Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae026
Danni Tu, Julia Wrobel, Theodore D Satterthwaite, Jeff Goldsmith, Ruben C Gur, Raquel E Gur, Jan Gertheiss, Dani S Bassett, Russell T Shinohara
In the brain, functional connections form a network whose topological organization can be described by graph-theoretic network diagnostics. These include characterizations of the community structure, such as modularity and participation coefficient, which have been shown to change over the course of childhood and adolescence. To investigate if such changes in the functional network are associated with changes in cognitive performance during development, network studies often rely on an arbitrary choice of preprocessing parameters, in particular the proportional threshold of network edges. Because the choice of parameter can impact the value of the network diagnostic, and therefore downstream conclusions, we propose to circumvent that choice by conceptualizing the network diagnostic as a function of the parameter. As opposed to a single value, a network diagnostic curve describes the connectome topology at multiple scales-from the sparsest group of the strongest edges to the entire edge set. To relate these curves to executive function and other covariates, we use scalar-on-function regression, which is more flexible than previous functional data-based models used in network neuroscience. We then consider how systematic differences between networks can manifest in misalignment of diagnostic curves, and consequently propose a supervised curve alignment method that incorporates auxiliary information from other variables. Our algorithm performs both functional regression and alignment via an iterative, penalized, and nonlinear likelihood optimization. The illustrated method has the potential to improve the interpretability and generalizability of neuroscience studies where the goal is to study heterogeneity among a mixture of function- and scalar-valued measures.
{"title":"Regression and alignment for functional data and network topology.","authors":"Danni Tu, Julia Wrobel, Theodore D Satterthwaite, Jeff Goldsmith, Ruben C Gur, Raquel E Gur, Jan Gertheiss, Dani S Bassett, Russell T Shinohara","doi":"10.1093/biostatistics/kxae026","DOIUrl":"10.1093/biostatistics/kxae026","url":null,"abstract":"<p><p>In the brain, functional connections form a network whose topological organization can be described by graph-theoretic network diagnostics. These include characterizations of the community structure, such as modularity and participation coefficient, which have been shown to change over the course of childhood and adolescence. To investigate if such changes in the functional network are associated with changes in cognitive performance during development, network studies often rely on an arbitrary choice of preprocessing parameters, in particular the proportional threshold of network edges. Because the choice of parameter can impact the value of the network diagnostic, and therefore downstream conclusions, we propose to circumvent that choice by conceptualizing the network diagnostic as a function of the parameter. As opposed to a single value, a network diagnostic curve describes the connectome topology at multiple scales-from the sparsest group of the strongest edges to the entire edge set. To relate these curves to executive function and other covariates, we use scalar-on-function regression, which is more flexible than previous functional data-based models used in network neuroscience. We then consider how systematic differences between networks can manifest in misalignment of diagnostic curves, and consequently propose a supervised curve alignment method that incorporates auxiliary information from other variables. Our algorithm performs both functional regression and alignment via an iterative, penalized, and nonlinear likelihood optimization. The illustrated method has the potential to improve the interpretability and generalizability of neuroscience studies where the goal is to study heterogeneity among a mixture of function- and scalar-valued measures.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf001
Sandra E Safo, Han Lu
There is still more to learn about the pathobiology of coronavirus disease (COVID-19) despite 4 years of the pandemic. A multiomics approach offers a comprehensive view of the disease and has the potential to yield deeper insight into the pathogenesis of the disease. Previous multiomics integrative analysis and prediction studies for COVID-19 severity and status have assumed simple relationships (ie linear relationships) between omics data and between omics and COVID-19 outcomes. However, these linear methods do not account for the inherent underlying nonlinear structure associated with these different types of data. The motivation behind this work is to model nonlinear relationships in multiomics and COVID-19 outcomes, and to determine key multidimensional molecules associated with the disease. Toward this goal, we develop scalable randomized kernel methods for jointly associating data from multiple sources or views and simultaneously predicting an outcome or classifying a unit into one of 2 or more classes. We also determine variables or groups of variables that best contribute to the relationships among the views. We use the idea that random Fourier bases can approximate shift-invariant kernel functions to construct nonlinear mappings of each view and we use these mappings and the outcome variable to learn view-independent low-dimensional representations. We demonstrate the effectiveness of the proposed methods through extensive simulations. When the proposed methods were applied to gene expression, metabolomics, proteomics, and lipidomics data pertaining to COVID-19, we identified several molecular signatures for COVID-19 status and severity. Our results agree with previous findings and suggest potential avenues for future research. Our algorithms are implemented in Pytorch and interfaced in R and available at: https://github.com/lasandrall/RandMVLearn.
{"title":"Scalable randomized kernel methods for multiview data integration and prediction with application to Coronavirus disease.","authors":"Sandra E Safo, Han Lu","doi":"10.1093/biostatistics/kxaf001","DOIUrl":"10.1093/biostatistics/kxaf001","url":null,"abstract":"<p><p>There is still more to learn about the pathobiology of coronavirus disease (COVID-19) despite 4 years of the pandemic. A multiomics approach offers a comprehensive view of the disease and has the potential to yield deeper insight into the pathogenesis of the disease. Previous multiomics integrative analysis and prediction studies for COVID-19 severity and status have assumed simple relationships (ie linear relationships) between omics data and between omics and COVID-19 outcomes. However, these linear methods do not account for the inherent underlying nonlinear structure associated with these different types of data. The motivation behind this work is to model nonlinear relationships in multiomics and COVID-19 outcomes, and to determine key multidimensional molecules associated with the disease. Toward this goal, we develop scalable randomized kernel methods for jointly associating data from multiple sources or views and simultaneously predicting an outcome or classifying a unit into one of 2 or more classes. We also determine variables or groups of variables that best contribute to the relationships among the views. We use the idea that random Fourier bases can approximate shift-invariant kernel functions to construct nonlinear mappings of each view and we use these mappings and the outcome variable to learn view-independent low-dimensional representations. We demonstrate the effectiveness of the proposed methods through extensive simulations. When the proposed methods were applied to gene expression, metabolomics, proteomics, and lipidomics data pertaining to COVID-19, we identified several molecular signatures for COVID-19 status and severity. Our results agree with previous findings and suggest potential avenues for future research. Our algorithms are implemented in Pytorch and interfaced in R and available at: https://github.com/lasandrall/RandMVLearn.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf020
Jonathan Boss, Wei Hao, Amber Cathey, Barrett M Welch, Kelly K Ferguson, John D Meeker, Xiang Zhou, Jian Kang, Bhramar Mukherjee
Environmental health studies are increasingly measuring endogenous omics data ($ boldsymbol{M} $) to study intermediary biological pathways by which an exogenous exposure ($ boldsymbol{A} $) affects a health outcome ($ boldsymbol{Y} $), given confounders ($ boldsymbol{C} $). Mediation analysis is frequently performed to understand such mechanisms. If intermediary pathways are of interest, then there is likely literature establishing statistical and biological significance of the total effect, defined as the effect of $ boldsymbol{A} $ on $ boldsymbol{Y} $ given $ boldsymbol{C} $. For mediation models with continuous outcomes and mediators, we show that leveraging external summary-level information on the total effect can improve estimation efficiency of the direct and indirect effects. Moreover, the efficiency gain depends on the asymptotic partial $ R^{2} $ between the outcome ($ boldsymbol{Y}midboldsymbol{M},boldsymbol{A},boldsymbol{C} $) and total effect ($ boldsymbol{Y}midboldsymbol{A},boldsymbol{C} $) models, with smaller (larger) values benefiting direct (indirect) effect estimation. We propose a robust data-adaptive estimation procedure, Mediation with External Summary Statistic Information, to improve estimation efficiency in settings with congenial external information, while simultaneously protecting against bias in settings with incongenial external information. In congenial simulation scenarios, we observe relative efficiency gains for mediation effect estimation of up to 40%. We illustrate our methodology using data from the Puerto Rico Testsite for Exploring Contamination Threats, where Cytochrome p450 metabolites are hypothesized to mediate the effect of phthalate exposure on gestational age at delivery. External summary information on the total effect comes from a recently published pooled analysis of 16 studies. The proposed framework blends mediation analysis with emerging data integration techniques.
{"title":"Mediation with External Summary Statistic Information.","authors":"Jonathan Boss, Wei Hao, Amber Cathey, Barrett M Welch, Kelly K Ferguson, John D Meeker, Xiang Zhou, Jian Kang, Bhramar Mukherjee","doi":"10.1093/biostatistics/kxaf020","DOIUrl":"10.1093/biostatistics/kxaf020","url":null,"abstract":"<p><p>Environmental health studies are increasingly measuring endogenous omics data ($ boldsymbol{M} $) to study intermediary biological pathways by which an exogenous exposure ($ boldsymbol{A} $) affects a health outcome ($ boldsymbol{Y} $), given confounders ($ boldsymbol{C} $). Mediation analysis is frequently performed to understand such mechanisms. If intermediary pathways are of interest, then there is likely literature establishing statistical and biological significance of the total effect, defined as the effect of $ boldsymbol{A} $ on $ boldsymbol{Y} $ given $ boldsymbol{C} $. For mediation models with continuous outcomes and mediators, we show that leveraging external summary-level information on the total effect can improve estimation efficiency of the direct and indirect effects. Moreover, the efficiency gain depends on the asymptotic partial $ R^{2} $ between the outcome ($ boldsymbol{Y}midboldsymbol{M},boldsymbol{A},boldsymbol{C} $) and total effect ($ boldsymbol{Y}midboldsymbol{A},boldsymbol{C} $) models, with smaller (larger) values benefiting direct (indirect) effect estimation. We propose a robust data-adaptive estimation procedure, Mediation with External Summary Statistic Information, to improve estimation efficiency in settings with congenial external information, while simultaneously protecting against bias in settings with incongenial external information. In congenial simulation scenarios, we observe relative efficiency gains for mediation effect estimation of up to 40%. We illustrate our methodology using data from the Puerto Rico Testsite for Exploring Contamination Threats, where Cytochrome p450 metabolites are hypothesized to mediate the effect of phthalate exposure on gestational age at delivery. External summary information on the total effect comes from a recently published pooled analysis of 16 studies. The proposed framework blends mediation analysis with emerging data integration techniques.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144735537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf031
Brian Gilbert, Katherine Hoffman, Nicholas Williams, Kara Rudolph, Edward J Schenck, Iván Díaz
We demonstrate a comprehensive semiparametric approach to causal mediation analysis, addressing the complexities inherent in settings with longitudinal and continuous treatments, confounders, and mediators. Our methodology utilizes a nonparametric structural equation model and a cross-fitted sequential regression technique based on doubly robust pseudo-outcomes, yielding an efficient, asymptotically normal estimator without relying on restrictive parametric modeling assumptions. We are motivated by a recent scientific controversy regarding the effects of invasive mechanical ventilation on the survival of COVID-19 patients, considering acute kidney injury as a mediating factor. We highlight the possibility of "inconsistent mediation," in which the direct and indirect effects of the exposure operate in opposite directions. We discuss the significance of mediation analysis for scientific understanding and its potential utility in treatment decisions.
{"title":"Identification and estimation of mediational effects of longitudinal modified treatment policies.","authors":"Brian Gilbert, Katherine Hoffman, Nicholas Williams, Kara Rudolph, Edward J Schenck, Iván Díaz","doi":"10.1093/biostatistics/kxaf031","DOIUrl":"10.1093/biostatistics/kxaf031","url":null,"abstract":"<p><p>We demonstrate a comprehensive semiparametric approach to causal mediation analysis, addressing the complexities inherent in settings with longitudinal and continuous treatments, confounders, and mediators. Our methodology utilizes a nonparametric structural equation model and a cross-fitted sequential regression technique based on doubly robust pseudo-outcomes, yielding an efficient, asymptotically normal estimator without relying on restrictive parametric modeling assumptions. We are motivated by a recent scientific controversy regarding the effects of invasive mechanical ventilation on the survival of COVID-19 patients, considering acute kidney injury as a mediating factor. We highlight the possibility of \"inconsistent mediation,\" in which the direct and indirect effects of the exposure operate in opposite directions. We discuss the significance of mediation analysis for scientific understanding and its potential utility in treatment decisions.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145477179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf003
Ales Kotalik, David M Vock, Nancy E Sherwood, Brian P Hobbs, Joseph S Koopmeiners
The Sequential Multiple Assignment Randomized Trial (SMART) is a complex trial design that involves randomizing a single participant multiple times in a sequential manner. This results in the branching nature of a SMART, which represents several distinct groups defined by different combinations of treatments, response statuses, etc. A SMART can then answer various scientific questions of interest, eg, the optimal dynamic treatment regime (DTR) for treating a chronic illness, what intervention to offer first, and what intervention to offer to nonresponders (or suboptimal responders). However, the analysis of a SMART can suffer from low precision, as the potentially widely branching structure can lead to reduced sample sizes in some groups of interest. In this paper, we propose a novel analysis method for a SMART in which dynamic borrowing is used to borrow strength across groups with similar expected outcomes, thus providing increased precision for the estimation of the expected outcomes of DTRs. We apply our method to a SMART evaluating various weight loss strategies using a binary endpoint of clinically significant weight loss and show by simulation that our method can improve the precision of the estimated expected outcome of a DTR, aid in the identification of the optimal DTR, and produce a clustering analysis of DTRs embedded in a SMART.
{"title":"Within-trial data borrowing for sequential multiple assignment randomized trials.","authors":"Ales Kotalik, David M Vock, Nancy E Sherwood, Brian P Hobbs, Joseph S Koopmeiners","doi":"10.1093/biostatistics/kxaf003","DOIUrl":"10.1093/biostatistics/kxaf003","url":null,"abstract":"<p><p>The Sequential Multiple Assignment Randomized Trial (SMART) is a complex trial design that involves randomizing a single participant multiple times in a sequential manner. This results in the branching nature of a SMART, which represents several distinct groups defined by different combinations of treatments, response statuses, etc. A SMART can then answer various scientific questions of interest, eg, the optimal dynamic treatment regime (DTR) for treating a chronic illness, what intervention to offer first, and what intervention to offer to nonresponders (or suboptimal responders). However, the analysis of a SMART can suffer from low precision, as the potentially widely branching structure can lead to reduced sample sizes in some groups of interest. In this paper, we propose a novel analysis method for a SMART in which dynamic borrowing is used to borrow strength across groups with similar expected outcomes, thus providing increased precision for the estimation of the expected outcomes of DTRs. We apply our method to a SMART evaluating various weight loss strategies using a binary endpoint of clinically significant weight loss and show by simulation that our method can improve the precision of the estimated expected outcome of a DTR, aid in the identification of the optimal DTR, and produce a clustering analysis of DTRs embedded in a SMART.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf030
Olivier Labayle, Breeshey Roskams-Hieter, Joshua Slaughter, Kelsey Tetley-Campbell, Mark J van der Laan, Chris P Ponting, Sjoerd V Beentjes, Ava Khamseh
Population genetics seeks to quantify DNA variant associations with traits or diseases, as well as interactions among variants and with environmental factors. Computing millions of estimates in large cohorts in which small effect sizes and tight confidence intervals are expected, necessitates minimizing model-misspecification bias to increase power and control false discoveries. We present TarGene, a unified statistical workflow for the semi-parametric efficient and double robust estimation of genetic effects including $ k $-point interactions among categorical variables in the presence of confounding and weak population dependence. $ k $-point interactions, or Average Interaction Effects (AIEs), are a direct generalization of the usual average treatment effect (ATE). We estimate genetic effects with cross-validated and/or weighted versions of Targeted Minimum Loss-based Estimators (TMLE) and One-Step Estimators (OSE). The effect of dependence among data units on variance estimates is corrected by using sieve plateau variance estimators based on genetic relatedness across the units. We present extensive realistic simulations to demonstrate power, coverage, and control of type I error. Our motivating application is the targeted estimation of genetic effects on trait, including two-point and higher-order gene-gene and gene-environment interactions, in large-scale genomic databases such as UK Biobank and All of Us. All cross-validated and/or weighted TMLE and OSE for the AIE $ k $-point interaction, as well as ATEs, conditional ATEs and functions thereof, are implemented in the general purpose Julia package TMLE.jl. For high-throughput applications in population genomics, we provide the open-source Nextflow pipeline and software TarGene which integrates seamlessly with modern high-performance and cloud computing platforms.
群体遗传学试图量化DNA变异与性状或疾病的关联,以及变异之间和与环境因素的相互作用。在大型队列中计算数以百万计的估计,其中预期的效应大小较小,置信区间较紧,需要最小化模型错配偏差,以增加功率并控制错误发现。我们提出了TarGene,一个统一的统计工作流程,用于遗传效应的半参数有效和双鲁棒估计,包括在混杂和弱种群依赖性存在下分类变量之间的$ k $点相互作用。k点相互作用,或平均相互作用效应(AIEs),是通常的平均治疗效果(ATE)的直接概括。我们使用交叉验证和/或加权版本的基于目标最小损失的估计器(TMLE)和一步估计器(OSE)来估计遗传效应。利用基于单元间遗传相关性的平台方差估计修正了数据单元间的相关性对方差估计的影响。我们提出了广泛的现实模拟,以展示功率,覆盖范围和控制类型I错误。我们的激励应用是在大型基因组数据库(如UK Biobank和All of Us)中有针对性地估计遗传对性状的影响,包括两点和高阶基因-基因和基因-环境相互作用。用于AIE $ k $点交互的所有交叉验证和/或加权TMLE和OSE,以及ate、条件ate及其函数,都在通用的Julia包TMLE. j1中实现。对于人口基因组学的高通量应用,我们提供开源的Nextflow管道和软件TarGene,与现代高性能和云计算平台无缝集成。
{"title":"Semiparametric efficient estimation of small genetic effects in large-scale population cohorts.","authors":"Olivier Labayle, Breeshey Roskams-Hieter, Joshua Slaughter, Kelsey Tetley-Campbell, Mark J van der Laan, Chris P Ponting, Sjoerd V Beentjes, Ava Khamseh","doi":"10.1093/biostatistics/kxaf030","DOIUrl":"10.1093/biostatistics/kxaf030","url":null,"abstract":"<p><p>Population genetics seeks to quantify DNA variant associations with traits or diseases, as well as interactions among variants and with environmental factors. Computing millions of estimates in large cohorts in which small effect sizes and tight confidence intervals are expected, necessitates minimizing model-misspecification bias to increase power and control false discoveries. We present TarGene, a unified statistical workflow for the semi-parametric efficient and double robust estimation of genetic effects including $ k $-point interactions among categorical variables in the presence of confounding and weak population dependence. $ k $-point interactions, or Average Interaction Effects (AIEs), are a direct generalization of the usual average treatment effect (ATE). We estimate genetic effects with cross-validated and/or weighted versions of Targeted Minimum Loss-based Estimators (TMLE) and One-Step Estimators (OSE). The effect of dependence among data units on variance estimates is corrected by using sieve plateau variance estimators based on genetic relatedness across the units. We present extensive realistic simulations to demonstrate power, coverage, and control of type I error. Our motivating application is the targeted estimation of genetic effects on trait, including two-point and higher-order gene-gene and gene-environment interactions, in large-scale genomic databases such as UK Biobank and All of Us. All cross-validated and/or weighted TMLE and OSE for the AIE $ k $-point interaction, as well as ATEs, conditional ATEs and functions thereof, are implemented in the general purpose Julia package TMLE.jl. For high-throughput applications in population genomics, we provide the open-source Nextflow pipeline and software TarGene which integrates seamlessly with modern high-performance and cloud computing platforms.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145193867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf047
Xi Fang, Hajime Uno, Fan Li
Composite endpoints are frequently used in clinical trials to enhance the event rate and improve the statistical power. In the presence of a terminal event, the while-alive cumulative frequency measure offers a useful alternative to define composite survival outcomes, by relating the average event rate to the survival time. Although non-parametric methods have been proposed for two-sample comparisons, limited attention has been given to regression methods that directly address time-varying association effects in while-alive measures. We address this gap by developing a regression framework for exposure-weighted while-alive measures for composite survival outcomes that include a terminal component event. Our regression approach uses splines to model time-varying association between covariates and a generalized while-alive loss rate of all component events, and can be applied to both independent and clustered data. We derive the asymptotic properties of the regression estimator under both independent data and cluster-correlated data settings, and study the operating characteristics of our methods through simulations. Finally, we apply our regression method to analyze data two randomized clinical trials. The proposed methods are implemented in the WAreg R package.
{"title":"While-alive regression analysis of composite survival endpoints.","authors":"Xi Fang, Hajime Uno, Fan Li","doi":"10.1093/biostatistics/kxaf047","DOIUrl":"10.1093/biostatistics/kxaf047","url":null,"abstract":"<p><p>Composite endpoints are frequently used in clinical trials to enhance the event rate and improve the statistical power. In the presence of a terminal event, the while-alive cumulative frequency measure offers a useful alternative to define composite survival outcomes, by relating the average event rate to the survival time. Although non-parametric methods have been proposed for two-sample comparisons, limited attention has been given to regression methods that directly address time-varying association effects in while-alive measures. We address this gap by developing a regression framework for exposure-weighted while-alive measures for composite survival outcomes that include a terminal component event. Our regression approach uses splines to model time-varying association between covariates and a generalized while-alive loss rate of all component events, and can be applied to both independent and clustered data. We derive the asymptotic properties of the regression estimator under both independent data and cluster-correlated data settings, and study the operating characteristics of our methods through simulations. Finally, we apply our regression method to analyze data two randomized clinical trials. The proposed methods are implemented in the WAreg R package.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12711255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145828750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In biomedical studies, continuous and ordinal longitudinal variables are frequently encountered. In many of these studies it is of interest to estimate the effect of one of these longitudinal variables on the other. Time-dependent covariates have, however, several limitations; they can, for example, not be included when the data is not collected at fixed intervals. The issues can be circumvented by implementing joint models, where two or more longitudinal variables are treated as a response and modeled with a correlated random effect. Next, by conditioning on these response(s), we can study the effect of one or more longitudinal variables on another. We propose a normal-ordinal(probit) joint model. First, we derive closed-form formulas to estimate the model-based correlations between the responses on their original scale. In addition, we derive the marginal model, where the interpretation is no longer conditional on the random effects. As a consequence, we can make predictions for a subvector of one response conditional on the other response and potentially a subvector of the history of the response. Next, we extend the approach to a high-dimensional case with more than two ordinal and/or continuous longitudinal variables. The methodology is applied to a case study where, among others, a longitudinal ordinal response is predicted with a longitudinal continuous variable.
{"title":"A joint normal-ordinal (probit) model for ordinal and continuous longitudinal data.","authors":"Margaux Delporte, Geert Molenberghs, Steffen Fieuws, Geert Verbeke","doi":"10.1093/biostatistics/kxae014","DOIUrl":"10.1093/biostatistics/kxae014","url":null,"abstract":"<p><p>In biomedical studies, continuous and ordinal longitudinal variables are frequently encountered. In many of these studies it is of interest to estimate the effect of one of these longitudinal variables on the other. Time-dependent covariates have, however, several limitations; they can, for example, not be included when the data is not collected at fixed intervals. The issues can be circumvented by implementing joint models, where two or more longitudinal variables are treated as a response and modeled with a correlated random effect. Next, by conditioning on these response(s), we can study the effect of one or more longitudinal variables on another. We propose a normal-ordinal(probit) joint model. First, we derive closed-form formulas to estimate the model-based correlations between the responses on their original scale. In addition, we derive the marginal model, where the interpretation is no longer conditional on the random effects. As a consequence, we can make predictions for a subvector of one response conditional on the other response and potentially a subvector of the history of the response. Next, we extend the approach to a high-dimensional case with more than two ordinal and/or continuous longitudinal variables. The methodology is applied to a case study where, among others, a longitudinal ordinal response is predicted with a longitudinal continuous variable.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae027
Yue Wang, Haoran Shi
This paper tackles the challenge of estimating correlations between higher-level biological variables (e.g. proteins and gene pathways) when only lower-level measurements are directly observed (e.g. peptides and individual genes). Existing methods typically aggregate lower-level data into higher-level variables and then estimate correlations based on the aggregated data. However, different data aggregation methods can yield varying correlation estimates as they target different higher-level quantities. Our solution is a latent factor model that directly estimates these higher-level correlations from lower-level data without the need for data aggregation. We further introduce a shrinkage estimator to ensure the positive definiteness and improve the accuracy of the estimated correlation matrix. Furthermore, we establish the asymptotic normality of our estimator, enabling efficient computation of P-values for the identification of significant correlations. The effectiveness of our approach is demonstrated through comprehensive simulations and the analysis of proteomics and gene expression datasets. We develop the R package highcor for implementing our method.
本文探讨了在只能直接观测到较低层次测量数据(如肽和单个基因)的情况下,如何估算较高层次生物变量(如蛋白质和基因通路)之间的相关性这一难题。现有方法通常是将较低级别的数据聚合为较高级别的变量,然后根据聚合数据估计相关性。然而,不同的数据聚合方法会产生不同的相关性估计值,因为它们针对的是不同的高层次数量。我们的解决方案是采用潜因模型,无需数据聚合,直接从低层次数据中估算这些高层次相关性。我们进一步引入了收缩估计器,以确保正定性并提高相关矩阵估计的准确性。此外,我们还建立了估计器的渐近正态性,从而可以高效计算 P 值,识别重要的相关性。我们通过对蛋白质组学和基因表达数据集的全面模拟和分析,证明了我们方法的有效性。我们开发了用于实现我们方法的 R 软件包 highcor。
{"title":"Direct estimation and inference of higher-level correlations from lower-level measurements with applications in gene-pathway and proteomics studies.","authors":"Yue Wang, Haoran Shi","doi":"10.1093/biostatistics/kxae027","DOIUrl":"10.1093/biostatistics/kxae027","url":null,"abstract":"<p><p>This paper tackles the challenge of estimating correlations between higher-level biological variables (e.g. proteins and gene pathways) when only lower-level measurements are directly observed (e.g. peptides and individual genes). Existing methods typically aggregate lower-level data into higher-level variables and then estimate correlations based on the aggregated data. However, different data aggregation methods can yield varying correlation estimates as they target different higher-level quantities. Our solution is a latent factor model that directly estimates these higher-level correlations from lower-level data without the need for data aggregation. We further introduce a shrinkage estimator to ensure the positive definiteness and improve the accuracy of the estimated correlation matrix. Furthermore, we establish the asymptotic normality of our estimator, enabling efficient computation of P-values for the identification of significant correlations. The effectiveness of our approach is demonstrated through comprehensive simulations and the analysis of proteomics and gene expression datasets. We develop the R package highcor for implementing our method.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf008
Ruihan Lu, Yehua Li, Weixin Yao
The transitional phase of menopause induces significant hormonal fluctuations, exerting a profound influence on the long-term well-being of women. In an extensive longitudinal investigation of women's health during mid-life and beyond, known as the Study of Women's Health Across the Nation (SWAN), hormonal biomarkers are repeatedly assessed, following an asynchronous schedule compared to other error-prone covariates, such as physical and cardiovascular measurements. We conduct a subgroup analysis of the SWAN data employing a semiparametric mixture regression model, which allows us to explore how the relationship between hormonal responses and other time-varying or time-invariant covariates varies across subgroups. To address the challenges posed by asynchronous scheduling and measurement errors, we model the time-varying covariate trajectories as functional data with reduced-rank Karhunen-Loéve expansions, where splines are employed to capture the mean and eigenfunctions. Treating the latent subgroup membership and the functional principal component (FPC) scores as missing data, we propose an Expectation-Maximization algorithm to effectively fit the joint model, combining the mixture regression for the hormonal response and the FPC model for the asynchronous, time-varying covariates. In addition, we explore data-driven methods to determine the optimal number of subgroups within the population. Through our comprehensive analysis of the SWAN data, we unveil a crucial subgroup structure within the aging female population, shedding light on important distinctions and patterns among women undergoing menopause.
{"title":"Semiparametric mixture regression for asynchronous longitudinal data using multivariate functional principal component analysis.","authors":"Ruihan Lu, Yehua Li, Weixin Yao","doi":"10.1093/biostatistics/kxaf008","DOIUrl":"10.1093/biostatistics/kxaf008","url":null,"abstract":"<p><p>The transitional phase of menopause induces significant hormonal fluctuations, exerting a profound influence on the long-term well-being of women. In an extensive longitudinal investigation of women's health during mid-life and beyond, known as the Study of Women's Health Across the Nation (SWAN), hormonal biomarkers are repeatedly assessed, following an asynchronous schedule compared to other error-prone covariates, such as physical and cardiovascular measurements. We conduct a subgroup analysis of the SWAN data employing a semiparametric mixture regression model, which allows us to explore how the relationship between hormonal responses and other time-varying or time-invariant covariates varies across subgroups. To address the challenges posed by asynchronous scheduling and measurement errors, we model the time-varying covariate trajectories as functional data with reduced-rank Karhunen-Loéve expansions, where splines are employed to capture the mean and eigenfunctions. Treating the latent subgroup membership and the functional principal component (FPC) scores as missing data, we propose an Expectation-Maximization algorithm to effectively fit the joint model, combining the mixture regression for the hormonal response and the FPC model for the asynchronous, time-varying covariates. In addition, we explore data-driven methods to determine the optimal number of subgroups within the population. Through our comprehensive analysis of the SWAN data, we unveil a crucial subgroup structure within the aging female population, shedding light on important distinctions and patterns among women undergoing menopause.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}