首页 > 最新文献

Biostatistics最新文献

英文 中文
Speeding up interval estimation for R2-based mediation effect of high-dimensional mediators via cross-fitting. 通过交叉拟合,加快基于 R2 的高维中介效应的区间估计。
IF 2 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae037
Zhichao Xu, Chunlin Li, Sunyi Chi, Tianzhong Yang, Peng Wei

Mediation analysis is a useful tool in investigating how molecular phenotypes such as gene expression mediate the effect of exposure on health outcomes. However, commonly used mean-based total mediation effect measures may suffer from cancellation of component-wise mediation effects in opposite directions in the presence of high-dimensional omics mediators. To overcome this limitation, we recently proposed a variance-based R-squared total mediation effect measure that relies on the computationally intensive nonparametric bootstrap for confidence interval estimation. In the work described herein, we formulated a more efficient two-stage, cross-fitted estimation procedure for the R2 measure. To avoid potential bias, we performed iterative Sure Independence Screening (iSIS) in two subsamples to exclude the non-mediators, followed by ordinary least squares regressions for the variance estimation. We then constructed confidence intervals based on the newly derived closed-form asymptotic distribution of the R2 measure. Extensive simulation studies demonstrated that this proposed procedure is much more computationally efficient than the resampling-based method, with comparable coverage probability. Furthermore, when applied to the Framingham Heart Study, the proposed method replicated the established finding of gene expression mediating age-related variation in systolic blood pressure and identified the role of gene expression profiles in the relationship between sex and high-density lipoprotein cholesterol level. The proposed estimation procedure is implemented in R package CFR2M.

中介分析是研究基因表达等分子表型如何介导暴露对健康结果影响的有用工具。然而,常用的基于均值的总中介效应测量方法可能会在存在高维表观中介因子的情况下,出现分量-分量-分量的反向中介效应抵消的问题。为了克服这一局限性,我们最近提出了一种基于方差的 R 平方总中介效应测量方法,它依赖于计算密集型非参数自举法进行置信区间估计。在本文所述的工作中,我们为 R2 测量制定了更有效的两阶段交叉拟合估计程序。为了避免潜在的偏差,我们在两个子样本中进行了迭代确定独立性筛选(iSIS),以排除非调解人,然后用普通最小二乘法回归进行方差估计。然后,我们根据新推导出的 R2 测量的闭式渐近分布构建置信区间。广泛的模拟研究表明,与基于重采样的方法相比,我们提出的方法在计算上更有效率,而且覆盖概率相当。此外,当应用于弗雷明汉心脏研究时,所提出的方法复制了基因表达介导收缩压年龄相关变化的既定结论,并确定了基因表达谱在性别与高密度脂蛋白胆固醇水平之间关系中的作用。拟议的估计程序在 R 软件包 CFR2M 中实现。
{"title":"Speeding up interval estimation for R2-based mediation effect of high-dimensional mediators via cross-fitting.","authors":"Zhichao Xu, Chunlin Li, Sunyi Chi, Tianzhong Yang, Peng Wei","doi":"10.1093/biostatistics/kxae037","DOIUrl":"10.1093/biostatistics/kxae037","url":null,"abstract":"<p><p>Mediation analysis is a useful tool in investigating how molecular phenotypes such as gene expression mediate the effect of exposure on health outcomes. However, commonly used mean-based total mediation effect measures may suffer from cancellation of component-wise mediation effects in opposite directions in the presence of high-dimensional omics mediators. To overcome this limitation, we recently proposed a variance-based R-squared total mediation effect measure that relies on the computationally intensive nonparametric bootstrap for confidence interval estimation. In the work described herein, we formulated a more efficient two-stage, cross-fitted estimation procedure for the R2 measure. To avoid potential bias, we performed iterative Sure Independence Screening (iSIS) in two subsamples to exclude the non-mediators, followed by ordinary least squares regressions for the variance estimation. We then constructed confidence intervals based on the newly derived closed-form asymptotic distribution of the R2 measure. Extensive simulation studies demonstrated that this proposed procedure is much more computationally efficient than the resampling-based method, with comparable coverage probability. Furthermore, when applied to the Framingham Heart Study, the proposed method replicated the established finding of gene expression mediating age-related variation in systolic blood pressure and identified the role of gene expression profiles in the relationship between sex and high-density lipoprotein cholesterol level. The proposed estimation procedure is implemented in R package CFR2M.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of coarsening an exposure on partial identifiability in instrumental variable settings. 在工具变量设置中,粗化暴露对部分可识别性的影响。
IF 2 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae042
Erin E Gabriel, Michael C Sachs, Arvid Sjölander

In instrumental variable (IV) settings, such as imperfect randomized trials and observational studies with Mendelian randomization, one may encounter a continuous exposure, the causal effect of which is not of true interest. Instead, scientific interest may lie in a coarsened version of this exposure. Although there is a lengthy literature on the impact of coarsening of an exposure with several works focusing specifically on IV settings, all methods proposed in this literature require parametric assumptions. Instead, just as in the standard IV setting, one can consider partial identification via bounds making no parametric assumptions. This was first pointed out in Alexander Balke's PhD dissertation. We extend and clarify his work and derive novel bounds in several settings, including for a three-level IV, which will most likely be the case in Mendelian randomization. We demonstrate our findings in two real data examples, a randomized trial for peanut allergy in infants and a Mendelian randomization setting investigating the effect of homocysteine on cardiovascular disease.

在工具变量(IV)环境中,如不完全随机试验和孟德尔随机化的观察研究中,我们可能会遇到一个连续的暴露因子,但其因果效应并不是我们真正感兴趣的。相反,科学兴趣可能在于这种暴露的粗略版本。尽管有大量文献研究了粗略化暴露的影响,其中有几部著作特别关注 IV 设置,但这些文献中提出的所有方法都需要参数假设。相反,就像在标准 IV 设置中一样,我们可以通过不带参数假设的约束来考虑部分识别。Alexander Balke 的博士论文首次指出了这一点。我们对他的工作进行了扩展和澄清,并在几种情况下推导出了新的边界,包括三层 IV,这很可能是孟德尔随机化的情况。我们在两个真实数据示例中展示了我们的发现,一个是针对婴儿花生过敏的随机试验,另一个是调查同型半胱氨酸对心血管疾病影响的孟德尔随机设置。
{"title":"The impact of coarsening an exposure on partial identifiability in instrumental variable settings.","authors":"Erin E Gabriel, Michael C Sachs, Arvid Sjölander","doi":"10.1093/biostatistics/kxae042","DOIUrl":"10.1093/biostatistics/kxae042","url":null,"abstract":"<p><p>In instrumental variable (IV) settings, such as imperfect randomized trials and observational studies with Mendelian randomization, one may encounter a continuous exposure, the causal effect of which is not of true interest. Instead, scientific interest may lie in a coarsened version of this exposure. Although there is a lengthy literature on the impact of coarsening of an exposure with several works focusing specifically on IV settings, all methods proposed in this literature require parametric assumptions. Instead, just as in the standard IV setting, one can consider partial identification via bounds making no parametric assumptions. This was first pointed out in Alexander Balke's PhD dissertation. We extend and clarify his work and derive novel bounds in several settings, including for a three-level IV, which will most likely be the case in Mendelian randomization. We demonstrate our findings in two real data examples, a randomized trial for peanut allergy in infants and a Mendelian randomization setting investigating the effect of homocysteine on cardiovascular disease.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instrumental variable approach to estimating individual causal effects in N-of-1 trials: application to ISTOP study. N-of-1试验中估计个体因果效应的工具变量法:在ISTOP研究中的应用。
IF 2 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxaf042
Kexin Qu, Christopher H Schmid, Tao Liu

An N-of-1 trial is a multiple crossover trial conducted in a single individual to provide evidence to directly inform personalized treatment decisions. Advances in wearable devices greatly improved the feasibility of adopting these trials to identify optimal individual treatment plans, particularly when treatments differ among individuals and responses are highly heterogeneous. Our work was motivated by the I-STOP-AFib Study, which examined the impact of different triggers on atrial fibrillation (AF) occurrence. We described a causal framework for "N-of-1" trial using potential treatment selection paths and potential outcome paths. Two estimands of individual causal effect were defined: (i) the effect of continuous exposure, and (ii) the effect of an individual's observed behavior. We addressed three challenges: (i) imperfect compliance to the randomized treatment assignment; (ii) binary treatments and binary outcomes, which led to the "non-collapsibility" issue of estimating odds ratios; and (iii) serial correlation in the longitudinal observations. We adopted the Bayesian IV approach where the study randomization was the instrumental variable (IV) as it impacted the patient's choice of exposure but not directly the outcome. Estimations were obtained through a system of two parametric Bayesian models to estimate the individual causal effect. Our model got around the non-collapsibility and non-consistency by modeling the confounding mechanism through latent structural models and by inferring with Bayesian posterior of functionals. Autocorrelation present in the repeated measurements was also accounted for. The simulation study showed our method largely reduced bias and greatly improved the coverage of the estimated causal effect, compared to existing methods (ITT, PP, and AT). We applied the method to I-STOP-AFib Study to estimate the individual effect of alcohol on AF occurrence.

N-of-1试验是在单个个体中进行的多交叉试验,旨在提供证据,直接为个性化治疗决策提供信息。可穿戴设备的进步极大地提高了采用这些试验来确定最佳个人治疗计划的可行性,特别是当治疗因人而异且反应高度异质性时。我们的工作是由I-STOP-AFib研究激发的,该研究检查了不同触发因素对房颤(AF)发生的影响。我们使用潜在的治疗选择路径和潜在的结果路径描述了“N-of-1”试验的因果框架。定义了对个体因果效应的两种估计:(i)持续暴露的影响,(ii)个体观察到的行为的影响。我们解决了三个挑战:(i)对随机治疗分配的不完全依从性;(ii)二元处理和二元结果,这导致了估计优势比的“非溃散性”问题;(三)纵向观测的序列相关性。我们采用贝叶斯IV方法,其中研究随机化是工具变量(IV),因为它影响患者的暴露选择,但不直接影响结果。估计是通过两个参数贝叶斯模型系统来估计个体因果关系。我们的模型通过潜在结构模型和贝叶斯后验函数的推断来模拟混合机制,解决了非溃散性和非一致性问题。重复测量中存在的自相关也被考虑在内。模拟研究表明,与现有方法(ITT、PP和AT)相比,我们的方法在很大程度上减少了偏差,并大大提高了估计因果效应的覆盖率。我们将该方法应用于I-STOP-AFib研究,以估计酒精对房颤发生的个体影响。
{"title":"Instrumental variable approach to estimating individual causal effects in N-of-1 trials: application to ISTOP study.","authors":"Kexin Qu, Christopher H Schmid, Tao Liu","doi":"10.1093/biostatistics/kxaf042","DOIUrl":"https://doi.org/10.1093/biostatistics/kxaf042","url":null,"abstract":"<p><p>An N-of-1 trial is a multiple crossover trial conducted in a single individual to provide evidence to directly inform personalized treatment decisions. Advances in wearable devices greatly improved the feasibility of adopting these trials to identify optimal individual treatment plans, particularly when treatments differ among individuals and responses are highly heterogeneous. Our work was motivated by the I-STOP-AFib Study, which examined the impact of different triggers on atrial fibrillation (AF) occurrence. We described a causal framework for \"N-of-1\" trial using potential treatment selection paths and potential outcome paths. Two estimands of individual causal effect were defined: (i) the effect of continuous exposure, and (ii) the effect of an individual's observed behavior. We addressed three challenges: (i) imperfect compliance to the randomized treatment assignment; (ii) binary treatments and binary outcomes, which led to the \"non-collapsibility\" issue of estimating odds ratios; and (iii) serial correlation in the longitudinal observations. We adopted the Bayesian IV approach where the study randomization was the instrumental variable (IV) as it impacted the patient's choice of exposure but not directly the outcome. Estimations were obtained through a system of two parametric Bayesian models to estimate the individual causal effect. Our model got around the non-collapsibility and non-consistency by modeling the confounding mechanism through latent structural models and by inferring with Bayesian posterior of functionals. Autocorrelation present in the repeated measurements was also accounted for. The simulation study showed our method largely reduced bias and greatly improved the coverage of the estimated causal effect, compared to existing methods (ITT, PP, and AT). We applied the method to I-STOP-AFib Study to estimate the individual effect of alcohol on AF occurrence.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145745451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Gaussian Markov random fields for child mortality estimation. 用于儿童死亡率估算的自适应高斯马尔可夫随机场。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae030
Serge Aleshin-Guendel, Jon Wakefield

The under-5 mortality rate (U5MR), a critical health indicator, is typically estimated from household surveys in lower and middle income countries. Spatio-temporal disaggregation of household survey data can lead to highly variable estimates of U5MR, necessitating the usage of smoothing models which borrow information across space and time. The assumptions of common smoothing models may be unrealistic when certain time periods or regions are expected to have shocks in mortality relative to their neighbors, which can lead to oversmoothing of U5MR estimates. In this paper, we develop a spatial and temporal smoothing approach based on Gaussian Markov random field models which incorporate knowledge of these expected shocks in mortality. We demonstrate the potential for these models to improve upon alternatives not incorporating knowledge of expected shocks in a simulation study. We apply these models to estimate U5MR in Rwanda at the national level from 1985 to 2019, a time period which includes the Rwandan civil war and genocide.

5 岁以下儿童死亡率(U5MR)是一项重要的健康指标,通常由中低收入国家的住户调查估算得出。对住户调查数据进行时空分类会导致 5 岁以下儿童死亡率的估算值变化很大,因此有必要使用平滑模型来借用跨时空的信息。当某些时间段或地区的死亡率相对于其邻近地区有冲击时,普通平滑模型的假设可能不切实际,从而导致五岁以下幼儿死亡率估计值的过度平滑。在本文中,我们开发了一种基于高斯马尔可夫随机场模型的时空平滑方法,其中包含了这些预期死亡率冲击的知识。在一项模拟研究中,我们展示了这些模型改进未纳入预期冲击知识的替代方法的潜力。我们应用这些模型估算了 1985 年至 2019 年卢旺达全国的五岁以下幼儿死亡率,这一时期包括卢旺达内战和种族灭绝。
{"title":"Adaptive Gaussian Markov random fields for child mortality estimation.","authors":"Serge Aleshin-Guendel, Jon Wakefield","doi":"10.1093/biostatistics/kxae030","DOIUrl":"10.1093/biostatistics/kxae030","url":null,"abstract":"<p><p>The under-5 mortality rate (U5MR), a critical health indicator, is typically estimated from household surveys in lower and middle income countries. Spatio-temporal disaggregation of household survey data can lead to highly variable estimates of U5MR, necessitating the usage of smoothing models which borrow information across space and time. The assumptions of common smoothing models may be unrealistic when certain time periods or regions are expected to have shocks in mortality relative to their neighbors, which can lead to oversmoothing of U5MR estimates. In this paper, we develop a spatial and temporal smoothing approach based on Gaussian Markov random field models which incorporate knowledge of these expected shocks in mortality. We demonstrate the potential for these models to improve upon alternatives not incorporating knowledge of expected shocks in a simulation study. We apply these models to estimate U5MR in Rwanda at the national level from 1985 to 2019, a time period which includes the Rwandan civil war and genocide.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incorporating historic information to further improve power when conducting Bayesian information borrowing in basket trials. 在篮子试验中引入历史信息,进一步提高贝叶斯信息的有效性。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxaf016
Libby Daniells, Pavel Mozgunov, Helen Barnett, Alun Bedding, Thomas Jaki

In basket trials a single therapeutic treatment is tested on several patient populations simultaneously, each of which forming a basket, where patients across all baskets on the trial share a common genetic aberration. These trials allow testing of treatments on small groups of patients, however, limited basket sample sizes can result in inadequate precision and power of estimates. It is well known that Bayesian information borrowing models such as the exchangeability-nonexchangeability (EXNEX) model can be implemented to tackle such a problem, drawing on information from one basket when making inference in another. An alternative approach to improve power of estimates, is to incorporate any historical or external information available. This paper considers models that amalgamate both forms of information borrowing, allowing borrowing between baskets in the ongoing trial whilst also drawing on response data from historical sources, with the aim to further improve treatment effect estimates. We propose several Bayesian information borrowing approaches that incorporate historical information into the model. These methods are data-driven, updating the degree of borrowing based on the level of homogeneity between information sources. A thorough simulation study is presented to draw comparisons between the proposed approaches, whilst also comparing to the standard EXNEX model in which no historical information is utilized. The models are also applied to a real-life trial example to demonstrate their performance in practice. We show that the incorporation of historic data under the novel approaches can lead to a substantial improvement in precision and power of treatment effect estimates when such data is homogeneous to the responses in the ongoing trial. Under some approaches, this came alongside an inflation in type I error rate in cases of heterogeneity. However, the use of a power prior in the EXNEX model is shown to increase power and precision, whilst maintaining similar error rates to the standard EXNEX model.

在篮子试验中,一种治疗方法同时在几个患者群体中进行测试,每个患者群体形成一个篮子,所有篮子中的患者都有共同的遗传畸变。这些试验允许在小组患者中测试治疗方法,然而,有限的篮子样本量可能导致估计的精度和效力不足。众所周知,贝叶斯信息借用模型,如可交换性-不可交换性(EXNEX)模型可以实现来解决这样的问题,从一个篮子中提取信息,同时在另一个篮子中进行推理。另一种改进估计能力的方法是合并任何可用的历史或外部信息。本文考虑了合并两种形式的信息借鉴的模型,允许在正在进行的试验中在篮子之间进行借鉴,同时也利用来自历史来源的响应数据,目的是进一步改善治疗效果的估计。我们提出了几种将历史信息纳入模型的贝叶斯信息借用方法。这些方法是数据驱动的,基于信息源之间的同质性水平来更新借阅程度。提出了一个彻底的仿真研究来比较所提出的方法,同时也比较了没有使用历史信息的标准EXNEX模型。并将该模型应用于一个实际的试验实例,以验证其在实践中的性能。我们表明,当这些数据与正在进行的试验中的反应一致时,在新方法下合并历史数据可以导致治疗效果估计的精度和能力的实质性提高。在某些方法下,这与异质性情况下的I类错误率膨胀同时发生。然而,在EXNEX模型中使用功率先验可以提高功率和精度,同时保持与标准EXNEX模型相似的错误率。
{"title":"Incorporating historic information to further improve power when conducting Bayesian information borrowing in basket trials.","authors":"Libby Daniells, Pavel Mozgunov, Helen Barnett, Alun Bedding, Thomas Jaki","doi":"10.1093/biostatistics/kxaf016","DOIUrl":"10.1093/biostatistics/kxaf016","url":null,"abstract":"<p><p>In basket trials a single therapeutic treatment is tested on several patient populations simultaneously, each of which forming a basket, where patients across all baskets on the trial share a common genetic aberration. These trials allow testing of treatments on small groups of patients, however, limited basket sample sizes can result in inadequate precision and power of estimates. It is well known that Bayesian information borrowing models such as the exchangeability-nonexchangeability (EXNEX) model can be implemented to tackle such a problem, drawing on information from one basket when making inference in another. An alternative approach to improve power of estimates, is to incorporate any historical or external information available. This paper considers models that amalgamate both forms of information borrowing, allowing borrowing between baskets in the ongoing trial whilst also drawing on response data from historical sources, with the aim to further improve treatment effect estimates. We propose several Bayesian information borrowing approaches that incorporate historical information into the model. These methods are data-driven, updating the degree of borrowing based on the level of homogeneity between information sources. A thorough simulation study is presented to draw comparisons between the proposed approaches, whilst also comparing to the standard EXNEX model in which no historical information is utilized. The models are also applied to a real-life trial example to demonstrate their performance in practice. We show that the incorporation of historic data under the novel approaches can lead to a substantial improvement in precision and power of treatment effect estimates when such data is homogeneous to the responses in the ongoing trial. Under some approaches, this came alongside an inflation in type I error rate in cases of heterogeneity. However, the use of a power prior in the EXNEX model is shown to increase power and precision, whilst maintaining similar error rates to the standard EXNEX model.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144327836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting distributions of physical activity profiles in the National Health and Nutrition Examination Survey database using a partially linear Fréchet single index model. 使用部分线性fr<s:1>单指数模型预测国家健康和营养检查调查数据库中身体活动概况的分布。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxaf013
Marcos Matabuena, Aritra Ghosal, Wendy Meiring, Alexander Petersen

Object-oriented data analysis is a fascinating and evolving field in modern statistical science, with the potential to make significant contributions to biomedical applications. This statistical framework facilitates the development of new methods to analyze complex data objects that capture more information than traditional clinical biomarkers. This paper applies the object-oriented framework to analyze physical activity levels, measured by accelerometers, as response objects in a regression model. Unlike traditional summary metrics, we utilize a recently proposed representation of physical activity data as a distributional object, providing a more nuanced and complete profile of individual energy expenditure across all ranges of monitoring intensity. A novel hybrid Fréchet regression model is proposed and applied to US population accelerometer data from National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. The semi-parametric nature of the model allows for the inclusion of nonlinear effects for critical variables, such as age, which are biologically known to have subtle impacts on physical activity. Simultaneously, the inclusion of linear effects preserves interpretability for other variables, particularly categorical covariates such as ethnicity and sex. The results obtained are valuable from a public health perspective and could lead to new strategies for optimizing physical activity interventions in specific American subpopulations.

面向对象的数据分析是现代统计科学中一个引人入胜且不断发展的领域,具有为生物医学应用做出重大贡献的潜力。这种统计框架促进了新方法的发展,以分析复杂的数据对象,比传统的临床生物标志物捕获更多的信息。本文应用面向对象的框架来分析由加速度计测量的身体活动水平,作为回归模型中的响应对象。与传统的汇总指标不同,我们利用最近提出的身体活动数据表示作为分布对象,在所有监测强度范围内提供更细致和完整的个人能量消耗概况。本文提出了一种新的混合fracei回归模型,并将其应用于2011年至2014年美国国家健康与营养调查(NHANES)的人口加速度计数据。该模型的半参数性质允许包含关键变量的非线性效应,如年龄,这在生物学上已知对身体活动有微妙的影响。同时,线性效应的包含保留了其他变量的可解释性,特别是分类协变量,如种族和性别。从公共卫生的角度来看,所获得的结果是有价值的,并可能导致优化特定美国亚群的体育活动干预的新策略。
{"title":"Predicting distributions of physical activity profiles in the National Health and Nutrition Examination Survey database using a partially linear Fréchet single index model.","authors":"Marcos Matabuena, Aritra Ghosal, Wendy Meiring, Alexander Petersen","doi":"10.1093/biostatistics/kxaf013","DOIUrl":"10.1093/biostatistics/kxaf013","url":null,"abstract":"<p><p>Object-oriented data analysis is a fascinating and evolving field in modern statistical science, with the potential to make significant contributions to biomedical applications. This statistical framework facilitates the development of new methods to analyze complex data objects that capture more information than traditional clinical biomarkers. This paper applies the object-oriented framework to analyze physical activity levels, measured by accelerometers, as response objects in a regression model. Unlike traditional summary metrics, we utilize a recently proposed representation of physical activity data as a distributional object, providing a more nuanced and complete profile of individual energy expenditure across all ranges of monitoring intensity. A novel hybrid Fréchet regression model is proposed and applied to US population accelerometer data from National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. The semi-parametric nature of the model allows for the inclusion of nonlinear effects for critical variables, such as age, which are biologically known to have subtle impacts on physical activity. Simultaneously, the inclusion of linear effects preserves interpretability for other variables, particularly categorical covariates such as ethnicity and sex. The results obtained are valuable from a public health perspective and could lead to new strategies for optimizing physical activity interventions in specific American subpopulations.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic EM algorithm for partially observed stochastic epidemics with individual heterogeneity. 具有个体异质性的部分观测随机流行病的随机 EM 算法。
IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae018
Fan Bu, Allison E Aiello, Alexander Volfovsky, Jason Xu

We develop a stochastic epidemic model progressing over dynamic networks, where infection rates are heterogeneous and may vary with individual-level covariates. The joint dynamics are modeled as a continuous-time Markov chain such that disease transmission is constrained by the contact network structure, and network evolution is in turn influenced by individual disease statuses. To accommodate partial epidemic observations commonly seen in real-world data, we propose a stochastic EM algorithm for inference, introducing key innovations that include efficient conditional samplers for imputing missing infection and recovery times which respect the dynamic contact network. Experiments on both synthetic and real datasets demonstrate that our inference method can accurately and efficiently recover model parameters and provide valuable insight at the presence of unobserved disease episodes in epidemic data.

我们建立了一个在动态网络上发展的随机流行病模型,在这个模型中,感染率是异质的,并可能随个体水平的协变量而变化。联合动态模型是一个连续时间马尔可夫链,疾病传播受接触网络结构的制约,而网络演化反过来又受个体疾病状态的影响。为了适应真实世界数据中常见的部分流行病观测数据,我们提出了一种用于推断的随机电磁算法,并引入了一些关键创新,包括有效的条件采样器,用于计算缺失的感染和恢复时间,这些采样器尊重动态接触网络。在合成数据集和真实数据集上进行的实验表明,我们的推理方法可以准确、高效地恢复模型参数,并对流行病数据中未观察到的疾病发作提供有价值的见解。
{"title":"Stochastic EM algorithm for partially observed stochastic epidemics with individual heterogeneity.","authors":"Fan Bu, Allison E Aiello, Alexander Volfovsky, Jason Xu","doi":"10.1093/biostatistics/kxae018","DOIUrl":"10.1093/biostatistics/kxae018","url":null,"abstract":"<p><p>We develop a stochastic epidemic model progressing over dynamic networks, where infection rates are heterogeneous and may vary with individual-level covariates. The joint dynamics are modeled as a continuous-time Markov chain such that disease transmission is constrained by the contact network structure, and network evolution is in turn influenced by individual disease statuses. To accommodate partial epidemic observations commonly seen in real-world data, we propose a stochastic EM algorithm for inference, introducing key innovations that include efficient conditional samplers for imputing missing infection and recovery times which respect the dynamic contact network. Experiments on both synthetic and real datasets demonstrate that our inference method can accurately and efficiently recover model parameters and provide valuable insight at the presence of unobserved disease episodes in epidemic data.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology. 在环境流行病学中考虑暴露测量误差的可扩展两阶段贝叶斯方法。
IF 2 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae038
Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park

Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide [NO2])-specific exposures and birth weight of full-term infants born in 2012 in Harris County, Texas, using several approaches, including the newly developed method.

二十多年来,暴露测量误差一直被认为是环境流行病学中的一个关键问题。贝叶斯分层模型为评估环境暴露与健康影响之间的关联提供了一个连贯的概率框架,该框架考虑到了估计暴露量的不确定性以及暴露量与健康结果数据之间的空间错位所带来的暴露测量误差。在联合估计不可行的情况下,两阶段贝叶斯分析通常被认为是完全贝叶斯分析的良好替代方法,但关于如何将不确定性从第一阶段暴露模型正确传播到第二阶段健康模型的研究却很少,尤其是在有大量参与地点和空间相关暴露的情况下。我们提出了一种可扩展的两阶段贝叶斯方法,称为稀疏多变量正态(稀疏 MVN)先验方法,该方法基于 Vecchia 近似,用于评估环境流行病学中暴露与健康结果之间的关联。我们通过模拟将其性能与现有方法进行了比较。我们的稀疏 MVN 先验方法与完全贝叶斯方法的性能相当,后者是黄金标准,但在某些情况下无法实施。我们使用几种方法(包括新开发的方法)调查了德克萨斯州哈里斯县 2012 年出生的足月婴儿的特定来源暴露和特定污染物(二氧化氮 [NO2])暴露与出生体重之间的关联。
{"title":"A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology.","authors":"Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park","doi":"10.1093/biostatistics/kxae038","DOIUrl":"10.1093/biostatistics/kxae038","url":null,"abstract":"<p><p>Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide [NO2])-specific exposures and birth weight of full-term infants born in 2012 in Harris County, Texas, using several approaches, including the newly developed method.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The winner's curse under dependence: repairing empirical Bayes using convoluted densities. 依赖下的赢家诅咒:用卷积密度修复经验贝叶斯。
IF 2 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxaf025
Stijn Hawinkel, Olivier Thas, Steven Maere

The winner's curse is a form of selection bias that arises when estimates are obtained for a large number of features, but only a subset of most extreme estimates is reported. It occurs in large scale significance testing as well as in rank-based selection, and imperils reproducibility of findings and follow-up study design. Several methods correcting for this selection bias have been proposed, but questions remain on their susceptibility to dependence between features since theoretical analyses and comparative studies are few. We prove that estimation through Tweedie's formula is biased in presence of strong dependence, and propose a convolution of its density estimator to restore its competitive performance, which also aids other empirical Bayes methods. Furthermore, we perform a comprehensive simulation study comparing different classes of winner's curse correction methods for point estimates as well as confidence intervals under dependence. We find a bootstrap method and empirical Bayes methods with density convolution to perform best at correcting the selection bias, although this correction generally does not improve the feature ranking. Finally, we apply the methods to a comparison of single-feature versus multi-feature prediction models in predicting Brassica napus phenotypes from gene expression data, demonstrating that the superiority of the best single-feature model may be illusory.

赢家的诅咒是一种选择偏差的形式,当获得了大量特征的估计,但只有最极端估计的子集被报告时,就会出现这种偏差。它发生在大规模显著性检验以及基于秩的选择中,并危及结果的可重复性和后续研究设计。已经提出了几种纠正这种选择偏差的方法,但由于理论分析和比较研究很少,它们对特征之间依赖性的敏感性仍然存在问题。我们证明了Tweedie公式的估计在存在强依赖性的情况下是有偏差的,并提出了其密度估计器的卷积来恢复其竞争性能,这也有助于其他经验贝叶斯方法。此外,我们进行了全面的模拟研究,比较了不同类别的赢家诅咒校正方法的点估计以及依赖下的置信区间。我们发现带密度卷积的bootstrap方法和经验贝叶斯方法在校正选择偏差方面表现最好,尽管这种校正通常不会提高特征排名。最后,我们将这些方法应用于单特征和多特征预测模型在从基因表达数据预测甘蓝型表型方面的比较,表明最佳单特征模型的优势可能是虚幻的。
{"title":"The winner's curse under dependence: repairing empirical Bayes using convoluted densities.","authors":"Stijn Hawinkel, Olivier Thas, Steven Maere","doi":"10.1093/biostatistics/kxaf025","DOIUrl":"https://doi.org/10.1093/biostatistics/kxaf025","url":null,"abstract":"<p><p>The winner's curse is a form of selection bias that arises when estimates are obtained for a large number of features, but only a subset of most extreme estimates is reported. It occurs in large scale significance testing as well as in rank-based selection, and imperils reproducibility of findings and follow-up study design. Several methods correcting for this selection bias have been proposed, but questions remain on their susceptibility to dependence between features since theoretical analyses and comparative studies are few. We prove that estimation through Tweedie's formula is biased in presence of strong dependence, and propose a convolution of its density estimator to restore its competitive performance, which also aids other empirical Bayes methods. Furthermore, we perform a comprehensive simulation study comparing different classes of winner's curse correction methods for point estimates as well as confidence intervals under dependence. We find a bootstrap method and empirical Bayes methods with density convolution to perform best at correcting the selection bias, although this correction generally does not improve the feature ranking. Finally, we apply the methods to a comparison of single-feature versus multi-feature prediction models in predicting Brassica napus phenotypes from gene expression data, demonstrating that the superiority of the best single-feature model may be illusory.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144979577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing spatial disparities: a Bayesian linear regression approach. 评估空间差异:贝叶斯线性回归方法。
IF 2 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxaf048
Kyle Wu, Sudipto Banerjee

Epidemiological investigations of regionally aggregated spatial data often involve detecting spatial health disparities among neighboring regions on a map of disease mortality or incidence rates. Analyzing such data introduces spatial dependence among health outcomes and seeks to report statistically significant spatial disparities by delineating boundaries that separate neighboring regions with disparate health outcomes. However, there are statistical challenges to appropriately define what constitutes a spatial disparity and to construct robust probabilistic inferences for spatial disparities. We enrich the familiar Bayesian linear regression framework to introduce spatial autoregression and offer model-based detection of spatial disparities. We derive exploitable analytical tractability that considerably accelerates computation. Simulation experiments conducted on a county map of the entire United States demonstrate the effectiveness of our method, and we apply our method to a data set from the Institute of Health Metrics and Evaluation (IHME) on age-standardized US county-level estimates of lung cancer mortality rates.

对区域汇总空间数据的流行病学调查往往涉及在疾病死亡率或发病率地图上发现邻近区域之间的空间健康差异。对这些数据的分析引入了健康结果之间的空间依赖性,并试图通过划定将不同健康结果的邻近地区分开的边界来报告统计上显著的空间差异。然而,在适当地定义什么构成空间差异以及构建空间差异的可靠概率推断方面存在统计学上的挑战。我们丰富了熟悉的贝叶斯线性回归框架,引入空间自回归,并提供基于模型的空间差异检测。我们推导出可利用的分析可追溯性,大大加快了计算速度。在整个美国的县地图上进行的模拟实验证明了我们的方法的有效性,我们将我们的方法应用于健康计量与评估研究所(IHME)关于年龄标准化的美国县级肺癌死亡率估计的数据集。
{"title":"Assessing spatial disparities: a Bayesian linear regression approach.","authors":"Kyle Wu, Sudipto Banerjee","doi":"10.1093/biostatistics/kxaf048","DOIUrl":"https://doi.org/10.1093/biostatistics/kxaf048","url":null,"abstract":"<p><p>Epidemiological investigations of regionally aggregated spatial data often involve detecting spatial health disparities among neighboring regions on a map of disease mortality or incidence rates. Analyzing such data introduces spatial dependence among health outcomes and seeks to report statistically significant spatial disparities by delineating boundaries that separate neighboring regions with disparate health outcomes. However, there are statistical challenges to appropriately define what constitutes a spatial disparity and to construct robust probabilistic inferences for spatial disparities. We enrich the familiar Bayesian linear regression framework to introduce spatial autoregression and offer model-based detection of spatial disparities. We derive exploitable analytical tractability that considerably accelerates computation. Simulation experiments conducted on a county map of the entire United States demonstrate the effectiveness of our method, and we apply our method to a data set from the Institute of Health Metrics and Evaluation (IHME) on age-standardized US county-level estimates of lung cancer mortality rates.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145776620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biostatistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1