The article presents the DigiHive system, an artificial chemistry simulation environment, and the results of preliminary simulation experiments leading toward building a self-replicating system resembling a living cell. The two-dimensional environment is populated by particles that can bond together and form complexes of particles. Some complexes can recognize and change the structures of surrounding complexes, where the functions they perform are encoded in their structure in the form of Prolog-like language expressions. After introducing the DigiHive environment, we present the results of simulations of two fundamental parts of a self-replicating system, the work of a universal constructor and a copying machine, and the growth and division of a cell-like wall. At the end of the article, the limitations and arising difficulties of modeling in the DigiHive environment are presented, along with a discussion of possible future experiments and applications of this type of modeling.
{"title":"DigiHive: Artificial Chemistry Environment for Modeling of Self-Organization Phenomena","authors":"Rafał Sienkiewicz;Wojciech Jędruch","doi":"10.1162/artl_a_00398","DOIUrl":"10.1162/artl_a_00398","url":null,"abstract":"The article presents the DigiHive system, an artificial chemistry simulation environment, and the results of preliminary simulation experiments leading toward building a self-replicating system resembling a living cell. The two-dimensional environment is populated by particles that can bond together and form complexes of particles. Some complexes can recognize and change the structures of surrounding complexes, where the functions they perform are encoded in their structure in the form of Prolog-like language expressions. After introducing the DigiHive environment, we present the results of simulations of two fundamental parts of a self-replicating system, the work of a universal constructor and a copying machine, and the growth and division of a cell-like wall. At the end of the article, the limitations and arising difficulties of modeling in the DigiHive environment are presented, along with a discussion of possible future experiments and applications of this type of modeling.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 2","pages":"235-260"},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9666202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cooperative survival “games” are situations in which, during a sequence of catastrophic events, no one survives unless everyone survives. Such situations can be further exacerbated by uncertainty over the timing and scale of the recurring catastrophes, while the resource management required for survival may depend on several interdependent subgames of resource extraction, distribution, and investment with conflicting priorities and preferences between survivors. In social systems, self-organization has been a critical feature of sustainability and survival; therefore, in this article we use the lens of artificial societies to investigate the effectiveness of socially constructed self-organization for cooperative survival games. We imagine a cooperative survival scenario with four parameters: scale, that is, n in an n-player game; uncertainty, with regard to the occurrence and magnitude of each catastrophe; complexity, concerning the number of subgames to be simultaneously “solved”; and opportunity, with respect to the number of self-organizing mechanisms available to the players. We design and implement a multiagent system for a situation composed of three entangled subgames—a stag hunt game, a common-pool resource management problem, and a collective risk dilemma—and specify algorithms for three self-organizing mechanisms for governance, trading, and forecasting. A series of experiments shows, as perhaps expected, a threshold for a critical mass of survivors and also that increasing dimensions of uncertainty and complexity require increasing opportunity for self-organization. Perhaps less expected are the ways in which self-organizing mechanisms may interact in pernicious but also self-reinforcing ways, highlighting the need for some reflection as a process in collective self-governance for cooperative survival.
{"title":"Interdependent Self-Organizing Mechanisms for Cooperative Survival","authors":"Matthew Scott;Jeremy Pitt","doi":"10.1162/artl_a_00403","DOIUrl":"10.1162/artl_a_00403","url":null,"abstract":"Cooperative survival “games” are situations in which, during a sequence of catastrophic events, no one survives unless everyone survives. Such situations can be further exacerbated by uncertainty over the timing and scale of the recurring catastrophes, while the resource management required for survival may depend on several interdependent subgames of resource extraction, distribution, and investment with conflicting priorities and preferences between survivors. In social systems, self-organization has been a critical feature of sustainability and survival; therefore, in this article we use the lens of artificial societies to investigate the effectiveness of socially constructed self-organization for cooperative survival games. We imagine a cooperative survival scenario with four parameters: scale, that is, n in an n-player game; uncertainty, with regard to the occurrence and magnitude of each catastrophe; complexity, concerning the number of subgames to be simultaneously “solved”; and opportunity, with respect to the number of self-organizing mechanisms available to the players. We design and implement a multiagent system for a situation composed of three entangled subgames—a stag hunt game, a common-pool resource management problem, and a collective risk dilemma—and specify algorithms for three self-organizing mechanisms for governance, trading, and forecasting. A series of experiments shows, as perhaps expected, a threshold for a critical mass of survivors and also that increasing dimensions of uncertainty and complexity require increasing opportunity for self-organization. Perhaps less expected are the ways in which self-organizing mechanisms may interact in pernicious but also self-reinforcing ways, highlighting the need for some reflection as a process in collective self-governance for cooperative survival.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 2","pages":"198-234"},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9666683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this ansatz we consider theoretical constructions of RNA polymers into automata, a form of computational structure. The bases for transitions in our automata are plausible RNA enzymes that may perform ligation or cleavage. Limited to these operations, we construct RNA automata of increasing complexity; from the Finite Automaton (RNA-FA) to the Turing machine equivalent 2-stack PDA (RNA-2PDA) and the universal RNA-UPDA. For each automaton we show how the enzymatic reactions match the logical operations of the RNA automaton. A critical theme of the ansatz is the self-reference in RNA automata configurations that exploits the program-data duality but results in computational undecidability. We describe how computational undecidability is exemplified in the self-referential Liar paradox that places a boundary on a logical system, and by construction, any RNA automata. We argue that an expansion of the evolutionary space for RNA-2PDA automata can be interpreted as a hierarchical resolution of computational undecidability by a meta-system (akin to Turing’s oracle), in a continual process analogous to Turing’s ordinal logics and Post’s extensible recursively generated logics. On this basis, we put forward the hypothesis that the resolution of undecidable configurations in RNA automata represent a novelty generation mechanism and propose avenues for future investigation of biological automata.
{"title":"An Ansatz for Computational Undecidability in RNA Automata","authors":"Adam J. Svahn;Mikhail Prokopenko","doi":"10.1162/artl_a_00370","DOIUrl":"10.1162/artl_a_00370","url":null,"abstract":"In this ansatz we consider theoretical constructions of RNA polymers into automata, a form of computational structure. The bases for transitions in our automata are plausible RNA enzymes that may perform ligation or cleavage. Limited to these operations, we construct RNA automata of increasing complexity; from the Finite Automaton (RNA-FA) to the Turing machine equivalent 2-stack PDA (RNA-2PDA) and the universal RNA-UPDA. For each automaton we show how the enzymatic reactions match the logical operations of the RNA automaton. A critical theme of the ansatz is the self-reference in RNA automata configurations that exploits the program-data duality but results in computational undecidability. We describe how computational undecidability is exemplified in the self-referential Liar paradox that places a boundary on a logical system, and by construction, any RNA automata. We argue that an expansion of the evolutionary space for RNA-2PDA automata can be interpreted as a hierarchical resolution of computational undecidability by a meta-system (akin to Turing’s oracle), in a continual process analogous to Turing’s ordinal logics and Post’s extensible recursively generated logics. On this basis, we put forward the hypothesis that the resolution of undecidable configurations in RNA automata represent a novelty generation mechanism and propose avenues for future investigation of biological automata.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 2","pages":"261-288"},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10030350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Even when concepts similar to emergence have been used since antiquity, we lack an agreed definition. However, emergence has been identified as one of the main features of complex systems. Most would agree on the statement “life is complex.” Thus understanding emergence and complexity should benefit the study of living systems. It can be said that life emerges from the interactions of complex molecules. But how useful is this to understanding living systems? Artificial Life (ALife) has been developed in recent decades to study life using a synthetic approach: Build it to understand it. ALife systems are not so complex, be they soft (simulations), hard (robots), or wet(protocells). Thus, we can aim at first understanding emergence in ALife, to then use this knowledge in biology. I argue that to understand emergence and life, it becomes useful to use information as a framework. In a general sense, I define emergence as information that is not present at one scale but present at another. This perspective avoids problems of studying emergence from a materialist framework and can also be useful in the study of self-organization and complexity.
{"title":"Emergence in Artificial Life","authors":"Carlos Gershenson","doi":"10.1162/artl_a_00397","DOIUrl":"10.1162/artl_a_00397","url":null,"abstract":"Even when concepts similar to emergence have been used since antiquity, we lack an agreed definition. However, emergence has been identified as one of the main features of complex systems. Most would agree on the statement “life is complex.” Thus understanding emergence and complexity should benefit the study of living systems. It can be said that life emerges from the interactions of complex molecules. But how useful is this to understanding living systems? Artificial Life (ALife) has been developed in recent decades to study life using a synthetic approach: Build it to understand it. ALife systems are not so complex, be they soft (simulations), hard (robots), or wet(protocells). Thus, we can aim at first understanding emergence in ALife, to then use this knowledge in biology. I argue that to understand emergence and life, it becomes useful to use information as a framework. In a general sense, I define emergence as information that is not present at one scale but present at another. This perspective avoids problems of studying emergence from a materialist framework and can also be useful in the study of self-organization and complexity.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 2","pages":"153-167"},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9666198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This letter uses a modified form of the NK model introduced to explore aspects of distributed control. In particular, a previous result suggesting the use of dynamically formed subgroups within the overall system can be more effective than global control is further explored. The conditions under which the beneficial distributed control emerges are more clearly identified, and the reason for the benefit over traditional global control is suggested as a generally applicable dropout mechanism to improve learning in such systems.
{"title":"A Generalised Dropout Mechanism for Distributed Systems","authors":"Larry Bull;Haixia Liu","doi":"10.1162/artl_a_00393","DOIUrl":"10.1162/artl_a_00393","url":null,"abstract":"This letter uses a modified form of the NK model introduced to explore aspects of distributed control. In particular, a previous result suggesting the use of dynamically formed subgroups within the overall system can be more effective than global control is further explored. The conditions under which the beneficial distributed control emerges are more clearly identified, and the reason for the benefit over traditional global control is suggested as a generally applicable dropout mechanism to improve learning in such systems.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 2","pages":"146-152"},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9677771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cooperation among individuals has been key to sustaining societies. However, natural selection favors defection over cooperation. Cooperation can be favored when the mobility of individuals allows cooperators to form a cluster (or group). Mobility patterns of animals sometimes follow a Lévy flight. A Lévy flight is a kind of random walk but it is composed of many small movements with a few big movements. The role of Lévy flights for cooperation has been studied by Antonioni and Tomassini, who showed that Lévy flights promoted cooperation combined with conditional movements triggered by neighboring defectors. However, the optimal condition for neighboring defectors and how the condition changes with the intensity of Lévy flights are still unclear. Here, we developed an agent-based model in a square lattice where agents perform Lévy flights depending on the fraction of neighboring defectors. We systematically studied the relationships among three factors for cooperation: sensitivity to defectors, the intensity of Lévy flights, and population density. Results of evolutionary simulations showed that moderate sensitivity most promoted cooperation. Then, we found that the shortest movements were best for cooperation when the sensitivity to defectors was high. In contrast, when the sensitivity was low, longer movements were best for cooperation. Thus, Lévy flights, the balance between short and long jumps, promoted cooperation in any sensitivity, which was confirmed by evolutionary simulations. Finally, as the population density became larger, higher sensitivity was more beneficial for cooperation to evolve. Our study highlights that Lévy flights are an optimal searching strategy not only for foraging but also for constructing cooperative relationships with others.
{"title":"How Lévy Flights Triggered by the Presence of Defectors Affect Evolution of Cooperation in Spatial Games","authors":"Genki Ichinose;Daiki Miyagawa;Erika Chiba;Hiroki Sayama","doi":"10.1162/artl_a_00382","DOIUrl":"10.1162/artl_a_00382","url":null,"abstract":"Cooperation among individuals has been key to sustaining societies. However, natural selection favors defection over cooperation. Cooperation can be favored when the mobility of individuals allows cooperators to form a cluster (or group). Mobility patterns of animals sometimes follow a Lévy flight. A Lévy flight is a kind of random walk but it is composed of many small movements with a few big movements. The role of Lévy flights for cooperation has been studied by Antonioni and Tomassini, who showed that Lévy flights promoted cooperation combined with conditional movements triggered by neighboring defectors. However, the optimal condition for neighboring defectors and how the condition changes with the intensity of Lévy flights are still unclear. Here, we developed an agent-based model in a square lattice where agents perform Lévy flights depending on the fraction of neighboring defectors. We systematically studied the relationships among three factors for cooperation: sensitivity to defectors, the intensity of Lévy flights, and population density. Results of evolutionary simulations showed that moderate sensitivity most promoted cooperation. Then, we found that the shortest movements were best for cooperation when the sensitivity to defectors was high. In contrast, when the sensitivity was low, longer movements were best for cooperation. Thus, Lévy flights, the balance between short and long jumps, promoted cooperation in any sensitivity, which was confirmed by evolutionary simulations. Finally, as the population density became larger, higher sensitivity was more beneficial for cooperation to evolve. Our study highlights that Lévy flights are an optimal searching strategy not only for foraging but also for constructing cooperative relationships with others.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 2","pages":"187-197"},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10047984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ability to express diverse behaviors is a key requirement for most biological systems. Underpinning behavioral diversity in the natural world is the embodied interaction between the brain, body, and environment. Dynamical systems form the basis of embodied agents, and can express complex behavioral modalities without any conventional computation. While significant study has focused on designing dynamical systems agents with complex behaviors, for example, passive walking, there is still a limited understanding about how to drive diversity in the behavior of such systems. In this article, we present a novel hardware platform for studying the emergence of individual and collective behavioral diversity in a dynamical system. The platform is based on the so-called Bernoulli ball, an elegant fluid dynamics phenomenon in which spherical objects self-stabilize and hover in an airflow. We demonstrate how behavioral diversity can be induced in the case of a single hovering ball via modulation of the environment. We then show how more diverse behaviors are triggered by having multiple hovering balls in the same airflow. We discuss this in the context of embodied intelligence and open-ended evolution, suggesting that the system exhibits a rudimentary form of evolutionary dynamics in which balls compete for favorable regions of the environment and exhibit intrinsic “alive” and “dead” states based on their positions in or outside of the airflow.
{"title":"On the Stability and Behavioral Diversity of Single and Collective Bernoulli Balls","authors":"Toby Howison;Harriet Crisp;Simon Hauser;Fumiya Iida","doi":"10.1162/artl_a_00395","DOIUrl":"10.1162/artl_a_00395","url":null,"abstract":"The ability to express diverse behaviors is a key requirement for most biological systems. Underpinning behavioral diversity in the natural world is the embodied interaction between the brain, body, and environment. Dynamical systems form the basis of embodied agents, and can express complex behavioral modalities without any conventional computation. While significant study has focused on designing dynamical systems agents with complex behaviors, for example, passive walking, there is still a limited understanding about how to drive diversity in the behavior of such systems. In this article, we present a novel hardware platform for studying the emergence of individual and collective behavioral diversity in a dynamical system. The platform is based on the so-called Bernoulli ball, an elegant fluid dynamics phenomenon in which spherical objects self-stabilize and hover in an airflow. We demonstrate how behavioral diversity can be induced in the case of a single hovering ball via modulation of the environment. We then show how more diverse behaviors are triggered by having multiple hovering balls in the same airflow. We discuss this in the context of embodied intelligence and open-ended evolution, suggesting that the system exhibits a rudimentary form of evolutionary dynamics in which balls compete for favorable regions of the environment and exhibit intrinsic “alive” and “dead” states based on their positions in or outside of the airflow.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 2","pages":"168-186"},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9728828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
generative artificial intelligence (AI) tools like large-language models (
{"title":"Editorial: What Have Large-Language Models and Generative Al Got to Do With Artificial Life?","authors":"Alan Dorin;Susan Stepney","doi":"10.1162/artl_e_00409","DOIUrl":"10.1162/artl_e_00409","url":null,"abstract":"generative artificial intelligence (AI) tools like large-language models (","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 2","pages":"141-145"},"PeriodicalIF":2.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9674009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most models of migration simply assume that migrants somehow make their way from their point of origin to their chosen destination. We know, however, that—especially in the case of asylum migration—the migrant journey often is a hazardous, difficult process where migrants make decisions based on limited information and under severe material constraints. Here we investigate the dynamics of the migration journey itself using a spatially explicit, agent-based model. In particular we are interested in the effects of limited information and information exchange. We find that under limited information, migration routes generally become suboptimal, their stochasticity increases, and migrants arrive much less frequently at their preferred destination. Under specific circumstances, self-organised consensus routes emerge that are largely unpredictable. Limited information also strongly reduces the migrants’ ability to react to changes in circumstances. We conclude, first, that information and information exchange is likely to have considerable effects on all aspects of migration and should thus be included in future modelling efforts and, second, that there are many questions in theoretical migration research that are likely to profit from the use of agent-based modelling techniques.
{"title":"The Effects of Information on the Formation of Migration Routes and the Dynamics of Migration","authors":"Martin Hinsch;Jakub Bijak","doi":"10.1162/artl_a_00388","DOIUrl":"10.1162/artl_a_00388","url":null,"abstract":"Most models of migration simply assume that migrants somehow make their way from their point of origin to their chosen destination. We know, however, that—especially in the case of asylum migration—the migrant journey often is a hazardous, difficult process where migrants make decisions based on limited information and under severe material constraints. Here we investigate the dynamics of the migration journey itself using a spatially explicit, agent-based model. In particular we are interested in the effects of limited information and information exchange. We find that under limited information, migration routes generally become suboptimal, their stochasticity increases, and migrants arrive much less frequently at their preferred destination. Under specific circumstances, self-organised consensus routes emerge that are largely unpredictable. Limited information also strongly reduces the migrants’ ability to react to changes in circumstances. We conclude, first, that information and information exchange is likely to have considerable effects on all aspects of migration and should thus be included in future modelling efforts and, second, that there are many questions in theoretical migration research that are likely to profit from the use of agent-based modelling techniques.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 1","pages":"3-20"},"PeriodicalIF":2.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9285347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hian Lee Kwa;Victor Babineau;Julien Philippot;Roland Bouffanais
There has been growing interest in the use of multi-robot systems in various tasks and scenarios. The main attractiveness of such systems is their flexibility, robustness, and scalability. An often overlooked yet promising feature is system modularity, which offers the possibility of harnessing agent specialization, while also enabling system-level upgrades. However, altering the agents’ capacities can change the exploration–exploitation balance required to maximize the system’s performance. Here, we study the effect of a swarm’s heterogeneity on its exploration–exploitation balance while tracking multiple fast-moving evasive targets under the cooperative multi-robot observation of multiple moving targets framework. To this end, we use a decentralized search and tracking strategy with adjustable levels of exploration and exploitation. By indirectly tuning the balance, we first confirm the presence of an optimal balance between these two key competing actions. Next, by substituting slower moving agents with faster ones, we show that the system exhibits a performance improvement without any modifications to the original strategy. In addition, owing to the additional amount of exploitation carried out by the faster agents, we demonstrate that a heterogeneous system’s performance can be further improved by reducing an agent’s level of connectivity, to favor the conduct of exploratory actions. Furthermore, in studying the influence of the density of swarming agents, we show that the addition of faster agents can counterbalance a reduction in the overall number of agents while maintaining the level of tracking performance. Finally, we explore the challenges of using differentiated strategies to take advantage of the heterogeneous nature of the swarm.
{"title":"Adapting the Exploration–Exploitation Balance in Heterogeneous Swarms: Tracking Evasive Targets","authors":"Hian Lee Kwa;Victor Babineau;Julien Philippot;Roland Bouffanais","doi":"10.1162/artl_a_00390","DOIUrl":"10.1162/artl_a_00390","url":null,"abstract":"There has been growing interest in the use of multi-robot systems in various tasks and scenarios. The main attractiveness of such systems is their flexibility, robustness, and scalability. An often overlooked yet promising feature is system modularity, which offers the possibility of harnessing agent specialization, while also enabling system-level upgrades. However, altering the agents’ capacities can change the exploration–exploitation balance required to maximize the system’s performance. Here, we study the effect of a swarm’s heterogeneity on its exploration–exploitation balance while tracking multiple fast-moving evasive targets under the cooperative multi-robot observation of multiple moving targets framework. To this end, we use a decentralized search and tracking strategy with adjustable levels of exploration and exploitation. By indirectly tuning the balance, we first confirm the presence of an optimal balance between these two key competing actions. Next, by substituting slower moving agents with faster ones, we show that the system exhibits a performance improvement without any modifications to the original strategy. In addition, owing to the additional amount of exploitation carried out by the faster agents, we demonstrate that a heterogeneous system’s performance can be further improved by reducing an agent’s level of connectivity, to favor the conduct of exploratory actions. Furthermore, in studying the influence of the density of swarming agents, we show that the addition of faster agents can counterbalance a reduction in the overall number of agents while maintaining the level of tracking performance. Finally, we explore the challenges of using differentiated strategies to take advantage of the heterogeneous nature of the swarm.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 1","pages":"21-36"},"PeriodicalIF":2.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10639859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}