Pub Date : 2024-08-22DOI: 10.1016/j.adhoc.2024.103625
Rabab Mohamed Nabawy , Mohammed Hassanin , Mohamed Hassan Ibrahim , Mostafa Rabea Kaseb
Large data storage security is a topic of great interest to researchers, particularly in the age of big data where preserving data from theft, unauthorized access, and storage failure has become a crucial concern. To safeguard such data, encryption/decryption approaches have been employed, which are time-consuming and inefficient. The aim of this study is to develop a method, namely Mixed Fragmentation Technique for Securing Structured Data using Multi-Cloud Environment (MFT-SSD), for protecting large-scale data stored in a multi-cloud environment. This prevents insider attacks by adopting a mixed fragmentation approach to split the data into three files. For example, healthcare data is will be distributed among many clouds, each of which stores a partially unrecognized fraction of data without the need for an encryption or decryption layer. Comparing MFT-SSD to various encryption/decryption algorithms, our results show significant improvement; hence, the total performance of big data security is also improved.
{"title":"Mixed fragmentation technique for securing structured data using multi-cloud environment (MFT-SSD)","authors":"Rabab Mohamed Nabawy , Mohammed Hassanin , Mohamed Hassan Ibrahim , Mostafa Rabea Kaseb","doi":"10.1016/j.adhoc.2024.103625","DOIUrl":"10.1016/j.adhoc.2024.103625","url":null,"abstract":"<div><p>Large data storage security is a topic of great interest to researchers, particularly in the age of big data where preserving data from theft, unauthorized access, and storage failure has become a crucial concern. To safeguard such data, encryption/decryption approaches have been employed, which are time-consuming and inefficient. The aim of this study is to develop a method, namely Mixed Fragmentation Technique for Securing Structured Data using Multi-Cloud Environment (MFT-SSD), for protecting large-scale data stored in a multi-cloud environment. This prevents insider attacks by adopting a mixed fragmentation approach to split the data into three files. For example, healthcare data is will be distributed among many clouds, each of which stores a partially unrecognized fraction of data without the need for an encryption or decryption layer. Comparing MFT-SSD to various encryption/decryption algorithms, our results show significant improvement; hence, the total performance of big data security is also improved.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103625"},"PeriodicalIF":4.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.adhoc.2024.103633
Douglas L.L. Moura , Andre L.L. Aquino , Antonio A.F. Loureiro
Intelligent Transportation Systems (ITS) faces significant challenges in achieving its goal of sustainable and efficient transportation. These challenges include real-time data processing bottlenecks caused by high communication latency and security vulnerabilities related to centralized data storage. We propose a novel architecture that leverages Edge Computing and Distributed Ledger Technology (DLT) to address these concerns. Edge computing pushes cloud services, such as vehicles and roadside units, closer to the data source. This strategy reduces latency and network congestion. DLT provides a secure, decentralized platform for storing and sharing ITS data. Its tamper-proof nature ensures data integrity and prevents unauthorized access. Our architecture utilizes these technologies to create a decentralized platform for ITS data management. This platform facilitates secure processing, storage, and data exchange from various sources in the transportation network. This paper delves deeper into the architecture, explaining its essential components and functionalities. Additionally, we explore its potential applications and benefits for ITS. We describe a case study focusing on a data marketplace system for connected vehicles to assess the architecture’s effectiveness. The simulation results show an average latency reduction of 83.35% for publishing and 87.57% for purchasing datasets compared to the cloud architecture. Additionally, transaction processing speed improved by 18.73% and network usage decreased by 96.67%. The proposed architecture also achieves up to 99.61% reduction in mining centralization.
{"title":"An edge computing and distributed ledger technology architecture for secure and efficient transportation","authors":"Douglas L.L. Moura , Andre L.L. Aquino , Antonio A.F. Loureiro","doi":"10.1016/j.adhoc.2024.103633","DOIUrl":"10.1016/j.adhoc.2024.103633","url":null,"abstract":"<div><p>Intelligent Transportation Systems (ITS) faces significant challenges in achieving its goal of sustainable and efficient transportation. These challenges include real-time data processing bottlenecks caused by high communication latency and security vulnerabilities related to centralized data storage. We propose a novel architecture that leverages Edge Computing and Distributed Ledger Technology (DLT) to address these concerns. Edge computing pushes cloud services, such as vehicles and roadside units, closer to the data source. This strategy reduces latency and network congestion. DLT provides a secure, decentralized platform for storing and sharing ITS data. Its tamper-proof nature ensures data integrity and prevents unauthorized access. Our architecture utilizes these technologies to create a decentralized platform for ITS data management. This platform facilitates secure processing, storage, and data exchange from various sources in the transportation network. This paper delves deeper into the architecture, explaining its essential components and functionalities. Additionally, we explore its potential applications and benefits for ITS. We describe a case study focusing on a data marketplace system for connected vehicles to assess the architecture’s effectiveness. The simulation results show an average latency reduction of 83.35% for publishing and 87.57% for purchasing datasets compared to the cloud architecture. Additionally, transaction processing speed improved by 18.73% and network usage decreased by 96.67%. The proposed architecture also achieves up to 99.61% reduction in mining centralization.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103633"},"PeriodicalIF":4.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper delves into optimizing network lifetime (NL) subject to connected-coverage requirement, a pivotal issue for realistic wireless sensor network (WSN) design. A key challenge in designing WSNs consisting of energy-limited sensors is maximizing NL, the time a network remains functional by providing the desired service quality. To this end, we introduce a novel NL metric addressing target-specific coverage requirements that remedies the shortcomings imposed by conventional definitions like first node die (FND) and last node die (LND). In this context, while we want targets to be sensed by multiple sensors for a portion of the network lifetime, we let the periods, during which cells are monitored by at least one sensor, vary. We also allow the ratios of multiple and single tracking times to differ depending on the target and incorporate target-based prioritization in coverage. Moreover, we address role assignment to sensors and propose a selective target-sensor assignment strategy. As such, we aim to reduce redundant data transmissions and hence overall energy consumption in WSNs. We first propose a unique 0-1 mixed integer programming (MIP) model, to analyze the impact of our proposal on optimal WSN performance, precisely. Next, we present comprehensive comparative studies of WSN performance for alternative NL metrics regarding different coverage requirements and priorities across a wide range of parameters. Our test results reveal that by utilizing our novel NL metric total coverage time can be improved significantly, while facilitating more reliable sensing of the target region.
{"title":"A novel differentiated coverage-based lifetime metric for wireless sensor networks","authors":"Derya Nurcan-Atceken , Aysegul Altin-Kayhan , Bulent Tavli","doi":"10.1016/j.adhoc.2024.103636","DOIUrl":"10.1016/j.adhoc.2024.103636","url":null,"abstract":"<div><p>This paper delves into optimizing network lifetime (NL) subject to connected-coverage requirement, a pivotal issue for realistic wireless sensor network (WSN) design. A key challenge in designing WSNs consisting of energy-limited sensors is maximizing NL, the time a network remains functional by providing the desired service quality. To this end, we introduce a novel NL metric addressing target-specific coverage requirements that remedies the shortcomings imposed by conventional definitions like <em>first node die</em> (FND) and <em>last node die</em> (LND). In this context, while we want targets to be sensed by multiple sensors for a portion of the network lifetime, we let the periods, during which cells are monitored by at least one sensor, vary. We also allow the ratios of multiple and single tracking times to differ depending on the target and incorporate target-based prioritization in coverage. Moreover, we address role assignment to sensors and propose a selective target-sensor assignment strategy. As such, we aim to reduce redundant data transmissions and hence overall energy consumption in WSNs. We first propose a unique 0-1 mixed integer programming (MIP) model, to analyze the impact of our proposal on optimal WSN performance, precisely. Next, we present comprehensive comparative studies of WSN performance for alternative NL metrics regarding different coverage requirements and priorities across a wide range of parameters. Our test results reveal that by utilizing our novel NL metric total coverage time can be improved significantly, while facilitating more reliable sensing of the target region.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103636"},"PeriodicalIF":4.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1016/j.adhoc.2024.103635
Tingting Li , Yanjun Li , Ping Hu , Yuzhe Chen , Zheng Yin
Intelligent reconfigurable surface (IRS) is an emerging technology for the enhancement of spectrum and energy efficiency. We propose a novel IRS-and-unmanned aerial vehicle (UAV)-Assisted mobile edge computing (MEC) framework, where a MEC server installing on an UAV to facilitate task calculations by mobile users (MUs), and an IRS modulates channels between MUs and the UAV. Non-orthogonal multiple access (NOMA) is employed for further improving system-wide spectral efficiency. There are needs for joint optimization of multiple parameters, e.g., the task partition parameters and the transmit power of all MUs, the reflection coefficient matrix of the IRS and the movement trajectory of the UAV, and such needs raises the challenge of minimizing the long-term total energy consumption of all MUs while satisfying required transmission rate and task completion delay. We divide optimization tasks into two sub-problems and propose specific solutions respectively, i.e., relevant decisions about the UAV and MUs to be solved by deep reinforcement learning (DRL); and the reflection coefficient matrix of the IRS to be solved by block coordinate descent (BCD). A series of experiments have verified the effectiveness of the proposed communication techniques and optimization algorithms. Simulation results demonstrate that (1) NOMA-IRS technique achieves better energy efficacy compared to the cases where random IRS or no IRS is deployed and the conventional orthogonal multiple access (OMA) technique with IRS. (2) our proposed deep deterministic policy gradient (DDPG)-BCD algorithm outperforms other four benchmark algorithms in solving the complex and dynamic optimization problem.
智能可重构表面(IRS)是一种提高频谱和能源效率的新兴技术。我们提出了一种新颖的 IRS-无人机辅助移动边缘计算(MEC)框架,其中 MEC 服务器安装在无人机上,以方便移动用户(MU)进行任务计算,而 IRS 则调制 MU 与无人机之间的信道。为进一步提高整个系统的频谱效率,采用了非正交多址接入(NOMA)技术。需要对多个参数进行联合优化,例如任务分区参数和所有 MU 的发射功率、IRS 的反射系数矩阵和无人机的运动轨迹,这些需求提出了一个挑战,即在满足所需的传输速率和任务完成延迟的同时,最大限度地降低所有 MU 的长期总能耗。我们将优化任务分为两个子问题,并分别提出了具体的解决方案,即通过深度强化学习(DRL)解决无人机和 MU 的相关决策问题;通过块坐标下降(BCD)解决 IRS 的反射系数矩阵问题。一系列实验验证了所提出的通信技术和优化算法的有效性。仿真结果表明:(1) NOMA-IRS 技术与随机部署 IRS 或不部署 IRS 的情况相比,以及与传统的带 IRS 的正交多址(OMA)技术相比,实现了更好的能效。(2) 在解决复杂的动态优化问题时,我们提出的深度确定性策略梯度(DDPG)-BCD 算法优于其他四种基准算法。
{"title":"Energy minimization for IRS-and-UAV-assisted mobile edge computing","authors":"Tingting Li , Yanjun Li , Ping Hu , Yuzhe Chen , Zheng Yin","doi":"10.1016/j.adhoc.2024.103635","DOIUrl":"10.1016/j.adhoc.2024.103635","url":null,"abstract":"<div><p>Intelligent reconfigurable surface (IRS) is an emerging technology for the enhancement of spectrum and energy efficiency. We propose a novel IRS-and-unmanned aerial vehicle (UAV)-Assisted mobile edge computing (MEC) framework, where a MEC server installing on an UAV to facilitate task calculations by mobile users (MUs), and an IRS modulates channels between MUs and the UAV. Non-orthogonal multiple access (NOMA) is employed for further improving system-wide spectral efficiency. There are needs for joint optimization of multiple parameters, e.g., the task partition parameters and the transmit power of all MUs, the reflection coefficient matrix of the IRS and the movement trajectory of the UAV, and such needs raises the challenge of minimizing the long-term total energy consumption of all MUs while satisfying required transmission rate and task completion delay. We divide optimization tasks into two sub-problems and propose specific solutions respectively, i.e., relevant decisions about the UAV and MUs to be solved by deep reinforcement learning (DRL); and the reflection coefficient matrix of the IRS to be solved by block coordinate descent (BCD). A series of experiments have verified the effectiveness of the proposed communication techniques and optimization algorithms. Simulation results demonstrate that (1) NOMA-IRS technique achieves better energy efficacy compared to the cases where random IRS or no IRS is deployed and the conventional orthogonal multiple access (OMA) technique with IRS. (2) our proposed deep deterministic policy gradient (DDPG)-BCD algorithm outperforms other four benchmark algorithms in solving the complex and dynamic optimization problem.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103635"},"PeriodicalIF":4.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1016/j.adhoc.2024.103634
Ruba Nasser, Rabeb Mizouni, Shakti Singh, Hadi Otrok
Mobile Crowd Sensing/Souring (MCS) is a novel sensing approach that leverages the collective participation of users and their mobile devices to collect sensing data. As large volumes of data get stored and processed by the MCS platform, Artificial Intelligence (AI) techniques are being deployed to make informed decisions that help optimize the system performance. Despite their effectiveness in solving many of the challenges, incorporating AI models in the system introduces many concerns, which could adversely affect its performance. This includes exploiting the vulnerabilities of the models by an adversary to manipulate the data and cause harm to the system. Adversarial Machine Learning (AML) is a field of research that studies attacks and defences against machine learning models. In this study, we conduct a systematic literature review to comprehensively analyze state-of-the-art works that address various aspects of AI-based MCS systems. The review focuses mainly on the applications of AI in different components of MCS, including task allocation and data aggregation, to improve its performance and enhance its security. This work also proposes a novel classification framework that can be adapted to compare works in this domain. This framework can help study AML in the context of MCS, as it facilitates identifying the attack surfaces that adversaries can exploit, and hence highlights the potential vulnerabilities of AI-based MCS systems to adversarial attacks, motivating future research to focus on designing resilient systems.
{"title":"Systematic survey on artificial intelligence based mobile crowd sensing and sourcing solutions: Applications and security challenges","authors":"Ruba Nasser, Rabeb Mizouni, Shakti Singh, Hadi Otrok","doi":"10.1016/j.adhoc.2024.103634","DOIUrl":"10.1016/j.adhoc.2024.103634","url":null,"abstract":"<div><p>Mobile Crowd Sensing/Souring (MCS) is a novel sensing approach that leverages the collective participation of users and their mobile devices to collect sensing data. As large volumes of data get stored and processed by the MCS platform, Artificial Intelligence (AI) techniques are being deployed to make informed decisions that help optimize the system performance. Despite their effectiveness in solving many of the challenges, incorporating AI models in the system introduces many concerns, which could adversely affect its performance. This includes exploiting the vulnerabilities of the models by an adversary to manipulate the data and cause harm to the system. Adversarial Machine Learning (AML) is a field of research that studies attacks and defences against machine learning models. In this study, we conduct a systematic literature review to comprehensively analyze state-of-the-art works that address various aspects of AI-based MCS systems. The review focuses mainly on the applications of AI in different components of MCS, including task allocation and data aggregation, to improve its performance and enhance its security. This work also proposes a novel classification framework that can be adapted to compare works in this domain. This framework can help study AML in the context of MCS, as it facilitates identifying the attack surfaces that adversaries can exploit, and hence highlights the potential vulnerabilities of AI-based MCS systems to adversarial attacks, motivating future research to focus on designing resilient systems.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103634"},"PeriodicalIF":4.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.adhoc.2024.103631
Aditya Kaushal Ranjan, Prabhat Kumar
The Internet of Things (IoT) is an emerging field that encompasses several heterogeneous devices and smart objects that are integrated with the network. In open platforms, these objects are deployed to present advanced services in numerous applications. Innumerable security-sensitive data is generated by the IoT device and therefore, the security of these devices is an important task. This work formulates a secure data transfer technique in IoT, named Authentication enabled Privacy Protection (APPS) scheme for resource-constrained IoT devices. The proposed scheme demonstrates resilience against various attacks; such as resisting reply attacks, device anonymity, untracebility, session key establishment, quantum attacks and resisting MITM attacks. For the privacy protection scheme, the secured data transfer is initiated between the entities, like IoT devices, servers, and registration centers, by using various phases, namely registration phase, key generation phase, data encryption, authentication, verification, and data retrieval phase. Here, a mathematical model is designed for protecting data privacy using hashing, encryption, secret keys, etc. Finally, performance of proposed APPS model is analyzed; wherein the outcomes reveal that the proposed APPS model attained the maximum detection rate of 0.85, minimal memory usage of 0.497MB, and minimal computational time of 112. 79 sec and minimal turnaround time 131.91 sec.
{"title":"APPS: Authentication-enabled privacy protection scheme for secure data transfer in Internet of Things","authors":"Aditya Kaushal Ranjan, Prabhat Kumar","doi":"10.1016/j.adhoc.2024.103631","DOIUrl":"10.1016/j.adhoc.2024.103631","url":null,"abstract":"<div><p>The Internet of Things (IoT) is an emerging field that encompasses several heterogeneous devices and smart objects that are integrated with the network. In open platforms, these objects are deployed to present advanced services in numerous applications. Innumerable security-sensitive data is generated by the IoT device and therefore, the security of these devices is an important task. This work formulates a secure data transfer technique in IoT, named Authentication enabled Privacy Protection (APPS) scheme for resource-constrained IoT devices. The proposed scheme demonstrates resilience against various attacks; such as resisting reply attacks, device anonymity, untracebility, session key establishment, quantum attacks and resisting MITM attacks. For the privacy protection scheme, the secured data transfer is initiated between the entities, like IoT devices, servers, and registration centers, by using various phases, namely registration phase, key generation phase, data encryption, authentication, verification, and data retrieval phase. Here, a mathematical model is designed for protecting data privacy using hashing, encryption, secret keys, etc. Finally, performance of proposed APPS model is analyzed; wherein the outcomes reveal that the proposed APPS model attained the maximum detection rate of 0.85, minimal memory usage of 0.497MB, and minimal computational time of 112. 79 sec and minimal turnaround time 131.91 sec.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103631"},"PeriodicalIF":4.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.adhoc.2024.103630
Yan Huo , Ruixue Yang , Guanlin Jing , Xiaoxuan Wang , Jian Mao
The deployment of Roadside Units (RSUs) in the Cellular-Vehicle to Everything enabled Internet of Vehicles is crucial for the transition from individual intelligence of vehicles to collective intelligence of vehicle-road collaboration. In this paper, we focus on improving the adaptability of RSU deployment to real scenarios, and optimizing deployment costs and vehicle-oriented service performance. The RSU deployment problem is modeled as a Multi-objective Optimization Problem (MOP), with a cost model integrating the purchase and installation costs, and a service-oriented Quality of Service (QoS) model adopting the total time the RSUs cover the vehicles as the evaluation metric. Specifically, we propose an RSU reliable coverage analysis method based on Packet Delivery Ratio model to estimate the coverage distances in different scenarios, which will be used in QoS calculation. Then, an evolutionary RSU deployment algorithm is designed to solve the MOP. The performance of the proposed method is simulated and discussed in real road network and dynamic scenarios. The results prove that our method outperforms the baseline method in terms of significant cost reduction and total coverage time improvement.
{"title":"A multi-objective Roadside Units deployment strategy based on reliable coverage analysis in Internet of Vehicles","authors":"Yan Huo , Ruixue Yang , Guanlin Jing , Xiaoxuan Wang , Jian Mao","doi":"10.1016/j.adhoc.2024.103630","DOIUrl":"10.1016/j.adhoc.2024.103630","url":null,"abstract":"<div><p>The deployment of Roadside Units (RSUs) in the Cellular-Vehicle to Everything enabled Internet of Vehicles is crucial for the transition from individual intelligence of vehicles to collective intelligence of vehicle-road collaboration. In this paper, we focus on improving the adaptability of RSU deployment to real scenarios, and optimizing deployment costs and vehicle-oriented service performance. The RSU deployment problem is modeled as a Multi-objective Optimization Problem (MOP), with a cost model integrating the purchase and installation costs, and a service-oriented Quality of Service (QoS) model adopting the total time the RSUs cover the vehicles as the evaluation metric. Specifically, we propose an RSU reliable coverage analysis method based on Packet Delivery Ratio model to estimate the coverage distances in different scenarios, which will be used in QoS calculation. Then, an evolutionary RSU deployment algorithm is designed to solve the MOP. The performance of the proposed method is simulated and discussed in real road network and dynamic scenarios. The results prove that our method outperforms the baseline method in terms of significant cost reduction and total coverage time improvement.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103630"},"PeriodicalIF":4.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1016/j.adhoc.2024.103599
Fátima Fernández , Fátima Khan , Mihail Zverev , Luis Diez , José R. Juárez , Anna Brunstrom , Ramón Agüero
The advent of wireless technologies has led to the development of novel services for end-users, with stringent needs and requirements. High availability, very high throughput, low latency, and reliability are all of them crucial performance parameters. To address these demands, emerging technologies, such as non-terrestrial networks or millimeter wave (mmWave), are being included in 5G and Beyond 5G (B5G) specifications. mmWave enables massive data transmissions, at the expense of a more hostile propagation, typical for high frequency bands. Consequently, the inherent instability of the physical channel significantly affects the upper layers of the protocol stack, resulting in congestion and data losses, which might strongly hinder the overall communication performance. These challenges can be addressed not only at the link layer, but at any affected layer. QUIC is a new transport protocol designed to reduce communications latency in many ways. Among other features, it enables the use of multiple streams to effectively manage data flows sent through its underlying UDP socket. This paper introduces an implementation of priority-based stream schedulers along with the design of a flexible interface. Exploiting the proposed approach, applications are able to set the required scheduling scheme, as well as the stream priorities. The feasibility of the proposed approach is validated through an extensive experiment campaign, which combines Docker containers, the ns-3 simulator and the Mahimahi framework, which is exploited to introduce realistic mmWave channel traces. The results evince that an appropriate stream scheduler can indeed yield lower delays for time-sensitive applications by up to 36% under unreliable conditions.
{"title":"Exploiting stream scheduling in QUIC: Performance assessment over wireless connectivity scenarios","authors":"Fátima Fernández , Fátima Khan , Mihail Zverev , Luis Diez , José R. Juárez , Anna Brunstrom , Ramón Agüero","doi":"10.1016/j.adhoc.2024.103599","DOIUrl":"10.1016/j.adhoc.2024.103599","url":null,"abstract":"<div><p>The advent of wireless technologies has led to the development of novel services for end-users, with stringent needs and requirements. High availability, very high throughput, low latency, and reliability are all of them crucial performance parameters. To address these demands, emerging technologies, such as non-terrestrial networks or millimeter wave (mmWave), are being included in 5G and Beyond 5G (B5G) specifications. mmWave enables massive data transmissions, at the expense of a more hostile propagation, typical for high frequency bands. Consequently, the inherent instability of the physical channel significantly affects the upper layers of the protocol stack, resulting in congestion and data losses, which might strongly hinder the overall communication performance. These challenges can be addressed not only at the link layer, but at any affected layer. QUIC is a new transport protocol designed to reduce communications latency in many ways. Among other features, it enables the use of multiple streams to effectively manage data flows sent through its underlying UDP socket. This paper introduces an implementation of priority-based stream schedulers along with the design of a flexible interface. Exploiting the proposed approach, applications are able to set the required scheduling scheme, as well as the stream priorities. The feasibility of the proposed approach is validated through an extensive experiment campaign, which combines Docker containers, the ns-3 simulator and the Mahimahi framework, which is exploited to introduce realistic mmWave channel traces. The results evince that an appropriate stream scheduler can indeed yield lower delays for time-sensitive applications by up to 36% under unreliable conditions.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103599"},"PeriodicalIF":4.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570870524002105/pdfft?md5=460c9f73b298581eb5c0a0504f183755&pid=1-s2.0-S1570870524002105-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.adhoc.2024.103629
Mahdieh Rahnemay , Leili Farzinvash , Mina Zolfi , Amir Taherkordi
Efficient energy consumption is crucial in Wireless Sensor Networks (WSNs). Uncontrolled energy usage can lead to the hotspot issue, hindering network lifetime and successful packet delivery. Sink mobility has been suggested as a solution, but it comes with challenges such as high data gathering delay and poor packet reception. These problems stem from the short contact time of nodes with the Mobile Sink (MS). To tackle these issues, we present an MS-based heterogeneous WSN with super and normal nodes. Most previous studies only considered the energy heterogeneity of sensors. These methods also suffered from different issues such as fixed MS tours, including inappropriate criteria in cluster construction, proposing greedy schemes, and employing basic metaheuristic algorithms. In our proposed model, super nodes are richer in initial energy and transmission range than normal sensors. In each round, the nodes are organized into clusters, and the MS visits the Cluster Heads (CHs) to gather data packets. Super nodes, owing to their elevated initial energy, are more adept at executing energy-sensitive tasks compared to normal sensors. Additionally, as CH, super nodes extend the contact time with the MS due to their longer transmission range, delivering more packets. The clusters are constructed using a variant of Particle Swarm Optimization (PSO), namely PSO-TVAC. We empower this method with effective initialization and decoding methods. Furthermore, we propose a heuristic intra-cluster multi-hop routing algorithm to enhance network lifetime. Our other contribution is to propose an efficient algorithm to determine the time to reconfigure the network, while the other algorithms mainly reconfigure the WSN periodically. Simulation results demonstrate superior performance compared to state-of-the-art algorithms, showcasing lower energy consumption, higher energy efficiency, higher lifetime, reduced packet delivery delay, and higher number of received packets by 30%, 38.2%, four times, 20.6%, and 22.6%, respectively.
高效的能源消耗在无线传感器网络(WSN)中至关重要。不加控制地使用能源会导致热点问题,影响网络寿命和数据包的成功传送。有人建议将 Sink 移动作为一种解决方案,但它也带来了数据收集延迟高和数据包接收不佳等挑战。这些问题源于节点与移动 Sink(MS)的接触时间较短。为了解决这些问题,我们提出了一种基于 MS 的超级节点和普通节点的异构 WSN。以前的研究大多只考虑了传感器的能量异质性。这些方法也存在不同的问题,如固定的 MS 行程、在集群构建中采用不恰当的标准、提出贪婪方案以及采用基本的元启发式算法。在我们提出的模型中,超级节点的初始能量和传输距离都比普通传感器丰富。在每一轮中,节点被组织成簇群,MS 访问簇头(CHs)收集数据包。与普通传感器相比,超级节点由于初始能量较高,更善于执行对能量敏感的任务。此外,作为 CH,超级节点由于传输距离更远,可以延长与 MS 的接触时间,从而传送更多数据包。簇的构建采用了粒子群优化(PSO)的一种变体,即 PSO-TVAC。我们通过有效的初始化和解码方法增强了这种方法的能力。此外,我们还提出了一种启发式簇内多跳路由算法,以提高网络寿命。我们的另一个贡献是提出了一种高效算法来确定重新配置网络的时间,而其他算法主要是周期性地重新配置 WSN。仿真结果表明,与最先进的算法相比,该算法性能优越,能耗更低、能效更高、寿命更长、数据包传送延迟更短、接收到的数据包数量更多,分别增加了 30%、38.2%、4 倍、20.6% 和 22.6%。
{"title":"ECMSH: An Energy-efficient and Cost-effective data harvesting protocol for Mobile Sink-based Heterogeneous WSNs using PSO-TVAC","authors":"Mahdieh Rahnemay , Leili Farzinvash , Mina Zolfi , Amir Taherkordi","doi":"10.1016/j.adhoc.2024.103629","DOIUrl":"10.1016/j.adhoc.2024.103629","url":null,"abstract":"<div><p>Efficient energy consumption is crucial in Wireless Sensor Networks (WSNs). Uncontrolled energy usage can lead to the hotspot issue, hindering network lifetime and successful packet delivery. Sink mobility has been suggested as a solution, but it comes with challenges such as high data gathering delay and poor packet reception. These problems stem from the short contact time of nodes with the Mobile Sink (MS). To tackle these issues, we present an MS-based heterogeneous WSN with super and normal nodes. Most previous studies only considered the energy heterogeneity of sensors. These methods also suffered from different issues such as fixed MS tours, including inappropriate criteria in cluster construction, proposing greedy schemes, and employing basic metaheuristic algorithms. In our proposed model, super nodes are richer in initial energy and transmission range than normal sensors. In each round, the nodes are organized into clusters, and the MS visits the Cluster Heads (CHs) to gather data packets. Super nodes, owing to their elevated initial energy, are more adept at executing energy-sensitive tasks compared to normal sensors. Additionally, as CH, super nodes extend the contact time with the MS due to their longer transmission range, delivering more packets. The clusters are constructed using a variant of Particle Swarm Optimization (PSO), namely PSO-TVAC. We empower this method with effective initialization and decoding methods. Furthermore, we propose a heuristic intra-cluster multi-hop routing algorithm to enhance network lifetime. Our other contribution is to propose an efficient algorithm to determine the time to reconfigure the network, while the other algorithms mainly reconfigure the WSN periodically. Simulation results demonstrate superior performance compared to state-of-the-art algorithms, showcasing lower energy consumption, higher energy efficiency, higher lifetime, reduced packet delivery delay, and higher number of received packets by 30%, 38.2%, four times, 20.6%, and 22.6%, respectively.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103629"},"PeriodicalIF":4.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.adhoc.2024.103624
Cláudio Diego T. de Souza , José Ferreira de Rezende , Carlos Alberto V. Campos
{"title":"Corrigendum to “Federated Learning assisted framework to periodically identify user communities in urban space” [Ad Hoc Networks 163 (2024) pp. 1-21/103589]","authors":"Cláudio Diego T. de Souza , José Ferreira de Rezende , Carlos Alberto V. Campos","doi":"10.1016/j.adhoc.2024.103624","DOIUrl":"10.1016/j.adhoc.2024.103624","url":null,"abstract":"","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"165 ","pages":"Article 103624"},"PeriodicalIF":4.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S157087052400235X/pdfft?md5=770a0dc2de0a497c0572d54beb2b7660&pid=1-s2.0-S157087052400235X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}