Pub Date : 2024-10-01DOI: 10.1093/biostatistics/kxae001
Wei Jin, Yang Ni, Amanda B Spence, Leah H Rubin, Yanxun Xu
Combination antiretroviral therapy (ART) with at least three different drugs has become the standard of care for people with HIV (PWH) due to its exceptional effectiveness in viral suppression. However, many ART drugs have been reported to associate with neuropsychiatric adverse effects including depression, especially when certain genetic polymorphisms exist. Pharmacogenetics is an important consideration for administering combination ART as it may influence drug efficacy and increase risk for neuropsychiatric conditions. Large-scale longitudinal HIV databases provide researchers opportunities to investigate the pharmacogenetics of combination ART in a data-driven manner. However, with more than 30 FDA-approved ART drugs, the interplay between the large number of possible ART drug combinations and genetic polymorphisms imposes statistical modeling challenges. We develop a Bayesian approach to examine the longitudinal effects of combination ART and their interactions with genetic polymorphisms on depressive symptoms in PWH. The proposed method utilizes a Gaussian process with a composite kernel function to capture the longitudinal combination ART effects by directly incorporating individuals' treatment histories, and a Bayesian classification and regression tree to account for individual heterogeneity. Through both simulation studies and an application to a dataset from the Women's Interagency HIV Study, we demonstrate the clinical utility of the proposed approach in investigating the pharmacogenetics of combination ART and assisting physicians to make effective individualized treatment decisions that can improve health outcomes for PWH.
至少使用三种不同药物的联合抗逆转录病毒疗法(ART)在抑制病毒方面效果显著,因此已成为艾滋病病毒感染者(PWH)的标准治疗方法。然而,据报道,许多抗逆转录病毒疗法药物都会产生神经精神方面的不良反应,包括抑郁症,尤其是在存在某些基因多态性的情况下。药物遗传学是实施联合抗逆转录病毒疗法的一个重要考虑因素,因为它可能会影响药物疗效并增加神经精神疾病的风险。大规模的艾滋病纵向数据库为研究人员提供了以数据为导向研究联合抗逆转录病毒疗法药物遗传学的机会。然而,由于美国 FDA 批准的抗逆转录病毒疗法药物超过 30 种,大量可能的抗逆转录病毒疗法药物组合与基因多态性之间的相互作用给统计建模带来了挑战。我们开发了一种贝叶斯方法来研究抗逆转录病毒疗法组合及其与遗传多态性之间的相互作用对 PWH 抑郁症状的纵向影响。所提出的方法利用具有复合核函数的高斯过程,通过直接纳入个体的治疗历史来捕捉联合抗逆转录病毒疗法的纵向效应,并利用贝叶斯分类和回归树来考虑个体的异质性。通过模拟研究和对妇女机构间艾滋病研究数据集的应用,我们证明了所提方法在研究联合抗逆转录病毒疗法的药物遗传学方面的临床实用性,并可协助医生做出有效的个体化治疗决策,从而改善艾滋病患者的健康状况。
{"title":"A Bayesian approach for investigating the pharmacogenetics of combination antiretroviral therapy in people with HIV.","authors":"Wei Jin, Yang Ni, Amanda B Spence, Leah H Rubin, Yanxun Xu","doi":"10.1093/biostatistics/kxae001","DOIUrl":"10.1093/biostatistics/kxae001","url":null,"abstract":"<p><p>Combination antiretroviral therapy (ART) with at least three different drugs has become the standard of care for people with HIV (PWH) due to its exceptional effectiveness in viral suppression. However, many ART drugs have been reported to associate with neuropsychiatric adverse effects including depression, especially when certain genetic polymorphisms exist. Pharmacogenetics is an important consideration for administering combination ART as it may influence drug efficacy and increase risk for neuropsychiatric conditions. Large-scale longitudinal HIV databases provide researchers opportunities to investigate the pharmacogenetics of combination ART in a data-driven manner. However, with more than 30 FDA-approved ART drugs, the interplay between the large number of possible ART drug combinations and genetic polymorphisms imposes statistical modeling challenges. We develop a Bayesian approach to examine the longitudinal effects of combination ART and their interactions with genetic polymorphisms on depressive symptoms in PWH. The proposed method utilizes a Gaussian process with a composite kernel function to capture the longitudinal combination ART effects by directly incorporating individuals' treatment histories, and a Bayesian classification and regression tree to account for individual heterogeneity. Through both simulation studies and an application to a dataset from the Women's Interagency HIV Study, we demonstrate the clinical utility of the proposed approach in investigating the pharmacogenetics of combination ART and assisting physicians to make effective individualized treatment decisions that can improve health outcomes for PWH.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1034-1048"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1093/biostatistics/kxae008
Xinyuan Tian, Yiting Wang, Selena Wang, Yi Zhao, Yize Zhao
Genetic association studies for brain connectivity phenotypes have gained prominence due to advances in noninvasive imaging techniques and quantitative genetics. Brain connectivity traits, characterized by network configurations and unique biological structures, present distinct challenges compared to other quantitative phenotypes. Furthermore, the presence of sample relatedness in the most imaging genetics studies limits the feasibility of adopting existing network-response modeling. In this article, we fill this gap by proposing a Bayesian network-response mixed-effect model that considers a network-variate phenotype and incorporates population structures including pedigrees and unknown sample relatedness. To accommodate the inherent topological architecture associated with the genetic contributions to the phenotype, we model the effect components via a set of effect network configurations and impose an inter-network sparsity and intra-network shrinkage to dissect the phenotypic network configurations affected by the risk genetic variant. A Markov chain Monte Carlo (MCMC) algorithm is further developed to facilitate uncertainty quantification. We evaluate the performance of our model through extensive simulations. By further applying the method to study, the genetic bases for brain structural connectivity using data from the Human Connectome Project with excessive family structures, we obtain plausible and interpretable results. Beyond brain connectivity genetic studies, our proposed model also provides a general linear mixed-effect regression framework for network-variate outcomes.
{"title":"Bayesian mixed model inference for genetic association under related samples with brain network phenotype.","authors":"Xinyuan Tian, Yiting Wang, Selena Wang, Yi Zhao, Yize Zhao","doi":"10.1093/biostatistics/kxae008","DOIUrl":"10.1093/biostatistics/kxae008","url":null,"abstract":"<p><p>Genetic association studies for brain connectivity phenotypes have gained prominence due to advances in noninvasive imaging techniques and quantitative genetics. Brain connectivity traits, characterized by network configurations and unique biological structures, present distinct challenges compared to other quantitative phenotypes. Furthermore, the presence of sample relatedness in the most imaging genetics studies limits the feasibility of adopting existing network-response modeling. In this article, we fill this gap by proposing a Bayesian network-response mixed-effect model that considers a network-variate phenotype and incorporates population structures including pedigrees and unknown sample relatedness. To accommodate the inherent topological architecture associated with the genetic contributions to the phenotype, we model the effect components via a set of effect network configurations and impose an inter-network sparsity and intra-network shrinkage to dissect the phenotypic network configurations affected by the risk genetic variant. A Markov chain Monte Carlo (MCMC) algorithm is further developed to facilitate uncertainty quantification. We evaluate the performance of our model through extensive simulations. By further applying the method to study, the genetic bases for brain structural connectivity using data from the Human Connectome Project with excessive family structures, we obtain plausible and interpretable results. Beyond brain connectivity genetic studies, our proposed model also provides a general linear mixed-effect regression framework for network-variate outcomes.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1195-1209"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1093/biostatistics/kxae024
Yifan Yu, Rosario Pintos Lobo, Michael Cody Riedel, Katherine Bottenhorn, Angela R Laird, Thomas E Nichols
Coordinate-based meta-analysis combines evidence from a collection of neuroimaging studies to estimate brain activation. In such analyses, a key practical challenge is to find a computationally efficient approach with good statistical interpretability to model the locations of activation foci. In this article, we propose a generative coordinate-based meta-regression (CBMR) framework to approximate a smooth activation intensity function and investigate the effect of study-level covariates (e.g. year of publication, sample size). We employ a spline parameterization to model the spatial structure of brain activation and consider four stochastic models for modeling the random variation in foci. To examine the validity of CBMR, we estimate brain activation on 20 meta-analytic datasets, conduct spatial homogeneity tests at the voxel level, and compare the results to those generated by existing kernel-based and model-based approaches. Keywords: generalized linear models; meta-analysis; spatial statistics; statistical modeling.
{"title":"Neuroimaging meta regression for coordinate based meta analysis data with a spatial model.","authors":"Yifan Yu, Rosario Pintos Lobo, Michael Cody Riedel, Katherine Bottenhorn, Angela R Laird, Thomas E Nichols","doi":"10.1093/biostatistics/kxae024","DOIUrl":"10.1093/biostatistics/kxae024","url":null,"abstract":"<p><p>Coordinate-based meta-analysis combines evidence from a collection of neuroimaging studies to estimate brain activation. In such analyses, a key practical challenge is to find a computationally efficient approach with good statistical interpretability to model the locations of activation foci. In this article, we propose a generative coordinate-based meta-regression (CBMR) framework to approximate a smooth activation intensity function and investigate the effect of study-level covariates (e.g. year of publication, sample size). We employ a spline parameterization to model the spatial structure of brain activation and consider four stochastic models for modeling the random variation in foci. To examine the validity of CBMR, we estimate brain activation on 20 meta-analytic datasets, conduct spatial homogeneity tests at the voxel level, and compare the results to those generated by existing kernel-based and model-based approaches. Keywords: generalized linear models; meta-analysis; spatial statistics; statistical modeling.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1210-1232"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1093/biostatistics/kxae003
Bao Le, Xiaoyue Niu, Tim Brown, Jeffrey W Imai-Eaton
Dynamic models have been successfully used in producing estimates of HIV epidemics at the national level due to their epidemiological nature and their ability to estimate prevalence, incidence, and mortality rates simultaneously. Recently, HIV interventions and policies have required more information at sub-national levels to support local planning, decision-making and resource allocation. Unfortunately, many areas lack sufficient data for deriving stable and reliable results, and this is a critical technical barrier to more stratified estimates. One solution is to borrow information from other areas within the same country. However, directly assuming hierarchical structures within the HIV dynamic models is complicated and computationally time-consuming. In this article, we propose a simple and innovative way to incorporate hierarchical information into the dynamical systems by using auxiliary data. The proposed method efficiently uses information from multiple areas within each country without increasing the computational burden. As a result, the new model improves predictive ability and uncertainty assessment.
动态模型具有流行病学性质,能够同时估算流行率、发病率和死亡率,因此已成功用于估算国家层面的艾滋病毒流行情况。最近,艾滋病干预措施和政策需要国家以下各级提供更多信息,以支持地方规划、决策和资源分配。遗憾的是,许多地区缺乏足够的数据来得出稳定可靠的结果,这是进行更多分层估算的关键技术障碍。解决办法之一是借用同一国家其他地区的信息。然而,在 HIV 动态模型中直接假设分层结构既复杂又耗费计算时间。在本文中,我们提出了一种简单而创新的方法,通过使用辅助数据将分层信息纳入动态系统。所提出的方法在不增加计算负担的情况下,有效地利用了每个国家内多个地区的信息。因此,新模型提高了预测能力和不确定性评估。
{"title":"Dynamic models augmented by hierarchical data: an application of estimating HIV epidemics at sub-national level.","authors":"Bao Le, Xiaoyue Niu, Tim Brown, Jeffrey W Imai-Eaton","doi":"10.1093/biostatistics/kxae003","DOIUrl":"10.1093/biostatistics/kxae003","url":null,"abstract":"<p><p>Dynamic models have been successfully used in producing estimates of HIV epidemics at the national level due to their epidemiological nature and their ability to estimate prevalence, incidence, and mortality rates simultaneously. Recently, HIV interventions and policies have required more information at sub-national levels to support local planning, decision-making and resource allocation. Unfortunately, many areas lack sufficient data for deriving stable and reliable results, and this is a critical technical barrier to more stratified estimates. One solution is to borrow information from other areas within the same country. However, directly assuming hierarchical structures within the HIV dynamic models is complicated and computationally time-consuming. In this article, we propose a simple and innovative way to incorporate hierarchical information into the dynamical systems by using auxiliary data. The proposed method efficiently uses information from multiple areas within each country without increasing the computational burden. As a result, the new model improves predictive ability and uncertainty assessment.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1049-1061"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1093/biostatistics/kxad018
Ravi Varadhan, Jiafeng Zhu, Karen Bandeen-Roche
Many older adults experience a major stressor at some point in their lives. The ability to recover well after a major stressor is known as resilience. An important goal of geriatric research is to identify factors that influence resilience to stressors. Studies of resilience in older adults are typically conducted with a single-arm where everyone experiences the stressor. The simplistic approach of regressing change versus baseline yields biased estimates due to mathematical coupling and regression to the mean (RTM). We develop a method to correct the bias. We extend the method to include covariates. Our approach considers a counterfactual control group and involves sensitivity analyses to evaluate different settings of control group parameters. Only minimal distributional assumptions are required. Simulation studies demonstrate the validity of the method. We illustrate the method using a large, registry of older adults (N =7239) who underwent total knee replacement (TKR). We demonstrate how external data can be utilized to constrain the sensitivity analysis. Naive analyses implicated several treatment effect modifiers including baseline function, age, body-mass index (BMI), gender, number of comorbidities, income, and race. Corrected analysis revealed that baseline (pre-stressor) function was not strongly linked to recovery after TKR and among the covariates, only age and number of comorbidities were consistently and negatively associated with post-stressor recovery in all functional domains. Correction of mathematical coupling and RTM is necessary for drawing valid inferences regarding the effect of covariates and baseline status on pre-post change. Our method provides a simple estimator to this end.
{"title":"Identifying predictors of resilience to stressors in single-arm studies of pre-post change.","authors":"Ravi Varadhan, Jiafeng Zhu, Karen Bandeen-Roche","doi":"10.1093/biostatistics/kxad018","DOIUrl":"10.1093/biostatistics/kxad018","url":null,"abstract":"<p><p>Many older adults experience a major stressor at some point in their lives. The ability to recover well after a major stressor is known as resilience. An important goal of geriatric research is to identify factors that influence resilience to stressors. Studies of resilience in older adults are typically conducted with a single-arm where everyone experiences the stressor. The simplistic approach of regressing change versus baseline yields biased estimates due to mathematical coupling and regression to the mean (RTM). We develop a method to correct the bias. We extend the method to include covariates. Our approach considers a counterfactual control group and involves sensitivity analyses to evaluate different settings of control group parameters. Only minimal distributional assumptions are required. Simulation studies demonstrate the validity of the method. We illustrate the method using a large, registry of older adults (N =7239) who underwent total knee replacement (TKR). We demonstrate how external data can be utilized to constrain the sensitivity analysis. Naive analyses implicated several treatment effect modifiers including baseline function, age, body-mass index (BMI), gender, number of comorbidities, income, and race. Corrected analysis revealed that baseline (pre-stressor) function was not strongly linked to recovery after TKR and among the covariates, only age and number of comorbidities were consistently and negatively associated with post-stressor recovery in all functional domains. Correction of mathematical coupling and RTM is necessary for drawing valid inferences regarding the effect of covariates and baseline status on pre-post change. Our method provides a simple estimator to this end.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1094-1111"},"PeriodicalIF":2.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10297247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1093/biostatistics/kxad031
Jian Wang, Xinyang Jiang, Jing Ning
Interest in analyzing recurrent event data has increased over the past few decades. One essential aspect of a risk prediction model for recurrent event data is to accurately distinguish individuals with different risks of developing a recurrent event. Although the concordance index (C-index) effectively evaluates the overall discriminative ability of a regression model for recurrent event data, a local measure is also desirable to capture dynamic performance of the regression model over time. Therefore, in this study, we propose a time-dependent C-index measure for inferring the model's discriminative ability locally. We formulated the C-index as a function of time using a flexible parametric model and constructed a concordance-based likelihood for estimation and inference. We adapted a perturbation-resampling procedure for variance estimation. Extensive simulations were conducted to investigate the proposed time-dependent C-index's finite-sample performance and estimation procedure. We applied the time-dependent C-index to three regression models of a study of re-hospitalization in patients with colorectal cancer to evaluate the models' discriminative capability.
{"title":"Evaluating dynamic and predictive discrimination for recurrent event models: use of a time-dependent C-index.","authors":"Jian Wang, Xinyang Jiang, Jing Ning","doi":"10.1093/biostatistics/kxad031","DOIUrl":"10.1093/biostatistics/kxad031","url":null,"abstract":"<p><p>Interest in analyzing recurrent event data has increased over the past few decades. One essential aspect of a risk prediction model for recurrent event data is to accurately distinguish individuals with different risks of developing a recurrent event. Although the concordance index (C-index) effectively evaluates the overall discriminative ability of a regression model for recurrent event data, a local measure is also desirable to capture dynamic performance of the regression model over time. Therefore, in this study, we propose a time-dependent C-index measure for inferring the model's discriminative ability locally. We formulated the C-index as a function of time using a flexible parametric model and constructed a concordance-based likelihood for estimation and inference. We adapted a perturbation-resampling procedure for variance estimation. Extensive simulations were conducted to investigate the proposed time-dependent C-index's finite-sample performance and estimation procedure. We applied the time-dependent C-index to three regression models of a study of re-hospitalization in patients with colorectal cancer to evaluate the models' discriminative capability.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1140-1155"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1093/biostatistics/kxad033
Andrew A Chen, Sarah M Weinstein, Azeez Adebimpe, Ruben C Gur, Raquel E Gur, Kathleen R Merikangas, Theodore D Satterthwaite, Russell T Shinohara, Haochang Shou
To better understand complex human phenotypes, large-scale studies have increasingly collected multiple data modalities across domains such as imaging, mobile health, and physical activity. The properties of each data type often differ substantially and require either separate analyses or extensive processing to obtain comparable features for a combined analysis. Multimodal data fusion enables certain analyses on matrix-valued and vector-valued data, but it generally cannot integrate modalities of different dimensions and data structures. For a single data modality, multivariate distance matrix regression provides a distance-based framework for regression accommodating a wide range of data types. However, no distance-based method exists to handle multiple complementary types of data. We propose a novel distance-based regression model, which we refer to as Similarity-based Multimodal Regression (SiMMR), that enables simultaneous regression of multiple modalities through their distance profiles. We demonstrate through simulation, imaging studies, and longitudinal mobile health analyses that our proposed method can detect associations between clinical variables and multimodal data of differing properties and dimensionalities, even with modest sample sizes. We perform experiments to evaluate several different test statistics and provide recommendations for applying our method across a broad range of scenarios.
{"title":"Similarity-based multimodal regression.","authors":"Andrew A Chen, Sarah M Weinstein, Azeez Adebimpe, Ruben C Gur, Raquel E Gur, Kathleen R Merikangas, Theodore D Satterthwaite, Russell T Shinohara, Haochang Shou","doi":"10.1093/biostatistics/kxad033","DOIUrl":"10.1093/biostatistics/kxad033","url":null,"abstract":"<p><p>To better understand complex human phenotypes, large-scale studies have increasingly collected multiple data modalities across domains such as imaging, mobile health, and physical activity. The properties of each data type often differ substantially and require either separate analyses or extensive processing to obtain comparable features for a combined analysis. Multimodal data fusion enables certain analyses on matrix-valued and vector-valued data, but it generally cannot integrate modalities of different dimensions and data structures. For a single data modality, multivariate distance matrix regression provides a distance-based framework for regression accommodating a wide range of data types. However, no distance-based method exists to handle multiple complementary types of data. We propose a novel distance-based regression model, which we refer to as Similarity-based Multimodal Regression (SiMMR), that enables simultaneous regression of multiple modalities through their distance profiles. We demonstrate through simulation, imaging studies, and longitudinal mobile health analyses that our proposed method can detect associations between clinical variables and multimodal data of differing properties and dimensionalities, even with modest sample sizes. We perform experiments to evaluate several different test statistics and provide recommendations for applying our method across a broad range of scenarios.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1122-1139"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1093/biostatistics/kxae002
Grace Rhodes, Marie Davidian, Wenbin Lu
Clinicians and patients must make treatment decisions at a series of key decision points throughout disease progression. A dynamic treatment regime is a set of sequential decision rules that return treatment decisions based on accumulating patient information, like that commonly found in electronic medical record (EMR) data. When applied to a patient population, an optimal treatment regime leads to the most favorable outcome on average. Identifying optimal treatment regimes that maximize residual life is especially desirable for patients with life-threatening diseases such as sepsis, a complex medical condition that involves severe infections with organ dysfunction. We introduce the residual life value estimator (ReLiVE), an estimator for the expected value of cumulative restricted residual life under a fixed treatment regime. Building on ReLiVE, we present a method for estimating an optimal treatment regime that maximizes expected cumulative restricted residual life. Our proposed method, ReLiVE-Q, conducts estimation via the backward induction algorithm Q-learning. We illustrate the utility of ReLiVE-Q in simulation studies, and we apply ReLiVE-Q to estimate an optimal treatment regime for septic patients in the intensive care unit using EMR data from the Multiparameter Intelligent Monitoring Intensive Care database. Ultimately, we demonstrate that ReLiVE-Q leverages accumulating patient information to estimate personalized treatment regimes that optimize a clinically meaningful function of residual life.
{"title":"Estimation of optimal treatment regimes with electronic medical record data using the residual life value estimator.","authors":"Grace Rhodes, Marie Davidian, Wenbin Lu","doi":"10.1093/biostatistics/kxae002","DOIUrl":"10.1093/biostatistics/kxae002","url":null,"abstract":"<p><p>Clinicians and patients must make treatment decisions at a series of key decision points throughout disease progression. A dynamic treatment regime is a set of sequential decision rules that return treatment decisions based on accumulating patient information, like that commonly found in electronic medical record (EMR) data. When applied to a patient population, an optimal treatment regime leads to the most favorable outcome on average. Identifying optimal treatment regimes that maximize residual life is especially desirable for patients with life-threatening diseases such as sepsis, a complex medical condition that involves severe infections with organ dysfunction. We introduce the residual life value estimator (ReLiVE), an estimator for the expected value of cumulative restricted residual life under a fixed treatment regime. Building on ReLiVE, we present a method for estimating an optimal treatment regime that maximizes expected cumulative restricted residual life. Our proposed method, ReLiVE-Q, conducts estimation via the backward induction algorithm Q-learning. We illustrate the utility of ReLiVE-Q in simulation studies, and we apply ReLiVE-Q to estimate an optimal treatment regime for septic patients in the intensive care unit using EMR data from the Multiparameter Intelligent Monitoring Intensive Care database. Ultimately, we demonstrate that ReLiVE-Q leverages accumulating patient information to estimate personalized treatment regimes that optimize a clinically meaningful function of residual life.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"933-946"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1093/biostatistics/kxae011
Trang Quynh Nguyen, Michelle C Carlson, Elizabeth A Stuart
The study of treatment effects is often complicated by noncompliance and missing data. In the one-sided noncompliance setting where of interest are the complier and noncomplier average causal effects, we address outcome missingness of the latent missing at random type (LMAR, also known as latent ignorability). That is, conditional on covariates and treatment assigned, the missingness may depend on compliance type. Within the instrumental variable (IV) approach to noncompliance, methods have been proposed for handling LMAR outcome that additionally invoke an exclusion restriction-type assumption on missingness, but no solution has been proposed for when a non-IV approach is used. This article focuses on effect identification in the presence of LMAR outcomes, with a view to flexibly accommodate different principal identification approaches. We show that under treatment assignment ignorability and LMAR only, effect nonidentifiability boils down to a set of two connected mixture equations involving unidentified stratum-specific response probabilities and outcome means. This clarifies that (except for a special case) effect identification generally requires two additional assumptions: a specific missingness mechanism assumption and a principal identification assumption. This provides a template for identifying effects based on separate choices of these assumptions. We consider a range of specific missingness assumptions, including those that have appeared in the literature and some new ones. Incidentally, we find an issue in the existing assumptions, and propose a modification of the assumptions to avoid the issue. Results under different assumptions are illustrated using data from the Baltimore Experience Corps Trial.
对治疗效果的研究通常会因违规和数据缺失而变得复杂。在单侧不遵医嘱的情况下,我们关注的是遵医嘱者和非遵医嘱者的平均因果效应,我们处理的是潜在随机缺失类型的结果缺失(LMAR,也称为潜在无知)。也就是说,在协变量和治疗分配的条件下,遗漏率可能取决于遵从类型。在处理不遵从的工具变量(IV)方法中,已经提出了处理 LMAR 结果的方法,这些方法额外援引了关于缺失的排除限制型假设,但还没有提出使用非 IV 方法时的解决方案。本文重点讨论存在 LMAR 结果时的效应识别,以期灵活地适应不同的主要识别方法。我们的研究表明,仅在处理分配无知和 LMAR 的情况下,效应不可识别性可归结为涉及未识别的特定分层反应概率和结果均值的两个相连混合方程组。这就说明(除特殊情况外)效应识别一般需要两个额外的假设:特定的遗漏机制假设和主要识别假设。这为根据这些假设的不同选择来识别效应提供了一个模板。我们考虑了一系列特定的缺失假设,包括文献中出现过的假设和一些新的假设。顺便提一下,我们发现了现有假设中的一个问题,并提出了修改假设以避免该问题的建议。我们使用巴尔的摩体验团试验的数据说明了不同假设下的结果。
{"title":"Identification of complier and noncomplier average causal effects in the presence of latent missing-at-random (LMAR) outcomes: a unifying view and choices of assumptions.","authors":"Trang Quynh Nguyen, Michelle C Carlson, Elizabeth A Stuart","doi":"10.1093/biostatistics/kxae011","DOIUrl":"10.1093/biostatistics/kxae011","url":null,"abstract":"<p><p>The study of treatment effects is often complicated by noncompliance and missing data. In the one-sided noncompliance setting where of interest are the complier and noncomplier average causal effects, we address outcome missingness of the latent missing at random type (LMAR, also known as latent ignorability). That is, conditional on covariates and treatment assigned, the missingness may depend on compliance type. Within the instrumental variable (IV) approach to noncompliance, methods have been proposed for handling LMAR outcome that additionally invoke an exclusion restriction-type assumption on missingness, but no solution has been proposed for when a non-IV approach is used. This article focuses on effect identification in the presence of LMAR outcomes, with a view to flexibly accommodate different principal identification approaches. We show that under treatment assignment ignorability and LMAR only, effect nonidentifiability boils down to a set of two connected mixture equations involving unidentified stratum-specific response probabilities and outcome means. This clarifies that (except for a special case) effect identification generally requires two additional assumptions: a specific missingness mechanism assumption and a principal identification assumption. This provides a template for identifying effects based on separate choices of these assumptions. We consider a range of specific missingness assumptions, including those that have appeared in the literature and some new ones. Incidentally, we find an issue in the existing assumptions, and propose a modification of the assumptions to avoid the issue. Results under different assumptions are illustrated using data from the Baltimore Experience Corps Trial.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"978-996"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The tree-based scan statistic is a data mining method used to identify signals of adverse drug reactions in a database of spontaneous reporting systems. It is particularly beneficial when dealing with hierarchical data structures. One may use a retrospective case-control study design from spontaneous reporting systems (SRS) to investigate whether a specific adverse event of interest is associated with certain drugs. However, the existing Bernoulli model of the tree-based scan statistic may not be suitable as it fails to adequately account for dependencies within matched pairs. In this article, we propose signal detection statistics for matched case-control data based on McNemar's test, Wald test for conditional logistic regression, and the likelihood ratio test for a multinomial distribution. Through simulation studies, we demonstrate that our proposed methods outperform the existing approach in terms of the type I error rate, power, sensitivity, and false detection rate. To illustrate our proposed approach, we applied the three methods and the existing method to detect drug signals for dizziness-related adverse events related to antihypertensive drugs using the database of the Korea Adverse Event Reporting System.
{"title":"Signal detection statistics of adverse drug events in hierarchical structure for matched case-control data.","authors":"Seok-Jae Heo, Sohee Jeong, Dagyeom Jung, Inkyung Jung","doi":"10.1093/biostatistics/kxad029","DOIUrl":"10.1093/biostatistics/kxad029","url":null,"abstract":"<p><p>The tree-based scan statistic is a data mining method used to identify signals of adverse drug reactions in a database of spontaneous reporting systems. It is particularly beneficial when dealing with hierarchical data structures. One may use a retrospective case-control study design from spontaneous reporting systems (SRS) to investigate whether a specific adverse event of interest is associated with certain drugs. However, the existing Bernoulli model of the tree-based scan statistic may not be suitable as it fails to adequately account for dependencies within matched pairs. In this article, we propose signal detection statistics for matched case-control data based on McNemar's test, Wald test for conditional logistic regression, and the likelihood ratio test for a multinomial distribution. Through simulation studies, we demonstrate that our proposed methods outperform the existing approach in terms of the type I error rate, power, sensitivity, and false detection rate. To illustrate our proposed approach, we applied the three methods and the existing method to detect drug signals for dizziness-related adverse events related to antihypertensive drugs using the database of the Korea Adverse Event Reporting System.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1112-1121"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54232410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}