episodes in epidemic data.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology. 在环境流行病学中考虑暴露测量误差的可扩展两阶段贝叶斯方法。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae038
Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park

Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide [NO2])-specific exposures and birth weight of full-term infants born in 2012 in Harris County, Texas, using several approaches, including the newly developed method.

二十多年来,暴露测量误差一直被认为是环境流行病学中的一个关键问题。贝叶斯分层模型为评估环境暴露与健康影响之间的关联提供了一个连贯的概率框架,该框架考虑到了估计暴露量的不确定性以及暴露量与健康结果数据之间的空间错位所带来的暴露测量误差。在联合估计不可行的情况下,两阶段贝叶斯分析通常被认为是完全贝叶斯分析的良好替代方法,但关于如何将不确定性从第一阶段暴露模型正确传播到第二阶段健康模型的研究却很少,尤其是在有大量参与地点和空间相关暴露的情况下。我们提出了一种可扩展的两阶段贝叶斯方法,称为稀疏多变量正态(稀疏 MVN)先验方法,该方法基于 Vecchia 近似,用于评估环境流行病学中暴露与健康结果之间的关联。我们通过模拟将其性能与现有方法进行了比较。我们的稀疏 MVN 先验方法与完全贝叶斯方法的性能相当,后者是黄金标准,但在某些情况下无法实施。我们使用几种方法(包括新开发的方法)调查了德克萨斯州哈里斯县 2012 年出生的足月婴儿的特定来源暴露和特定污染物(二氧化氮 [NO2])暴露与出生体重之间的关联。
{"title":"A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology.","authors":"Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park","doi":"10.1093/biostatistics/kxae038","DOIUrl":"10.1093/biostatistics/kxae038","url":null,"abstract":"<p><p>Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide [NO2])-specific exposures and birth weight of full-term infants born in 2012 in Harris County, Texas, using several approaches, including the newly developed method.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian subtyping for multi-state brain functional connectome with application on preadolescent brain cognition. 多状态脑功能连接体贝叶斯分型及其在青春期前脑认知中的应用。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae045
Tianqi Chen, Hongyu Zhao, Chichun Tan, Todd Constable, Sarah Yip, Yize Zhao

Converging evidence indicates that the heterogeneity of cognitive profiles may arise through detectable alternations in brain functional connectivity. Despite an unprecedented opportunity to uncover neurobiological subtypes through clustering or subtyping analyses on multi-state functional connectivity, few existing approaches are applicable to accommodate the network topology and unique biological architecture. To address this issue, we propose an innovative Bayesian nonparametric network-variate clustering analysis to uncover subgroups of individuals with homogeneous brain functional network patterns under multiple cognitive states. In light of the existing neuroscience literature, we assume there are unknown state-specific modular structures within functional connectivity. Concurrently, we identify informative network features essential for defining subtypes. To further facilitate practical use, we develop a computationally efficient variational inference algorithm to approximate posterior inference with satisfactory estimation accuracy. Extensive simulations show the superiority of our method. We apply the method to the Adolescent Brain Cognitive Development (ABCD) study, and identify neurodevelopmental subtypes and brain sub-network phenotypes under each state to signal neurobiological heterogeneity, suggesting promising directions for further exploration and investigation in neuroscience.

越来越多的证据表明,认知特征的异质性可能是由于大脑功能连接的可检测变化而产生的。尽管通过对多状态功能连接的聚类或分型分析来揭示神经生物学亚型的机会前所未有,但现有的方法很少适用于适应网络拓扑结构和独特的生物结构。为了解决这一问题,我们提出了一种创新的贝叶斯非参数网络-变量聚类分析,以揭示在多种认知状态下具有同质脑功能网络模式的个体亚群。根据现有的神经科学文献,我们假设在功能连接中存在未知的特定状态模块结构。同时,我们确定了定义子类型所必需的信息网络特征。为了进一步方便实际应用,我们开发了一种计算效率高的变分推理算法,以令人满意的估计精度近似后验推理。大量的仿真表明了该方法的优越性。我们将该方法应用于青少年脑认知发展(ABCD)研究,并确定了每种状态下的神经发育亚型和脑亚网络表型,以表明神经生物学的异质性,为神经科学的进一步探索和研究提供了有希望的方向。
{"title":"Bayesian subtyping for multi-state brain functional connectome with application on preadolescent brain cognition.","authors":"Tianqi Chen, Hongyu Zhao, Chichun Tan, Todd Constable, Sarah Yip, Yize Zhao","doi":"10.1093/biostatistics/kxae045","DOIUrl":"10.1093/biostatistics/kxae045","url":null,"abstract":"<p><p>Converging evidence indicates that the heterogeneity of cognitive profiles may arise through detectable alternations in brain functional connectivity. Despite an unprecedented opportunity to uncover neurobiological subtypes through clustering or subtyping analyses on multi-state functional connectivity, few existing approaches are applicable to accommodate the network topology and unique biological architecture. To address this issue, we propose an innovative Bayesian nonparametric network-variate clustering analysis to uncover subgroups of individuals with homogeneous brain functional network patterns under multiple cognitive states. In light of the existing neuroscience literature, we assume there are unknown state-specific modular structures within functional connectivity. Concurrently, we identify informative network features essential for defining subtypes. To further facilitate practical use, we develop a computationally efficient variational inference algorithm to approximate posterior inference with satisfactory estimation accuracy. Extensive simulations show the superiority of our method. We apply the method to the Adolescent Brain Cognitive Development (ABCD) study, and identify neurodevelopmental subtypes and brain sub-network phenotypes under each state to signal neurobiological heterogeneity, suggesting promising directions for further exploration and investigation in neuroscience.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142830270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modeling framework for detecting and leveraging node-level information in Bayesian network inference. 在贝叶斯网络推理中检测和利用节点级信息的建模框架。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae021
Xiaoyue Xi, Hélène Ruffieux

Bayesian graphical models are powerful tools to infer complex relationships in high dimension, yet are often fraught with computational and statistical challenges. If exploited in a principled way, the increasing information collected alongside the data of primary interest constitutes an opportunity to mitigate these difficulties by guiding the detection of dependence structures. For instance, gene network inference may be informed by the use of publicly available summary statistics on the regulation of genes by genetic variants. Here we present a novel Gaussian graphical modeling framework to identify and leverage information on the centrality of nodes in conditional independence graphs. Specifically, we consider a fully joint hierarchical model to simultaneously infer (i) sparse precision matrices and (ii) the relevance of node-level information for uncovering the sought-after network structure. We encode such information as candidate auxiliary variables using a spike-and-slab submodel on the propensity of nodes to be hubs, which allows hypothesis-free selection and interpretation of a sparse subset of relevant variables. As efficient exploration of large posterior spaces is needed for real-world applications, we develop a variational expectation conditional maximization algorithm that scales inference to hundreds of samples, nodes and auxiliary variables. We illustrate and exploit the advantages of our approach in simulations and in a gene network study which identifies hub genes involved in biological pathways relevant to immune-mediated diseases.

贝叶斯图模型是推断高维度复杂关系的强大工具,但在计算和统计方面往往充满挑战。如果以有原则的方式加以利用,那么随着主要兴趣数据的收集而不断增加的信息,就有机会通过指导依赖结构的检测来减轻这些困难。例如,基因网络推断可以利用公开的基因变异调控汇总统计数据。在这里,我们提出了一种新颖的高斯图建模框架,用于识别和利用条件独立图中节点的中心性信息。具体来说,我们考虑了一个完全联合的分层模型,以同时推断 (i) 稀疏精度矩阵和 (ii) 节点级信息对揭示所需的网络结构的相关性。我们使用一个关于节点成为枢纽的倾向的尖峰-板块子模型,将这些信息编码为候选辅助变量,从而可以无假设地选择和解释相关变量的稀疏子集。由于现实世界的应用需要对大型后验空间进行有效探索,我们开发了一种变分期望条件最大化算法,可将推理扩展到数百个样本、节点和辅助变量。我们在模拟和基因网络研究中说明并利用了我们方法的优势,该研究确定了与免疫介导疾病相关的生物通路中的枢纽基因。
{"title":"A modeling framework for detecting and leveraging node-level information in Bayesian network inference.","authors":"Xiaoyue Xi, Hélène Ruffieux","doi":"10.1093/biostatistics/kxae021","DOIUrl":"10.1093/biostatistics/kxae021","url":null,"abstract":"<p><p>Bayesian graphical models are powerful tools to infer complex relationships in high dimension, yet are often fraught with computational and statistical challenges. If exploited in a principled way, the increasing information collected alongside the data of primary interest constitutes an opportunity to mitigate these difficulties by guiding the detection of dependence structures. For instance, gene network inference may be informed by the use of publicly available summary statistics on the regulation of genes by genetic variants. Here we present a novel Gaussian graphical modeling framework to identify and leverage information on the centrality of nodes in conditional independence graphs. Specifically, we consider a fully joint hierarchical model to simultaneously infer (i) sparse precision matrices and (ii) the relevance of node-level information for uncovering the sought-after network structure. We encode such information as candidate auxiliary variables using a spike-and-slab submodel on the propensity of nodes to be hubs, which allows hypothesis-free selection and interpretation of a sparse subset of relevant variables. As efficient exploration of large posterior spaces is needed for real-world applications, we develop a variational expectation conditional maximization algorithm that scales inference to hundreds of samples, nodes and auxiliary variables. We illustrate and exploit the advantages of our approach in simulations and in a gene network study which identifies hub genes involved in biological pathways relevant to immune-mediated diseases.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating causal effects for binary outcomes using per-decision inverse probability weighting. 使用每次决定的反概率加权法估算二元结果的因果效应。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae025
Yihan Bao, Lauren Bell, Elizabeth Williamson, Claire Garnett, Tianchen Qian

Micro-randomized trials are commonly conducted for optimizing mobile health interventions such as push notifications for behavior change. In analyzing such trials, causal excursion effects are often of primary interest, and their estimation typically involves inverse probability weighting (IPW). However, in a micro-randomized trial, additional treatments can often occur during the time window over which an outcome is defined, and this can greatly inflate the variance of the causal effect estimator because IPW would involve a product of numerous weights. To reduce variance and improve estimation efficiency, we propose two new estimators using a modified version of IPW, which we call "per-decision IPW." The second estimator further improves efficiency using the projection idea from the semiparametric efficiency theory. These estimators are applicable when the outcome is binary and can be expressed as the maximum of a series of sub-outcomes defined over sub-intervals of time. We establish the estimators' consistency and asymptotic normality. Through simulation studies and real data applications, we demonstrate substantial efficiency improvement of the proposed estimator over existing estimators. The new estimators can be used to improve the precision of primary and secondary analyses for micro-randomized trials with binary outcomes.

微随机试验通常用于优化移动健康干预措施,如推送行为改变通知。在分析此类试验时,因果偏移效应通常是主要关注点,其估算通常涉及反概率加权(IPW)。然而,在微观随机试验中,在确定结果的时间窗口内经常会出现额外的治疗,这会大大增加因果效应估计值的方差,因为 IPW 会涉及众多权重的乘积。为了减少方差并提高估计效率,我们提出了两个使用改进版 IPW 的新估计器,我们称之为 "每次决定 IPW"。第二个估计器利用半参数效率理论中的投影思想进一步提高了效率。这些估计器适用于结果为二进制的情况,并可表示为一系列子结果的最大值,这些子结果定义在时间的子区间内。我们确定了估计值的一致性和渐近正态性。通过模拟研究和实际数据应用,我们证明了与现有的估计器相比,所提出的估计器在效率上有了很大的提高。新估计器可用于提高二元结果微型随机试验的一级和二级分析精度。
{"title":"Estimating causal effects for binary outcomes using per-decision inverse probability weighting.","authors":"Yihan Bao, Lauren Bell, Elizabeth Williamson, Claire Garnett, Tianchen Qian","doi":"10.1093/biostatistics/kxae025","DOIUrl":"10.1093/biostatistics/kxae025","url":null,"abstract":"<p><p>Micro-randomized trials are commonly conducted for optimizing mobile health interventions such as push notifications for behavior change. In analyzing such trials, causal excursion effects are often of primary interest, and their estimation typically involves inverse probability weighting (IPW). However, in a micro-randomized trial, additional treatments can often occur during the time window over which an outcome is defined, and this can greatly inflate the variance of the causal effect estimator because IPW would involve a product of numerous weights. To reduce variance and improve estimation efficiency, we propose two new estimators using a modified version of IPW, which we call \"per-decision IPW.\" The second estimator further improves efficiency using the projection idea from the semiparametric efficiency theory. These estimators are applicable when the outcome is binary and can be expressed as the maximum of a series of sub-outcomes defined over sub-intervals of time. We establish the estimators' consistency and asymptotic normality. Through simulation studies and real data applications, we demonstrate substantial efficiency improvement of the proposed estimator over existing estimators. The new estimators can be used to improve the precision of primary and secondary analyses for micro-randomized trials with binary outcomes.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian thresholded modeling for integrating brain node and network predictors. 脑节点和网络预测器集成的贝叶斯阈值建模。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae048
Zhe Sun, Wanwan Xu, Tianxi Li, Jian Kang, Gregorio Alanis-Lobato, Yize Zhao

Progress in neuroscience has provided unprecedented opportunities to advance our understanding of brain alterations and their correspondence to phenotypic profiles. With data collected from various imaging techniques, studies have integrated different types of information ranging from brain structure, function, or metabolism. More recently, an emerging way to categorize imaging traits is through a metric hierarchy, including localized node-level measurements and interactive network-level metrics. However, limited research has been conducted to integrate these different hierarchies and achieve a better understanding of the neurobiological mechanisms and communications. In this work, we address this literature gap by proposing a Bayesian regression model under both vector-variate and matrix-variate predictors. To characterize the interplay between different predicting components, we propose a set of biologically plausible prior models centered on an innovative joint thresholded prior. This captures the coupling and grouping effect of signal patterns, as well as their spatial contiguity across brain anatomy. By developing a posterior inference, we can identify and quantify the uncertainty of signaling node- and network-level neuromarkers, as well as their predictive mechanism for phenotypic outcomes. Through extensive simulations, we demonstrate that our proposed method outperforms the alternative approaches substantially in both out-of-sample prediction and feature selection. By implementing the model to study children's general mental abilities, we establish a powerful predictive mechanism based on the identified task contrast traits and resting-state sub-networks.

神经科学的进步提供了前所未有的机会来推进我们对大脑变化及其与表型特征的对应关系的理解。利用各种成像技术收集的数据,研究整合了从大脑结构、功能或新陈代谢等不同类型的信息。最近,一种新兴的成像特征分类方法是通过度量层次,包括局部节点级测量和交互式网络级度量。然而,有限的研究已经进行了整合这些不同的层次和实现更好的理解神经生物学机制和通信。在这项工作中,我们通过在向量变量和矩阵变量预测因子下提出贝叶斯回归模型来解决这一文献空白。为了描述不同预测成分之间的相互作用,我们提出了一套以创新的联合阈值先验为中心的生物学上合理的先验模型。这捕获了信号模式的耦合和分组效应,以及它们在大脑解剖结构中的空间连续性。通过发展后验推理,我们可以识别和量化信号传导节点和网络水平的神经标志物的不确定性,以及它们对表型结果的预测机制。通过大量的模拟,我们证明了我们提出的方法在样本外预测和特征选择方面都大大优于其他方法。将该模型应用于儿童一般心理能力的研究,建立了一种基于任务对比特征和静息状态子网络的预测机制。
{"title":"Bayesian thresholded modeling for integrating brain node and network predictors.","authors":"Zhe Sun, Wanwan Xu, Tianxi Li, Jian Kang, Gregorio Alanis-Lobato, Yize Zhao","doi":"10.1093/biostatistics/kxae048","DOIUrl":"10.1093/biostatistics/kxae048","url":null,"abstract":"<p><p>Progress in neuroscience has provided unprecedented opportunities to advance our understanding of brain alterations and their correspondence to phenotypic profiles. With data collected from various imaging techniques, studies have integrated different types of information ranging from brain structure, function, or metabolism. More recently, an emerging way to categorize imaging traits is through a metric hierarchy, including localized node-level measurements and interactive network-level metrics. However, limited research has been conducted to integrate these different hierarchies and achieve a better understanding of the neurobiological mechanisms and communications. In this work, we address this literature gap by proposing a Bayesian regression model under both vector-variate and matrix-variate predictors. To characterize the interplay between different predicting components, we propose a set of biologically plausible prior models centered on an innovative joint thresholded prior. This captures the coupling and grouping effect of signal patterns, as well as their spatial contiguity across brain anatomy. By developing a posterior inference, we can identify and quantify the uncertainty of signaling node- and network-level neuromarkers, as well as their predictive mechanism for phenotypic outcomes. Through extensive simulations, we demonstrate that our proposed method outperforms the alternative approaches substantially in both out-of-sample prediction and feature selection. By implementing the model to study children's general mental abilities, we establish a powerful predictive mechanism based on the identified task contrast traits and resting-state sub-networks.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction. 基于胸部 CT 的三维血管重建半参数高斯混合物模型
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae013
Qianhan Zeng, Jing Zhou, Ying Ji, Hansheng Wang

Computed tomography (CT) has been a powerful diagnostic tool since its emergence in the 1970s. Using CT data, 3D structures of human internal organs and tissues, such as blood vessels, can be reconstructed using professional software. This 3D reconstruction is crucial for surgical operations and can serve as a vivid medical teaching example. However, traditional 3D reconstruction heavily relies on manual operations, which are time-consuming, subjective, and require substantial experience. To address this problem, we develop a novel semiparametric Gaussian mixture model tailored for the 3D reconstruction of blood vessels. This model extends the classical Gaussian mixture model by enabling nonparametric variations in the component-wise parameters of interest according to voxel positions. We develop a kernel-based expectation-maximization algorithm for estimating the model parameters, accompanied by a supporting asymptotic theory. Furthermore, we propose a novel regression method for optimal bandwidth selection. Compared to the conventional cross-validation-based (CV) method, the regression method outperforms the CV method in terms of computational and statistical efficiency. In application, this methodology facilitates the fully automated reconstruction of 3D blood vessel structures with remarkable accuracy.

计算机断层扫描(CT)自 20 世纪 70 年代问世以来,一直是一种强大的诊断工具。利用 CT 数据,可以通过专业软件重建血管等人体内部器官和组织的三维结构。这种三维重建对外科手术至关重要,并可作为生动的医学教学范例。然而,传统的三维重建严重依赖人工操作,耗时长、主观性强,而且需要丰富的经验。为解决这一问题,我们开发了一种专为血管三维重建量身定制的新型半参数高斯混合模型。该模型扩展了经典的高斯混合模型,可根据体素位置对相关分量参数进行非参数变化。我们开发了一种基于核的期望最大化算法来估计模型参数,并辅以渐近理论。此外,我们还提出了一种优化带宽选择的新型回归方法。与传统的基于交叉验证(CV)的方法相比,回归方法在计算和统计效率方面都优于 CV 方法。在应用中,该方法有助于全自动重建三维血管结构,且精确度极高。
{"title":"A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction.","authors":"Qianhan Zeng, Jing Zhou, Ying Ji, Hansheng Wang","doi":"10.1093/biostatistics/kxae013","DOIUrl":"10.1093/biostatistics/kxae013","url":null,"abstract":"<p><p>Computed tomography (CT) has been a powerful diagnostic tool since its emergence in the 1970s. Using CT data, 3D structures of human internal organs and tissues, such as blood vessels, can be reconstructed using professional software. This 3D reconstruction is crucial for surgical operations and can serve as a vivid medical teaching example. However, traditional 3D reconstruction heavily relies on manual operations, which are time-consuming, subjective, and require substantial experience. To address this problem, we develop a novel semiparametric Gaussian mixture model tailored for the 3D reconstruction of blood vessels. This model extends the classical Gaussian mixture model by enabling nonparametric variations in the component-wise parameters of interest according to voxel positions. We develop a kernel-based expectation-maximization algorithm for estimating the model parameters, accompanied by a supporting asymptotic theory. Furthermore, we propose a novel regression method for optimal bandwidth selection. Compared to the conventional cross-validation-based (CV) method, the regression method outperforms the CV method in terms of computational and statistical efficiency. In application, this methodology facilitates the fully automated reconstruction of 3D blood vessel structures with remarkable accuracy.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous clustering and estimation of networks in multiple graphical models. 在多个图形模型中同时对网络进行聚类和估算。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae015
Gen Li, Miaoyan Wang

Gaussian graphical models are widely used to study the dependence structure among variables. When samples are obtained from multiple conditions or populations, joint analysis of multiple graphical models are desired due to their capacity to borrow strength across populations. Nonetheless, existing methods often overlook the varying levels of similarity between populations, leading to unsatisfactory results. Moreover, in many applications, learning the population-level clustering structure itself is of particular interest. In this article, we develop a novel method, called Simultaneous Clustering and Estimation of Networks via Tensor decomposition (SCENT), that simultaneously clusters and estimates graphical models from multiple populations. Precision matrices from different populations are uniquely organized as a three-way tensor array, and a low-rank sparse model is proposed for joint population clustering and network estimation. We develop a penalized likelihood method and an augmented Lagrangian algorithm for model fitting. We also establish the clustering accuracy and norm consistency of the estimated precision matrices. We demonstrate the efficacy of the proposed method with comprehensive simulation studies. The application to the Genotype-Tissue Expression multi-tissue gene expression data provides important insights into tissue clustering and gene coexpression patterns in multiple brain tissues.

高斯图形模型被广泛用于研究变量之间的依赖结构。当样本来自多个条件或群体时,由于多个图形模型具有跨群体借力的能力,因此需要对其进行联合分析。然而,现有的方法往往忽略了群体间不同程度的相似性,导致结果不尽人意。此外,在许多应用中,学习种群级聚类结构本身也是特别令人感兴趣的。在本文中,我们开发了一种名为 "通过张量分解同时聚类和估计网络"(SCENT)的新方法,可同时对多个种群的图形模型进行聚类和估计。来自不同种群的精确度矩阵被独特地组织成一个三向张量阵列,并提出了一个低秩稀疏模型,用于联合种群聚类和网络估计。我们开发了用于模型拟合的惩罚似然法和增强拉格朗日算法。我们还确定了聚类精度和估计精度矩阵的规范一致性。我们通过全面的模拟研究证明了所提方法的有效性。该方法在基因型-组织表达多组织基因表达数据中的应用,为我们了解多脑组织的组织聚类和基因共表达模式提供了重要的启示。
{"title":"Simultaneous clustering and estimation of networks in multiple graphical models.","authors":"Gen Li, Miaoyan Wang","doi":"10.1093/biostatistics/kxae015","DOIUrl":"10.1093/biostatistics/kxae015","url":null,"abstract":"<p><p>Gaussian graphical models are widely used to study the dependence structure among variables. When samples are obtained from multiple conditions or populations, joint analysis of multiple graphical models are desired due to their capacity to borrow strength across populations. Nonetheless, existing methods often overlook the varying levels of similarity between populations, leading to unsatisfactory results. Moreover, in many applications, learning the population-level clustering structure itself is of particular interest. In this article, we develop a novel method, called Simultaneous Clustering and Estimation of Networks via Tensor decomposition (SCENT), that simultaneously clusters and estimates graphical models from multiple populations. Precision matrices from different populations are uniquely organized as a three-way tensor array, and a low-rank sparse model is proposed for joint population clustering and network estimation. We develop a penalized likelihood method and an augmented Lagrangian algorithm for model fitting. We also establish the clustering accuracy and norm consistency of the estimated precision matrices. We demonstrate the efficacy of the proposed method with comprehensive simulation studies. The application to the Genotype-Tissue Expression multi-tissue gene expression data provides important insights into tissue clustering and gene coexpression patterns in multiple brain tissues.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exposure proximal immune correlates analysis. 接触近端免疫相关性分析。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae031
Ying Huang, Dean Follmann

Immune response decays over time, and vaccine-induced protection often wanes. Understanding how vaccine efficacy changes over time is critical to guiding the development and application of vaccines in preventing infectious diseases. The objective of this article is to develop statistical methods that assess the effect of decaying immune responses on the risk of disease and on vaccine efficacy, within the context of Cox regression with sparse sampling of immune responses, in a baseline-naive population. We aim to further disentangle the various aspects of the time-varying vaccine effect, whether direct on disease or mediated through immune responses. Based on time-to-event data from a vaccine efficacy trial and sparse sampling of longitudinal immune responses, we propose a weighted estimated induced likelihood approach that models the longitudinal immune response trajectory and the time to event separately. This approach assesses the effects of the decaying immune response, the peak immune response, and/or the waning vaccine effect on the risk of disease. The proposed method is applicable not only to standard randomized trial designs but also to augmented vaccine trial designs that re-vaccinate uninfected placebo recipients at the end of the standard trial period. We conducted simulation studies to evaluate the performance of our method and applied the method to analyze immune correlates from a phase III SARS-CoV-2 vaccine trial.

免疫反应会随着时间的推移而衰减,疫苗诱导的保护作用往往会减弱。了解疫苗效力如何随时间而变化,对于指导疫苗的开发和应用以预防传染病至关重要。本文旨在开发统计方法,在对基线免疫人群的免疫反应进行稀疏采样的考克斯回归背景下,评估衰减的免疫反应对疾病风险和疫苗效力的影响。我们的目标是进一步厘清疫苗时变效应的各个方面,无论是直接影响疾病还是通过免疫反应介导。基于疫苗疗效试验的事件发生时间数据和纵向免疫反应的稀疏采样,我们提出了一种加权估计诱导似然法,该方法对纵向免疫反应轨迹和事件发生时间分别建模。这种方法可评估免疫反应衰减、免疫反应高峰和/或疫苗效果减弱对疾病风险的影响。所提出的方法不仅适用于标准随机试验设计,也适用于在标准试验期结束时对未感染的安慰剂受试者进行再接种的增强疫苗试验设计。我们进行了模拟研究来评估我们的方法的性能,并将该方法应用于分析 SARS-CoV-2 疫苗 III 期试验的免疫相关性。
{"title":"Exposure proximal immune correlates analysis.","authors":"Ying Huang, Dean Follmann","doi":"10.1093/biostatistics/kxae031","DOIUrl":"10.1093/biostatistics/kxae031","url":null,"abstract":"<p><p>Immune response decays over time, and vaccine-induced protection often wanes. Understanding how vaccine efficacy changes over time is critical to guiding the development and application of vaccines in preventing infectious diseases. The objective of this article is to develop statistical methods that assess the effect of decaying immune responses on the risk of disease and on vaccine efficacy, within the context of Cox regression with sparse sampling of immune responses, in a baseline-naive population. We aim to further disentangle the various aspects of the time-varying vaccine effect, whether direct on disease or mediated through immune responses. Based on time-to-event data from a vaccine efficacy trial and sparse sampling of longitudinal immune responses, we propose a weighted estimated induced likelihood approach that models the longitudinal immune response trajectory and the time to event separately. This approach assesses the effects of the decaying immune response, the peak immune response, and/or the waning vaccine effect on the risk of disease. The proposed method is applicable not only to standard randomized trial designs but also to augmented vaccine trial designs that re-vaccinate uninfected placebo recipients at the end of the standard trial period. We conducted simulation studies to evaluate the performance of our method and applied the method to analyze immune correlates from a phase III SARS-CoV-2 vaccine trial.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biostatistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1