Converging evidence indicates that the heterogeneity of cognitive profiles may arise through detectable alternations in brain functional connectivity. Despite an unprecedented opportunity to uncover neurobiological subtypes through clustering or subtyping analyses on multi-state functional connectivity, few existing approaches are applicable to accommodate the network topology and unique biological architecture. To address this issue, we propose an innovative Bayesian nonparametric network-variate clustering analysis to uncover subgroups of individuals with homogeneous brain functional network patterns under multiple cognitive states. In light of the existing neuroscience literature, we assume there are unknown state-specific modular structures within functional connectivity. Concurrently, we identify informative network features essential for defining subtypes. To further facilitate practical use, we develop a computationally efficient variational inference algorithm to approximate posterior inference with satisfactory estimation accuracy. Extensive simulations show the superiority of our method. We apply the method to the Adolescent Brain Cognitive Development (ABCD) study, and identify neurodevelopmental subtypes and brain sub-network phenotypes under each state to signal neurobiological heterogeneity, suggesting promising directions for further exploration and investigation in neuroscience.
{"title":"Bayesian subtyping for multi-state brain functional connectome with application on preadolescent brain cognition.","authors":"Tianqi Chen, Hongyu Zhao, Chichun Tan, Todd Constable, Sarah Yip, Yize Zhao","doi":"10.1093/biostatistics/kxae045","DOIUrl":"10.1093/biostatistics/kxae045","url":null,"abstract":"<p><p>Converging evidence indicates that the heterogeneity of cognitive profiles may arise through detectable alternations in brain functional connectivity. Despite an unprecedented opportunity to uncover neurobiological subtypes through clustering or subtyping analyses on multi-state functional connectivity, few existing approaches are applicable to accommodate the network topology and unique biological architecture. To address this issue, we propose an innovative Bayesian nonparametric network-variate clustering analysis to uncover subgroups of individuals with homogeneous brain functional network patterns under multiple cognitive states. In light of the existing neuroscience literature, we assume there are unknown state-specific modular structures within functional connectivity. Concurrently, we identify informative network features essential for defining subtypes. To further facilitate practical use, we develop a computationally efficient variational inference algorithm to approximate posterior inference with satisfactory estimation accuracy. Extensive simulations show the superiority of our method. We apply the method to the Adolescent Brain Cognitive Development (ABCD) study, and identify neurodevelopmental subtypes and brain sub-network phenotypes under each state to signal neurobiological heterogeneity, suggesting promising directions for further exploration and investigation in neuroscience.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142830270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae021
Xiaoyue Xi, Hélène Ruffieux
Bayesian graphical models are powerful tools to infer complex relationships in high dimension, yet are often fraught with computational and statistical challenges. If exploited in a principled way, the increasing information collected alongside the data of primary interest constitutes an opportunity to mitigate these difficulties by guiding the detection of dependence structures. For instance, gene network inference may be informed by the use of publicly available summary statistics on the regulation of genes by genetic variants. Here we present a novel Gaussian graphical modeling framework to identify and leverage information on the centrality of nodes in conditional independence graphs. Specifically, we consider a fully joint hierarchical model to simultaneously infer (i) sparse precision matrices and (ii) the relevance of node-level information for uncovering the sought-after network structure. We encode such information as candidate auxiliary variables using a spike-and-slab submodel on the propensity of nodes to be hubs, which allows hypothesis-free selection and interpretation of a sparse subset of relevant variables. As efficient exploration of large posterior spaces is needed for real-world applications, we develop a variational expectation conditional maximization algorithm that scales inference to hundreds of samples, nodes and auxiliary variables. We illustrate and exploit the advantages of our approach in simulations and in a gene network study which identifies hub genes involved in biological pathways relevant to immune-mediated diseases.
贝叶斯图模型是推断高维度复杂关系的强大工具,但在计算和统计方面往往充满挑战。如果以有原则的方式加以利用,那么随着主要兴趣数据的收集而不断增加的信息,就有机会通过指导依赖结构的检测来减轻这些困难。例如,基因网络推断可以利用公开的基因变异调控汇总统计数据。在这里,我们提出了一种新颖的高斯图建模框架,用于识别和利用条件独立图中节点的中心性信息。具体来说,我们考虑了一个完全联合的分层模型,以同时推断 (i) 稀疏精度矩阵和 (ii) 节点级信息对揭示所需的网络结构的相关性。我们使用一个关于节点成为枢纽的倾向的尖峰-板块子模型,将这些信息编码为候选辅助变量,从而可以无假设地选择和解释相关变量的稀疏子集。由于现实世界的应用需要对大型后验空间进行有效探索,我们开发了一种变分期望条件最大化算法,可将推理扩展到数百个样本、节点和辅助变量。我们在模拟和基因网络研究中说明并利用了我们方法的优势,该研究确定了与免疫介导疾病相关的生物通路中的枢纽基因。
{"title":"A modeling framework for detecting and leveraging node-level information in Bayesian network inference.","authors":"Xiaoyue Xi, Hélène Ruffieux","doi":"10.1093/biostatistics/kxae021","DOIUrl":"10.1093/biostatistics/kxae021","url":null,"abstract":"<p><p>Bayesian graphical models are powerful tools to infer complex relationships in high dimension, yet are often fraught with computational and statistical challenges. If exploited in a principled way, the increasing information collected alongside the data of primary interest constitutes an opportunity to mitigate these difficulties by guiding the detection of dependence structures. For instance, gene network inference may be informed by the use of publicly available summary statistics on the regulation of genes by genetic variants. Here we present a novel Gaussian graphical modeling framework to identify and leverage information on the centrality of nodes in conditional independence graphs. Specifically, we consider a fully joint hierarchical model to simultaneously infer (i) sparse precision matrices and (ii) the relevance of node-level information for uncovering the sought-after network structure. We encode such information as candidate auxiliary variables using a spike-and-slab submodel on the propensity of nodes to be hubs, which allows hypothesis-free selection and interpretation of a sparse subset of relevant variables. As efficient exploration of large posterior spaces is needed for real-world applications, we develop a variational expectation conditional maximization algorithm that scales inference to hundreds of samples, nodes and auxiliary variables. We illustrate and exploit the advantages of our approach in simulations and in a gene network study which identifies hub genes involved in biological pathways relevant to immune-mediated diseases.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf002
Neel Desai, Veera Baladandayuthapani, Russell T Shinohara, Jeffrey S Morris
Assessing how brain functional connectivity networks vary across individuals promises to uncover important scientific questions such as patterns of healthy brain aging through the lifespan or dysconnectivity associated with disease. In this article, we introduce a general regression framework, Connectivity Regression (ConnReg), for regressing subject-specific functional connectivity networks on covariates while accounting for within-network inter-edge dependence. ConnReg utilizes a multivariate generalization of Fisher's transformation to project network objects into an alternative space where Gaussian assumptions are justified and positive semidefinite constraints are automatically satisfied. Penalized multivariate regression is fit in the transformed space to simultaneously induce sparsity in regression coefficients and in covariance elements, which capture within network inter-edge dependence. We use permutation tests to perform multiplicity-adjusted inference to identify covariates associated with connectivity, and stability selection scores to identify network edges that vary with selected covariates. Simulation studies validate the inferential properties of our proposed method and demonstrate how estimating and accounting for within-network inter-edge dependence leads to more efficient estimation, more powerful inference, and more accurate selection of covariate-dependent network edges. We apply ConnReg to the Human Connectome Project Young Adult study, revealing insights into how connectivity varies with language processing covariates and structural brain features.
{"title":"Connectivity Regression.","authors":"Neel Desai, Veera Baladandayuthapani, Russell T Shinohara, Jeffrey S Morris","doi":"10.1093/biostatistics/kxaf002","DOIUrl":"10.1093/biostatistics/kxaf002","url":null,"abstract":"<p><p>Assessing how brain functional connectivity networks vary across individuals promises to uncover important scientific questions such as patterns of healthy brain aging through the lifespan or dysconnectivity associated with disease. In this article, we introduce a general regression framework, Connectivity Regression (ConnReg), for regressing subject-specific functional connectivity networks on covariates while accounting for within-network inter-edge dependence. ConnReg utilizes a multivariate generalization of Fisher's transformation to project network objects into an alternative space where Gaussian assumptions are justified and positive semidefinite constraints are automatically satisfied. Penalized multivariate regression is fit in the transformed space to simultaneously induce sparsity in regression coefficients and in covariance elements, which capture within network inter-edge dependence. We use permutation tests to perform multiplicity-adjusted inference to identify covariates associated with connectivity, and stability selection scores to identify network edges that vary with selected covariates. Simulation studies validate the inferential properties of our proposed method and demonstrate how estimating and accounting for within-network inter-edge dependence leads to more efficient estimation, more powerful inference, and more accurate selection of covariate-dependent network edges. We apply ConnReg to the Human Connectome Project Young Adult study, revealing insights into how connectivity varies with language processing covariates and structural brain features.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf015
Jian Sun, Bo Fu
Making causal inferences from observational studies can be challenging when confounders are missing not at random. In such cases, identifying causal effects is often not guaranteed. Motivated by a real example, we consider a treatment-independent missingness assumption under which we establish the identification of causal effects when confounders are missing not at random. We propose a weighted estimating equation approach for estimating model parameters and introduce three estimators for the average causal effect, based on regression, propensity score weighting, and doubly robust estimation. We evaluate the performance of these estimators through simulations, and provide a real data analysis to illustrate our proposed method.
{"title":"Identification and estimation of causal effects with confounders missing not at random.","authors":"Jian Sun, Bo Fu","doi":"10.1093/biostatistics/kxaf015","DOIUrl":"https://doi.org/10.1093/biostatistics/kxaf015","url":null,"abstract":"<p><p>Making causal inferences from observational studies can be challenging when confounders are missing not at random. In such cases, identifying causal effects is often not guaranteed. Motivated by a real example, we consider a treatment-independent missingness assumption under which we establish the identification of causal effects when confounders are missing not at random. We propose a weighted estimating equation approach for estimating model parameters and introduce three estimators for the average causal effect, based on regression, propensity score weighting, and doubly robust estimation. We evaluate the performance of these estimators through simulations, and provide a real data analysis to illustrate our proposed method.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae025
Yihan Bao, Lauren Bell, Elizabeth Williamson, Claire Garnett, Tianchen Qian
Micro-randomized trials are commonly conducted for optimizing mobile health interventions such as push notifications for behavior change. In analyzing such trials, causal excursion effects are often of primary interest, and their estimation typically involves inverse probability weighting (IPW). However, in a micro-randomized trial, additional treatments can often occur during the time window over which an outcome is defined, and this can greatly inflate the variance of the causal effect estimator because IPW would involve a product of numerous weights. To reduce variance and improve estimation efficiency, we propose two new estimators using a modified version of IPW, which we call "per-decision IPW." The second estimator further improves efficiency using the projection idea from the semiparametric efficiency theory. These estimators are applicable when the outcome is binary and can be expressed as the maximum of a series of sub-outcomes defined over sub-intervals of time. We establish the estimators' consistency and asymptotic normality. Through simulation studies and real data applications, we demonstrate substantial efficiency improvement of the proposed estimator over existing estimators. The new estimators can be used to improve the precision of primary and secondary analyses for micro-randomized trials with binary outcomes.
{"title":"Estimating causal effects for binary outcomes using per-decision inverse probability weighting.","authors":"Yihan Bao, Lauren Bell, Elizabeth Williamson, Claire Garnett, Tianchen Qian","doi":"10.1093/biostatistics/kxae025","DOIUrl":"10.1093/biostatistics/kxae025","url":null,"abstract":"<p><p>Micro-randomized trials are commonly conducted for optimizing mobile health interventions such as push notifications for behavior change. In analyzing such trials, causal excursion effects are often of primary interest, and their estimation typically involves inverse probability weighting (IPW). However, in a micro-randomized trial, additional treatments can often occur during the time window over which an outcome is defined, and this can greatly inflate the variance of the causal effect estimator because IPW would involve a product of numerous weights. To reduce variance and improve estimation efficiency, we propose two new estimators using a modified version of IPW, which we call \"per-decision IPW.\" The second estimator further improves efficiency using the projection idea from the semiparametric efficiency theory. These estimators are applicable when the outcome is binary and can be expressed as the maximum of a series of sub-outcomes defined over sub-intervals of time. We establish the estimators' consistency and asymptotic normality. Through simulation studies and real data applications, we demonstrate substantial efficiency improvement of the proposed estimator over existing estimators. The new estimators can be used to improve the precision of primary and secondary analyses for micro-randomized trials with binary outcomes.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf022
Amanda F Mejia, David Bolin, Daniel A Spencer, Ani Eloyan
Brain functional connectivity (FC), the temporal synchrony between brain networks, is essential to understand the functional organization of the brain and to identify changes due to neurological disorders, development, treatment, and other phenomena. Independent component analysis (ICA) is a matrix decomposition method used extensively for simultaneous estimation of functional brain topography and connectivity. However, estimation of FC via ICA is often sub-optimal due to the use of ad hoc estimation methods or temporal dimension reduction prior to ICA. Bayesian ICA can avoid dimension reduction, estimate latent variables and model parameters more accurately, and facilitate posterior inference. In this article, we develop a novel, computationally feasible Bayesian ICA method with population-derived priors on both the spatial ICs and their temporal correlation (that is, their FC). For the latter, we consider two priors: the inverse-Wishart, which is conjugate but is not ideally suited for modeling correlation matrices; and a novel informative prior for correlation matrices. For each prior, we derive a variational Bayes algorithm to estimate the model variables and facilitate posterior inference. Through extensive simulation studies, we evaluate the performance of the proposed methods and benchmark against existing approaches. We also analyze fMRI data from over 400 healthy adults in the Human Connectome Project. We find that our Bayesian ICA model and algorithms result in more accurate measures of functional connectivity and spatial brain features. Our novel prior for correlation matrices is more computationally intensive than the inverse-Wishart but provides improved accuracy and inference. The proposed framework is applicable to single-subject analysis, making it potentially clinically viable.
{"title":"Leveraging population information in brain connectivity via Bayesian ICA with a novel informative prior for correlation matrices.","authors":"Amanda F Mejia, David Bolin, Daniel A Spencer, Ani Eloyan","doi":"10.1093/biostatistics/kxaf022","DOIUrl":"https://doi.org/10.1093/biostatistics/kxaf022","url":null,"abstract":"<p><p>Brain functional connectivity (FC), the temporal synchrony between brain networks, is essential to understand the functional organization of the brain and to identify changes due to neurological disorders, development, treatment, and other phenomena. Independent component analysis (ICA) is a matrix decomposition method used extensively for simultaneous estimation of functional brain topography and connectivity. However, estimation of FC via ICA is often sub-optimal due to the use of ad hoc estimation methods or temporal dimension reduction prior to ICA. Bayesian ICA can avoid dimension reduction, estimate latent variables and model parameters more accurately, and facilitate posterior inference. In this article, we develop a novel, computationally feasible Bayesian ICA method with population-derived priors on both the spatial ICs and their temporal correlation (that is, their FC). For the latter, we consider two priors: the inverse-Wishart, which is conjugate but is not ideally suited for modeling correlation matrices; and a novel informative prior for correlation matrices. For each prior, we derive a variational Bayes algorithm to estimate the model variables and facilitate posterior inference. Through extensive simulation studies, we evaluate the performance of the proposed methods and benchmark against existing approaches. We also analyze fMRI data from over 400 healthy adults in the Human Connectome Project. We find that our Bayesian ICA model and algorithms result in more accurate measures of functional connectivity and spatial brain features. Our novel prior for correlation matrices is more computationally intensive than the inverse-Wishart but provides improved accuracy and inference. The proposed framework is applicable to single-subject analysis, making it potentially clinically viable.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144979622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf050
Huaqing Jin, Fei Jiang
Alzheimer's disease (AD) is a progressive, chronic neurodegenerative disorder affecting millions worldwide. A new clinical magnetoencephalography (MEG) study was conducted to identify neural activity biomarkers and key brain regions in AD. Traditional methods for analyzing MEG data, which typically extract features from power spectral density, suffer from information loss. Furthermore, functional regression with variable selection tends to produce non-robust results, making it less ideal for drawing reliable scientific conclusions. To address these challenges, we propose a high-dimensional hypothesis testing (HDHT) framework for functional covariates and introduce a rigorous inference process to support scientific conclusions. We establish the theoretical properties of the HDHT framework and validate its performance through simulation studies. Applying the HDHT framework to the AD MEG data, we identify 19 important regions associated with cognitive functions that align with established AD pathophysiology. These findings suggest that the non-invasive MEG can be a potential low-risk and low-toxicity modality for monitoring neurodegenerative progression.
{"title":"High-dimensional inference for functional regression with an application to the Alzheimer's disease magnetoencephalography study.","authors":"Huaqing Jin, Fei Jiang","doi":"10.1093/biostatistics/kxaf050","DOIUrl":"10.1093/biostatistics/kxaf050","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive, chronic neurodegenerative disorder affecting millions worldwide. A new clinical magnetoencephalography (MEG) study was conducted to identify neural activity biomarkers and key brain regions in AD. Traditional methods for analyzing MEG data, which typically extract features from power spectral density, suffer from information loss. Furthermore, functional regression with variable selection tends to produce non-robust results, making it less ideal for drawing reliable scientific conclusions. To address these challenges, we propose a high-dimensional hypothesis testing (HDHT) framework for functional covariates and introduce a rigorous inference process to support scientific conclusions. We establish the theoretical properties of the HDHT framework and validate its performance through simulation studies. Applying the HDHT framework to the AD MEG data, we identify 19 important regions associated with cognitive functions that align with established AD pathophysiology. These findings suggest that the non-invasive MEG can be a potential low-risk and low-toxicity modality for monitoring neurodegenerative progression.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12728160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145822185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae013
Qianhan Zeng, Jing Zhou, Ying Ji, Hansheng Wang
Computed tomography (CT) has been a powerful diagnostic tool since its emergence in the 1970s. Using CT data, 3D structures of human internal organs and tissues, such as blood vessels, can be reconstructed using professional software. This 3D reconstruction is crucial for surgical operations and can serve as a vivid medical teaching example. However, traditional 3D reconstruction heavily relies on manual operations, which are time-consuming, subjective, and require substantial experience. To address this problem, we develop a novel semiparametric Gaussian mixture model tailored for the 3D reconstruction of blood vessels. This model extends the classical Gaussian mixture model by enabling nonparametric variations in the component-wise parameters of interest according to voxel positions. We develop a kernel-based expectation-maximization algorithm for estimating the model parameters, accompanied by a supporting asymptotic theory. Furthermore, we propose a novel regression method for optimal bandwidth selection. Compared to the conventional cross-validation-based (CV) method, the regression method outperforms the CV method in terms of computational and statistical efficiency. In application, this methodology facilitates the fully automated reconstruction of 3D blood vessel structures with remarkable accuracy.
{"title":"A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction.","authors":"Qianhan Zeng, Jing Zhou, Ying Ji, Hansheng Wang","doi":"10.1093/biostatistics/kxae013","DOIUrl":"10.1093/biostatistics/kxae013","url":null,"abstract":"<p><p>Computed tomography (CT) has been a powerful diagnostic tool since its emergence in the 1970s. Using CT data, 3D structures of human internal organs and tissues, such as blood vessels, can be reconstructed using professional software. This 3D reconstruction is crucial for surgical operations and can serve as a vivid medical teaching example. However, traditional 3D reconstruction heavily relies on manual operations, which are time-consuming, subjective, and require substantial experience. To address this problem, we develop a novel semiparametric Gaussian mixture model tailored for the 3D reconstruction of blood vessels. This model extends the classical Gaussian mixture model by enabling nonparametric variations in the component-wise parameters of interest according to voxel positions. We develop a kernel-based expectation-maximization algorithm for estimating the model parameters, accompanied by a supporting asymptotic theory. Furthermore, we propose a novel regression method for optimal bandwidth selection. Compared to the conventional cross-validation-based (CV) method, the regression method outperforms the CV method in terms of computational and statistical efficiency. In application, this methodology facilitates the fully automated reconstruction of 3D blood vessel structures with remarkable accuracy.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf021
Ethan M Alt, Xiuya Chang, Qing Liu, Xun Jiang, May Mo, H Amy Xia, Joseph G Ibrahim
In clinical trials, it is often valuable to borrow information from external data sources. Unfortunately, when the external data are fully or partially incompatible with the current trial data, type I error rates can be highly inflated under traditional blanket discounting schemes such as power priors, commensurate priors, and meta-analytic predictive priors. However, such inflation of the probability of a false positive can be necessary, as the alternative is to have an underpowered study. For clinical trials with time-to-event (TTE) outcomes, this problem is exacerbated since many observations are censored. In this paper, we develop the latent exchangeability prior for TTE data. We also present a novel framework to borrow information about the treatment effect between groups as well as incorporate information from external controls. Simulation results suggest that, although efficiency gains can be achieved by borrowing information among external controls, operating characteristics in general can be quite poor under a lack of exchangeability. We apply our approach to a real clinical trial in second-line metastatic colorectal cancer.
{"title":"Control arm augmentation and hierarchical modeling in time-to-event trials: advantages and pitfalls.","authors":"Ethan M Alt, Xiuya Chang, Qing Liu, Xun Jiang, May Mo, H Amy Xia, Joseph G Ibrahim","doi":"10.1093/biostatistics/kxaf021","DOIUrl":"10.1093/biostatistics/kxaf021","url":null,"abstract":"<p><p>In clinical trials, it is often valuable to borrow information from external data sources. Unfortunately, when the external data are fully or partially incompatible with the current trial data, type I error rates can be highly inflated under traditional blanket discounting schemes such as power priors, commensurate priors, and meta-analytic predictive priors. However, such inflation of the probability of a false positive can be necessary, as the alternative is to have an underpowered study. For clinical trials with time-to-event (TTE) outcomes, this problem is exacerbated since many observations are censored. In this paper, we develop the latent exchangeability prior for TTE data. We also present a novel framework to borrow information about the treatment effect between groups as well as incorporate information from external controls. Simulation results suggest that, although efficiency gains can be achieved by borrowing information among external controls, operating characteristics in general can be quite poor under a lack of exchangeability. We apply our approach to a real clinical trial in second-line metastatic colorectal cancer.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144838617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Progress in neuroscience has provided unprecedented opportunities to advance our understanding of brain alterations and their correspondence to phenotypic profiles. With data collected from various imaging techniques, studies have integrated different types of information ranging from brain structure, function, or metabolism. More recently, an emerging way to categorize imaging traits is through a metric hierarchy, including localized node-level measurements and interactive network-level metrics. However, limited research has been conducted to integrate these different hierarchies and achieve a better understanding of the neurobiological mechanisms and communications. In this work, we address this literature gap by proposing a Bayesian regression model under both vector-variate and matrix-variate predictors. To characterize the interplay between different predicting components, we propose a set of biologically plausible prior models centered on an innovative joint thresholded prior. This captures the coupling and grouping effect of signal patterns, as well as their spatial contiguity across brain anatomy. By developing a posterior inference, we can identify and quantify the uncertainty of signaling node- and network-level neuromarkers, as well as their predictive mechanism for phenotypic outcomes. Through extensive simulations, we demonstrate that our proposed method outperforms the alternative approaches substantially in both out-of-sample prediction and feature selection. By implementing the model to study children's general mental abilities, we establish a powerful predictive mechanism based on the identified task contrast traits and resting-state sub-networks.
{"title":"Bayesian thresholded modeling for integrating brain node and network predictors.","authors":"Zhe Sun, Wanwan Xu, Tianxi Li, Jian Kang, Gregorio Alanis-Lobato, Yize Zhao","doi":"10.1093/biostatistics/kxae048","DOIUrl":"10.1093/biostatistics/kxae048","url":null,"abstract":"<p><p>Progress in neuroscience has provided unprecedented opportunities to advance our understanding of brain alterations and their correspondence to phenotypic profiles. With data collected from various imaging techniques, studies have integrated different types of information ranging from brain structure, function, or metabolism. More recently, an emerging way to categorize imaging traits is through a metric hierarchy, including localized node-level measurements and interactive network-level metrics. However, limited research has been conducted to integrate these different hierarchies and achieve a better understanding of the neurobiological mechanisms and communications. In this work, we address this literature gap by proposing a Bayesian regression model under both vector-variate and matrix-variate predictors. To characterize the interplay between different predicting components, we propose a set of biologically plausible prior models centered on an innovative joint thresholded prior. This captures the coupling and grouping effect of signal patterns, as well as their spatial contiguity across brain anatomy. By developing a posterior inference, we can identify and quantify the uncertainty of signaling node- and network-level neuromarkers, as well as their predictive mechanism for phenotypic outcomes. Through extensive simulations, we demonstrate that our proposed method outperforms the alternative approaches substantially in both out-of-sample prediction and feature selection. By implementing the model to study children's general mental abilities, we establish a powerful predictive mechanism based on the identified task contrast traits and resting-state sub-networks.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}