Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae023
Hyung G Park
This paper presents a Bayesian reformulation of covariate-assisted principal regression for covariance matrix outcomes to identify low-dimensional components in the covariance associated with covariates. By introducing a geometric approach to the covariance matrices and leveraging Euclidean geometry, we estimate dimension reduction parameters and model covariance heterogeneity based on covariates. This method enables joint estimation and uncertainty quantification of relevant model parameters associated with heteroscedasticity. We demonstrate our approach through simulation studies and apply it to analyze associations between covariates and brain functional connectivity using data from the Human Connectome Project.
{"title":"Bayesian estimation of covariate assisted principal regression for brain functional connectivity.","authors":"Hyung G Park","doi":"10.1093/biostatistics/kxae023","DOIUrl":"10.1093/biostatistics/kxae023","url":null,"abstract":"<p><p>This paper presents a Bayesian reformulation of covariate-assisted principal regression for covariance matrix outcomes to identify low-dimensional components in the covariance associated with covariates. By introducing a geometric approach to the covariance matrices and leveraging Euclidean geometry, we estimate dimension reduction parameters and model covariance heterogeneity based on covariates. This method enables joint estimation and uncertainty quantification of relevant model parameters associated with heteroscedasticity. We demonstrate our approach through simulation studies and apply it to analyze associations between covariates and brain functional connectivity using data from the Human Connectome Project.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In biomedical studies, continuous and ordinal longitudinal variables are frequently encountered. In many of these studies it is of interest to estimate the effect of one of these longitudinal variables on the other. Time-dependent covariates have, however, several limitations; they can, for example, not be included when the data is not collected at fixed intervals. The issues can be circumvented by implementing joint models, where two or more longitudinal variables are treated as a response and modeled with a correlated random effect. Next, by conditioning on these response(s), we can study the effect of one or more longitudinal variables on another. We propose a normal-ordinal(probit) joint model. First, we derive closed-form formulas to estimate the model-based correlations between the responses on their original scale. In addition, we derive the marginal model, where the interpretation is no longer conditional on the random effects. As a consequence, we can make predictions for a subvector of one response conditional on the other response and potentially a subvector of the history of the response. Next, we extend the approach to a high-dimensional case with more than two ordinal and/or continuous longitudinal variables. The methodology is applied to a case study where, among others, a longitudinal ordinal response is predicted with a longitudinal continuous variable.
{"title":"A joint normal-ordinal (probit) model for ordinal and continuous longitudinal data.","authors":"Margaux Delporte, Geert Molenberghs, Steffen Fieuws, Geert Verbeke","doi":"10.1093/biostatistics/kxae014","DOIUrl":"10.1093/biostatistics/kxae014","url":null,"abstract":"<p><p>In biomedical studies, continuous and ordinal longitudinal variables are frequently encountered. In many of these studies it is of interest to estimate the effect of one of these longitudinal variables on the other. Time-dependent covariates have, however, several limitations; they can, for example, not be included when the data is not collected at fixed intervals. The issues can be circumvented by implementing joint models, where two or more longitudinal variables are treated as a response and modeled with a correlated random effect. Next, by conditioning on these response(s), we can study the effect of one or more longitudinal variables on another. We propose a normal-ordinal(probit) joint model. First, we derive closed-form formulas to estimate the model-based correlations between the responses on their original scale. In addition, we derive the marginal model, where the interpretation is no longer conditional on the random effects. As a consequence, we can make predictions for a subvector of one response conditional on the other response and potentially a subvector of the history of the response. Next, we extend the approach to a high-dimensional case with more than two ordinal and/or continuous longitudinal variables. The methodology is applied to a case study where, among others, a longitudinal ordinal response is predicted with a longitudinal continuous variable.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae027
Yue Wang, Haoran Shi
This paper tackles the challenge of estimating correlations between higher-level biological variables (e.g. proteins and gene pathways) when only lower-level measurements are directly observed (e.g. peptides and individual genes). Existing methods typically aggregate lower-level data into higher-level variables and then estimate correlations based on the aggregated data. However, different data aggregation methods can yield varying correlation estimates as they target different higher-level quantities. Our solution is a latent factor model that directly estimates these higher-level correlations from lower-level data without the need for data aggregation. We further introduce a shrinkage estimator to ensure the positive definiteness and improve the accuracy of the estimated correlation matrix. Furthermore, we establish the asymptotic normality of our estimator, enabling efficient computation of P-values for the identification of significant correlations. The effectiveness of our approach is demonstrated through comprehensive simulations and the analysis of proteomics and gene expression datasets. We develop the R package highcor for implementing our method.
本文探讨了在只能直接观测到较低层次测量数据(如肽和单个基因)的情况下,如何估算较高层次生物变量(如蛋白质和基因通路)之间的相关性这一难题。现有方法通常是将较低级别的数据聚合为较高级别的变量,然后根据聚合数据估计相关性。然而,不同的数据聚合方法会产生不同的相关性估计值,因为它们针对的是不同的高层次数量。我们的解决方案是采用潜因模型,无需数据聚合,直接从低层次数据中估算这些高层次相关性。我们进一步引入了收缩估计器,以确保正定性并提高相关矩阵估计的准确性。此外,我们还建立了估计器的渐近正态性,从而可以高效计算 P 值,识别重要的相关性。我们通过对蛋白质组学和基因表达数据集的全面模拟和分析,证明了我们方法的有效性。我们开发了用于实现我们方法的 R 软件包 highcor。
{"title":"Direct estimation and inference of higher-level correlations from lower-level measurements with applications in gene-pathway and proteomics studies.","authors":"Yue Wang, Haoran Shi","doi":"10.1093/biostatistics/kxae027","DOIUrl":"10.1093/biostatistics/kxae027","url":null,"abstract":"<p><p>This paper tackles the challenge of estimating correlations between higher-level biological variables (e.g. proteins and gene pathways) when only lower-level measurements are directly observed (e.g. peptides and individual genes). Existing methods typically aggregate lower-level data into higher-level variables and then estimate correlations based on the aggregated data. However, different data aggregation methods can yield varying correlation estimates as they target different higher-level quantities. Our solution is a latent factor model that directly estimates these higher-level correlations from lower-level data without the need for data aggregation. We further introduce a shrinkage estimator to ensure the positive definiteness and improve the accuracy of the estimated correlation matrix. Furthermore, we establish the asymptotic normality of our estimator, enabling efficient computation of P-values for the identification of significant correlations. The effectiveness of our approach is demonstrated through comprehensive simulations and the analysis of proteomics and gene expression datasets. We develop the R package highcor for implementing our method.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae046
Yiqun T Chen, Lucy L Gao
For many applications, it is critical to interpret and validate groups of observations obtained via clustering. A common interpretation and validation approach involves testing differences in feature means between observations in two estimated clusters. In this setting, classical hypothesis tests lead to an inflated Type I error rate. To overcome this problem, we propose a new test for the difference in means in a single feature between a pair of clusters obtained using hierarchical or k-means clustering. The test controls the selective Type I error rate in finite samples and can be efficiently computed. We further illustrate the validity and power of our proposal in simulation and demonstrate its use on single-cell RNA-sequencing data.
{"title":"Testing for a difference in means of a single feature after clustering.","authors":"Yiqun T Chen, Lucy L Gao","doi":"10.1093/biostatistics/kxae046","DOIUrl":"10.1093/biostatistics/kxae046","url":null,"abstract":"<p><p>For many applications, it is critical to interpret and validate groups of observations obtained via clustering. A common interpretation and validation approach involves testing differences in feature means between observations in two estimated clusters. In this setting, classical hypothesis tests lead to an inflated Type I error rate. To overcome this problem, we propose a new test for the difference in means in a single feature between a pair of clusters obtained using hierarchical or k-means clustering. The test controls the selective Type I error rate in finite samples and can be efficiently computed. We further illustrate the validity and power of our proposal in simulation and demonstrate its use on single-cell RNA-sequencing data.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687323/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae053
Yingfa Xie, Haoda Fu, Yuan Huang, Vladimir Pozdnyakov, Jun Yan
Patients with type 2 diabetes need to closely monitor blood sugar levels as their routine diabetes self-management. Although many treatment agents aim to tightly control blood sugar, hypoglycemia often stands as an adverse event. In practice, patients can observe hypoglycemic events more easily than hyperglycemic events due to the perception of neurogenic symptoms. We propose to model each patient's observed hypoglycemic event as a lower boundary crossing event for a reflected Brownian motion with an upper reflection barrier. The lower boundary is set by clinical standards. To capture patient heterogeneity and within-patient dependence, covariates and a patient level frailty are incorporated into the volatility and the upper reflection barrier. This framework provides quantification for the underlying glucose level variability, patients heterogeneity, and risk factors' impact on glucose. We make inferences based on a Bayesian framework using Markov chain Monte Carlo. Two model comparison criteria, the deviance information criterion and the logarithm of the pseudo-marginal likelihood, are used for model selection. The methodology is validated in simulation studies. In analyzing a dataset from the diabetic patients in the DURABLE trial, our model provides adequate fit, generates data similar to the observed data, and offers insights that could be missed by other models.
{"title":"Recurrent events modeling based on a reflected Brownian motion with application to hypoglycemia.","authors":"Yingfa Xie, Haoda Fu, Yuan Huang, Vladimir Pozdnyakov, Jun Yan","doi":"10.1093/biostatistics/kxae053","DOIUrl":"https://doi.org/10.1093/biostatistics/kxae053","url":null,"abstract":"<p><p>Patients with type 2 diabetes need to closely monitor blood sugar levels as their routine diabetes self-management. Although many treatment agents aim to tightly control blood sugar, hypoglycemia often stands as an adverse event. In practice, patients can observe hypoglycemic events more easily than hyperglycemic events due to the perception of neurogenic symptoms. We propose to model each patient's observed hypoglycemic event as a lower boundary crossing event for a reflected Brownian motion with an upper reflection barrier. The lower boundary is set by clinical standards. To capture patient heterogeneity and within-patient dependence, covariates and a patient level frailty are incorporated into the volatility and the upper reflection barrier. This framework provides quantification for the underlying glucose level variability, patients heterogeneity, and risk factors' impact on glucose. We make inferences based on a Bayesian framework using Markov chain Monte Carlo. Two model comparison criteria, the deviance information criterion and the logarithm of the pseudo-marginal likelihood, are used for model selection. The methodology is validated in simulation studies. In analyzing a dataset from the diabetic patients in the DURABLE trial, our model provides adequate fit, generates data similar to the observed data, and offers insights that could be missed by other models.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143048852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae042
Erin E Gabriel, Michael C Sachs, Arvid Sjölander
In instrumental variable (IV) settings, such as imperfect randomized trials and observational studies with Mendelian randomization, one may encounter a continuous exposure, the causal effect of which is not of true interest. Instead, scientific interest may lie in a coarsened version of this exposure. Although there is a lengthy literature on the impact of coarsening of an exposure with several works focusing specifically on IV settings, all methods proposed in this literature require parametric assumptions. Instead, just as in the standard IV setting, one can consider partial identification via bounds making no parametric assumptions. This was first pointed out in Alexander Balke's PhD dissertation. We extend and clarify his work and derive novel bounds in several settings, including for a three-level IV, which will most likely be the case in Mendelian randomization. We demonstrate our findings in two real data examples, a randomized trial for peanut allergy in infants and a Mendelian randomization setting investigating the effect of homocysteine on cardiovascular disease.
在工具变量(IV)环境中,如不完全随机试验和孟德尔随机化的观察研究中,我们可能会遇到一个连续的暴露因子,但其因果效应并不是我们真正感兴趣的。相反,科学兴趣可能在于这种暴露的粗略版本。尽管有大量文献研究了粗略化暴露的影响,其中有几部著作特别关注 IV 设置,但这些文献中提出的所有方法都需要参数假设。相反,就像在标准 IV 设置中一样,我们可以通过不带参数假设的约束来考虑部分识别。Alexander Balke 的博士论文首次指出了这一点。我们对他的工作进行了扩展和澄清,并在几种情况下推导出了新的边界,包括三层 IV,这很可能是孟德尔随机化的情况。我们在两个真实数据示例中展示了我们的发现,一个是针对婴儿花生过敏的随机试验,另一个是调查同型半胱氨酸对心血管疾病影响的孟德尔随机设置。
{"title":"The impact of coarsening an exposure on partial identifiability in instrumental variable settings.","authors":"Erin E Gabriel, Michael C Sachs, Arvid Sjölander","doi":"10.1093/biostatistics/kxae042","DOIUrl":"10.1093/biostatistics/kxae042","url":null,"abstract":"<p><p>In instrumental variable (IV) settings, such as imperfect randomized trials and observational studies with Mendelian randomization, one may encounter a continuous exposure, the causal effect of which is not of true interest. Instead, scientific interest may lie in a coarsened version of this exposure. Although there is a lengthy literature on the impact of coarsening of an exposure with several works focusing specifically on IV settings, all methods proposed in this literature require parametric assumptions. Instead, just as in the standard IV setting, one can consider partial identification via bounds making no parametric assumptions. This was first pointed out in Alexander Balke's PhD dissertation. We extend and clarify his work and derive novel bounds in several settings, including for a three-level IV, which will most likely be the case in Mendelian randomization. We demonstrate our findings in two real data examples, a randomized trial for peanut allergy in infants and a Mendelian randomization setting investigating the effect of homocysteine on cardiovascular disease.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae050
{"title":"Correction to: Scalable kernel balancing weights in a nationwide observational study of hospital profit status and heart attack outcomes.","authors":"","doi":"10.1093/biostatistics/kxae050","DOIUrl":"10.1093/biostatistics/kxae050","url":null,"abstract":"","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae043
Tingting Yu, Lang Wu, Ronald J Bosch, Davey M Smith, Rui Wang
Maximum likelihood inference can often become computationally intensive when performing joint modeling of longitudinal and time-to-event data, due to the intractable integrals in the joint likelihood function. The computational challenges escalate further when modeling HIV-1 viral load data, owing to the nonlinear trajectories and the presence of left-censored data resulting from the assay's lower limit of quantification. In this paper, for a joint model comprising a nonlinear mixed-effect model and a Cox Proportional Hazards model, we develop a computationally efficient Stochastic EM (StEM) algorithm for parameter estimation. Furthermore, we propose a novel technique for fast standard error estimation, which directly estimates standard errors from the results of StEM iterations and is broadly applicable to various joint modeling settings, such as those containing generalized linear mixed-effect models, parametric survival models, or joint models with more than two submodels. We evaluate the performance of the proposed methods through simulation studies and apply them to HIV-1 viral load data from six AIDS Clinical Trials Group studies to characterize viral rebound trajectories following the interruption of antiretroviral therapy (ART), accounting for the informative duration of off-ART periods.
{"title":"Fast standard error estimation for joint models of longitudinal and time-to-event data based on stochastic EM algorithms.","authors":"Tingting Yu, Lang Wu, Ronald J Bosch, Davey M Smith, Rui Wang","doi":"10.1093/biostatistics/kxae043","DOIUrl":"10.1093/biostatistics/kxae043","url":null,"abstract":"<p><p>Maximum likelihood inference can often become computationally intensive when performing joint modeling of longitudinal and time-to-event data, due to the intractable integrals in the joint likelihood function. The computational challenges escalate further when modeling HIV-1 viral load data, owing to the nonlinear trajectories and the presence of left-censored data resulting from the assay's lower limit of quantification. In this paper, for a joint model comprising a nonlinear mixed-effect model and a Cox Proportional Hazards model, we develop a computationally efficient Stochastic EM (StEM) algorithm for parameter estimation. Furthermore, we propose a novel technique for fast standard error estimation, which directly estimates standard errors from the results of StEM iterations and is broadly applicable to various joint modeling settings, such as those containing generalized linear mixed-effect models, parametric survival models, or joint models with more than two submodels. We evaluate the performance of the proposed methods through simulation studies and apply them to HIV-1 viral load data from six AIDS Clinical Trials Group studies to characterize viral rebound trajectories following the interruption of antiretroviral therapy (ART), accounting for the informative duration of off-ART periods.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mediation analysis is a useful tool in investigating how molecular phenotypes such as gene expression mediate the effect of exposure on health outcomes. However, commonly used mean-based total mediation effect measures may suffer from cancellation of component-wise mediation effects in opposite directions in the presence of high-dimensional omics mediators. To overcome this limitation, we recently proposed a variance-based R-squared total mediation effect measure that relies on the computationally intensive nonparametric bootstrap for confidence interval estimation. In the work described herein, we formulated a more efficient two-stage, cross-fitted estimation procedure for the R2 measure. To avoid potential bias, we performed iterative Sure Independence Screening (iSIS) in two subsamples to exclude the non-mediators, followed by ordinary least squares regressions for the variance estimation. We then constructed confidence intervals based on the newly derived closed-form asymptotic distribution of the R2 measure. Extensive simulation studies demonstrated that this proposed procedure is much more computationally efficient than the resampling-based method, with comparable coverage probability. Furthermore, when applied to the Framingham Heart Study, the proposed method replicated the established finding of gene expression mediating age-related variation in systolic blood pressure and identified the role of gene expression profiles in the relationship between sex and high-density lipoprotein cholesterol level. The proposed estimation procedure is implemented in R package CFR2M.
中介分析是研究基因表达等分子表型如何介导暴露对健康结果影响的有用工具。然而,常用的基于均值的总中介效应测量方法可能会在存在高维表观中介因子的情况下,出现分量-分量-分量的反向中介效应抵消的问题。为了克服这一局限性,我们最近提出了一种基于方差的 R 平方总中介效应测量方法,它依赖于计算密集型非参数自举法进行置信区间估计。在本文所述的工作中,我们为 R2 测量制定了更有效的两阶段交叉拟合估计程序。为了避免潜在的偏差,我们在两个子样本中进行了迭代确定独立性筛选(iSIS),以排除非调解人,然后用普通最小二乘法回归进行方差估计。然后,我们根据新推导出的 R2 测量的闭式渐近分布构建置信区间。广泛的模拟研究表明,与基于重采样的方法相比,我们提出的方法在计算上更有效率,而且覆盖概率相当。此外,当应用于弗雷明汉心脏研究时,所提出的方法复制了基因表达介导收缩压年龄相关变化的既定结论,并确定了基因表达谱在性别与高密度脂蛋白胆固醇水平之间关系中的作用。拟议的估计程序在 R 软件包 CFR2M 中实现。
{"title":"Speeding up interval estimation for R2-based mediation effect of high-dimensional mediators via cross-fitting.","authors":"Zhichao Xu, Chunlin Li, Sunyi Chi, Tianzhong Yang, Peng Wei","doi":"10.1093/biostatistics/kxae037","DOIUrl":"10.1093/biostatistics/kxae037","url":null,"abstract":"<p><p>Mediation analysis is a useful tool in investigating how molecular phenotypes such as gene expression mediate the effect of exposure on health outcomes. However, commonly used mean-based total mediation effect measures may suffer from cancellation of component-wise mediation effects in opposite directions in the presence of high-dimensional omics mediators. To overcome this limitation, we recently proposed a variance-based R-squared total mediation effect measure that relies on the computationally intensive nonparametric bootstrap for confidence interval estimation. In the work described herein, we formulated a more efficient two-stage, cross-fitted estimation procedure for the R2 measure. To avoid potential bias, we performed iterative Sure Independence Screening (iSIS) in two subsamples to exclude the non-mediators, followed by ordinary least squares regressions for the variance estimation. We then constructed confidence intervals based on the newly derived closed-form asymptotic distribution of the R2 measure. Extensive simulation studies demonstrated that this proposed procedure is much more computationally efficient than the resampling-based method, with comparable coverage probability. Furthermore, when applied to the Framingham Heart Study, the proposed method replicated the established finding of gene expression mediating age-related variation in systolic blood pressure and identified the role of gene expression profiles in the relationship between sex and high-density lipoprotein cholesterol level. The proposed estimation procedure is implemented in R package CFR2M.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae020
Wei Zong, Danyang Li, Marianne L Seney, Colleen A Mcclung, George C Tseng
High-dimensional omics data often contain intricate and multifaceted information, resulting in the coexistence of multiple plausible sample partitions based on different subsets of selected features. Conventional clustering methods typically yield only one clustering solution, limiting their capacity to fully capture all facets of cluster structures in high-dimensional data. To address this challenge, we propose a model-based multifacet clustering (MFClust) method based on a mixture of Gaussian mixture models, where the former mixture achieves facet assignment for gene features and the latter mixture determines cluster assignment of samples. We demonstrate superior facet and cluster assignment accuracy of MFClust through simulation studies. The proposed method is applied to three transcriptomic applications from postmortem brain and lung disease studies. The result captures multifacet clustering structures associated with critical clinical variables and provides intriguing biological insights for further hypothesis generation and discovery.
{"title":"Model-based multifacet clustering with high-dimensional omics applications.","authors":"Wei Zong, Danyang Li, Marianne L Seney, Colleen A Mcclung, George C Tseng","doi":"10.1093/biostatistics/kxae020","DOIUrl":"10.1093/biostatistics/kxae020","url":null,"abstract":"<p><p>High-dimensional omics data often contain intricate and multifaceted information, resulting in the coexistence of multiple plausible sample partitions based on different subsets of selected features. Conventional clustering methods typically yield only one clustering solution, limiting their capacity to fully capture all facets of cluster structures in high-dimensional data. To address this challenge, we propose a model-based multifacet clustering (MFClust) method based on a mixture of Gaussian mixture models, where the former mixture achieves facet assignment for gene features and the latter mixture determines cluster assignment of samples. We demonstrate superior facet and cluster assignment accuracy of MFClust through simulation studies. The proposed method is applied to three transcriptomic applications from postmortem brain and lung disease studies. The result captures multifacet clustering structures associated with critical clinical variables and provides intriguing biological insights for further hypothesis generation and discovery.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}