Nowadays, interdisciplinary fields between Artificial Life, artificial intelligence, computational biology, and synthetic biology are increasingly emerging into public view. It is necessary to reconsider the relations between the material body, identity, the natural world, and the concept of life. Art is known to pave the way to exploring and conveying new possibilities. This survey provides a literature review on recent works of Artificial Life in visual art during the past 40 years, specifically in the computational and software domain. Having proposed a set of criteria and a taxonomy, we briefly analyze representative artworks of different categories. We aim to provide a systematic overview of how artists are understanding nature and creating new life with modern technology.
{"title":"A Survey of Recent Practice of Artificial Life in Visual Art","authors":"Zi-Wei Wu;Huamin Qu;Kang Zhang","doi":"10.1162/artl_a_00433","DOIUrl":"10.1162/artl_a_00433","url":null,"abstract":"Nowadays, interdisciplinary fields between Artificial Life, artificial intelligence, computational biology, and synthetic biology are increasingly emerging into public view. It is necessary to reconsider the relations between the material body, identity, the natural world, and the concept of life. Art is known to pave the way to exploring and conveying new possibilities. This survey provides a literature review on recent works of Artificial Life in visual art during the past 40 years, specifically in the computational and software domain. Having proposed a set of criteria and a taxonomy, we briefly analyze representative artworks of different categories. We aim to provide a systematic overview of how artists are understanding nature and creating new life with modern technology.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"106-135"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541961","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139941257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of Artificial Life: The Quest for a New Creation by Steven Levy","authors":"Riversdale Waldegrave","doi":"10.1162/artl_r_00434","DOIUrl":"10.1162/artl_r_00434","url":null,"abstract":"","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"136-137"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We survey the general trajectory of artificial intelligence (AI) over the last century, in the context of influences from Artificial Life. With a broad brush, we can divide technical approaches to solving AI problems into two camps: GOFAIstic (or computationally inspired) or cybernetic (or ALife inspired). The latter approach has enabled advances in deep learning and the astonishing AI advances we see today—bringing immense benefits but also societal risks. There is a similar divide, regrettably unrecognized, over the very way that such AI problems have been framed. To date, this has been overwhelmingly GOFAIstic, meaning that tools for humans to use have been developed; they have no agency or motivations of their own. We explore the implications of this for concerns about existential risk for humans of the “robots taking over.” The risks may be blamed exclusively on human users—the robots could not care less.
{"title":"Motivations for Artificial Intelligence, for Deep Learning, for ALife: Mortality and Existential Risk","authors":"Inman Harvey","doi":"10.1162/artl_a_00427","DOIUrl":"10.1162/artl_a_00427","url":null,"abstract":"We survey the general trajectory of artificial intelligence (AI) over the last century, in the context of influences from Artificial Life. With a broad brush, we can divide technical approaches to solving AI problems into two camps: GOFAIstic (or computationally inspired) or cybernetic (or ALife inspired). The latter approach has enabled advances in deep learning and the astonishing AI advances we see today—bringing immense benefits but also societal risks. There is a similar divide, regrettably unrecognized, over the very way that such AI problems have been framed. To date, this has been overwhelmingly GOFAIstic, meaning that tools for humans to use have been developed; they have no agency or motivations of their own. We explore the implications of this for concerns about existential risk for humans of the “robots taking over.” The risks may be blamed exclusively on human users—the robots could not care less.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"48-64"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julyan H. E. Cartwright;Jitka Čejková;Elena Fimmel;Simone Giannerini;Diego Luis Gonzalez;Greta Goracci;Clara Grácio;Jeanine Houwing-Duistermaat;Dragan Matić;Nataša Mišić;Frans A. A. Mulder;Oreste Piro
In the mid-20th century, two new scientific disciplines emerged forcefully: molecular biology and information-communication theory. At the beginning, cross-fertilization was so deep that the term genetic code was universally accepted for describing the meaning of triplets of mRNA (codons) as amino acids. However, today, such synergy has not taken advantage of the vertiginous advances in the two disciplines and presents more challenges than answers. These challenges not only are of great theoretical relevance but also represent unavoidable milestones for next-generation biology: from personalized genetic therapy and diagnosis to Artificial Life to the production of biologically active proteins. Moreover, the matter is intimately connected to a paradigm shift needed in theoretical biology, pioneered a long time ago, that requires combined contributions from disciplines well beyond the biological realm. The use of information as a conceptual metaphor needs to be turned into quantitative and predictive models that can be tested empirically and integrated in a unified view. Successfully achieving these tasks requires a wide multidisciplinary approach, including Artificial Life researchers, to address such an endeavour.
{"title":"Information, Coding, and Biological Function: The Dynamics of Life","authors":"Julyan H. E. Cartwright;Jitka Čejková;Elena Fimmel;Simone Giannerini;Diego Luis Gonzalez;Greta Goracci;Clara Grácio;Jeanine Houwing-Duistermaat;Dragan Matić;Nataša Mišić;Frans A. A. Mulder;Oreste Piro","doi":"10.1162/artl_a_00432","DOIUrl":"10.1162/artl_a_00432","url":null,"abstract":"In the mid-20th century, two new scientific disciplines emerged forcefully: molecular biology and information-communication theory. At the beginning, cross-fertilization was so deep that the term genetic code was universally accepted for describing the meaning of triplets of mRNA (codons) as amino acids. However, today, such synergy has not taken advantage of the vertiginous advances in the two disciplines and presents more challenges than answers. These challenges not only are of great theoretical relevance but also represent unavoidable milestones for next-generation biology: from personalized genetic therapy and diagnosis to Artificial Life to the production of biologically active proteins. Moreover, the matter is intimately connected to a paradigm shift needed in theoretical biology, pioneered a long time ago, that requires combined contributions from disciplines well beyond the biological realm. The use of information as a conceptual metaphor needs to be turned into quantitative and predictive models that can be tested empirically and integrated in a unified view. Successfully achieving these tasks requires a wide multidisciplinary approach, including Artificial Life researchers, to address such an endeavour.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"16-27"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gene regulatory networks are networks of interactions in organisms responsible for determining the production levels of proteins and peptides. Mathematical and computational models of gene regulatory networks have been proposed, some of them rather abstract and called artificial regulatory networks. In this contribution, a spatial model for gene regulatory networks is proposed that is biologically more realistic and incorporates an artificial chemistry to realize the interaction between regulatory proteins called the transcription factors and the regulatory sites of simulated genes. The result is a system that is quite robust while able to produce complex dynamics similar to what can be observed in nature. Here an analysis of the impact of the initial states of the system on the produced dynamics is performed, showing that such models are evolvable and can be directed toward producing desired protein dynamics.
{"title":"A Spatial Artificial Chemistry Implementation of a Gene Regulatory Network Aimed at Generating Protein Concentration Dynamics","authors":"Iliya Miralavy;Wolfgang Banzhaf","doi":"10.1162/artl_a_00431","DOIUrl":"10.1162/artl_a_00431","url":null,"abstract":"Gene regulatory networks are networks of interactions in organisms responsible for determining the production levels of proteins and peptides. Mathematical and computational models of gene regulatory networks have been proposed, some of them rather abstract and called artificial regulatory networks. In this contribution, a spatial model for gene regulatory networks is proposed that is biologically more realistic and incorporates an artificial chemistry to realize the interaction between regulatory proteins called the transcription factors and the regulatory sites of simulated genes. The result is a system that is quite robust while able to produce complex dynamics similar to what can be observed in nature. Here an analysis of the impact of the initial states of the system on the produced dynamics is performed, showing that such models are evolvable and can be directed toward producing desired protein dynamics.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"65-90"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The field of metaheuristics has a long history of finding inspiration in natural systems, starting from evolution strategies, genetic algorithms, and ant colony optimization in the second half of the 20th century. In the last decades, however, the field has experienced an explosion of metaphor-centered methods claiming to be inspired by increasingly absurd natural (and even supernatural) phenomena—several different types of birds, mammals, fish and invertebrates, soccer and volleyball, reincarnation, zombies, and gods. Although metaphors can be powerful inspiration tools, the emergence of hundreds of barely discernible algorithmic variants under different labels and nomenclatures has been counterproductive to the scientific progress of the field, as it neither improves our ability to understand and simulate biological systems nor contributes generalizable knowledge or design principles for global optimization approaches. In this article we discuss some of the possible causes of this trend, its negative consequences for the field, and some efforts aimed at moving the area of metaheuristics toward a better balance between inspiration and scientific soundness.
{"title":"Lessons from the Evolutionary Computation Bestiary","authors":"Felipe Campelo;Claus Aranha","doi":"10.1162/artl_a_00402","DOIUrl":"10.1162/artl_a_00402","url":null,"abstract":"The field of metaheuristics has a long history of finding inspiration in natural systems, starting from evolution strategies, genetic algorithms, and ant colony optimization in the second half of the 20th century. In the last decades, however, the field has experienced an explosion of metaphor-centered methods claiming to be inspired by increasingly absurd natural (and even supernatural) phenomena—several different types of birds, mammals, fish and invertebrates, soccer and volleyball, reincarnation, zombies, and gods. Although metaphors can be powerful inspiration tools, the emergence of hundreds of barely discernible algorithmic variants under different labels and nomenclatures has been counterproductive to the scientific progress of the field, as it neither improves our ability to understand and simulate biological systems nor contributes generalizable knowledge or design principles for global optimization approaches. In this article we discuss some of the possible causes of this trend, its negative consequences for the field, and some efforts aimed at moving the area of metaheuristics toward a better balance between inspiration and scientific soundness.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 4","pages":"421-432"},"PeriodicalIF":2.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9823818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The prevalence of artificial intelligence (AI) tools that filter the information given to internet users, such as recommender systems and diverse personalizers, may be creating troubling long-term side effects to the obvious short-term conveniences. Many worry that these automated influencers can subtly and unwittingly nudge individuals toward conformity, thereby (somewhat paradoxically) restricting the choices of each agent and/or the population as a whole. In its various guises, this problem has labels such as filter bubble, echo chamber, and personalization polarization. One key danger of diversity reduction is that it plays into the hands of a cadre of self-interested online actors who can leverage conformity to more easily predict and then control users’ sentiments and behaviors, often in the direction of increased conformity and even greater ease of control. This emerging positive feedback loop and the compliance that fuels it are the focal points of this article, which presents several simple, abstract, agent-based models of both peer-to-peer and AI-to-user influence. One of these AI systems functions as a collaborative filter, whereas the other represents an actor the influential power of which derives directly from its ability to predict user behavior. Many versions of the model, with assorted parameter settings, display emergent polarization or universal convergence, but collaborative filtering exerts a weaker homogenizing force than expected. In addition, the combination of basic agents and a self-interested AI predictor yields an emergent positive feedback that can drive the agent population to complete conformity.
{"title":"The Evolution of Conformity, Malleability, and Influence in Simulated Online Agents","authors":"Keith L. Downing","doi":"10.1162/artl_a_00413","DOIUrl":"10.1162/artl_a_00413","url":null,"abstract":"The prevalence of artificial intelligence (AI) tools that filter the information given to internet users, such as recommender systems and diverse personalizers, may be creating troubling long-term side effects to the obvious short-term conveniences. Many worry that these automated influencers can subtly and unwittingly nudge individuals toward conformity, thereby (somewhat paradoxically) restricting the choices of each agent and/or the population as a whole. In its various guises, this problem has labels such as filter bubble, echo chamber, and personalization polarization. One key danger of diversity reduction is that it plays into the hands of a cadre of self-interested online actors who can leverage conformity to more easily predict and then control users’ sentiments and behaviors, often in the direction of increased conformity and even greater ease of control. This emerging positive feedback loop and the compliance that fuels it are the focal points of this article, which presents several simple, abstract, agent-based models of both peer-to-peer and AI-to-user influence. One of these AI systems functions as a collaborative filter, whereas the other represents an actor the influential power of which derives directly from its ability to predict user behavior. Many versions of the model, with assorted parameter settings, display emergent polarization or universal convergence, but collaborative filtering exerts a weaker homogenizing force than expected. In addition, the combination of basic agents and a self-interested AI predictor yields an emergent positive feedback that can drive the agent population to complete conformity.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 4","pages":"394-420"},"PeriodicalIF":2.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10426976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Collectiveness is an important property of many systems—both natural and artificial. By exploiting a large number of individuals, it is often possible to produce effects that go far beyond the capabilities of the smartest individuals or even to produce intelligent collective behavior out of not-so-intelligent individuals. Indeed, collective intelligence, namely, the capability of a group to act collectively in a seemingly intelligent way, is increasingly often a design goal of engineered computational systems—motivated by recent technoscientific trends like the Internet of Things, swarm robotics, and crowd computing, to name only a few. For several years, the collective intelligence observed in natural and artificial systems has served as a source of inspiration for engineering ideas, models, and mechanisms. Today, artificial and computational collective intelligence are recognized research topics, spanning various techniques, kinds of target systems, and application domains. However, there is still a lot of fragmentation in the research panorama of the topic within computer science, and the verticality of most communities and contributions makes it difficult to extract the core underlying ideas and frames of reference. The challenge is to identify, place in a common structure, and ultimately connect the different areas and methods addressing intelligent collectives. To address this gap, this article considers a set of broad scoping questions providing a map of collective intelligence research, mostly by the point of view of computer scientists and engineers. Accordingly, it covers preliminary notions, fundamental concepts, and the main research perspectives, identifying opportunities and challenges for researchers on artificial and computational collective intelligence engineering.
{"title":"Artificial Collective Intelligence Engineering: A Survey of Concepts and Perspectives","authors":"Roberto Casadei","doi":"10.1162/artl_a_00408","DOIUrl":"10.1162/artl_a_00408","url":null,"abstract":"Collectiveness is an important property of many systems—both natural and artificial. By exploiting a large number of individuals, it is often possible to produce effects that go far beyond the capabilities of the smartest individuals or even to produce intelligent collective behavior out of not-so-intelligent individuals. Indeed, collective intelligence, namely, the capability of a group to act collectively in a seemingly intelligent way, is increasingly often a design goal of engineered computational systems—motivated by recent technoscientific trends like the Internet of Things, swarm robotics, and crowd computing, to name only a few. For several years, the collective intelligence observed in natural and artificial systems has served as a source of inspiration for engineering ideas, models, and mechanisms. Today, artificial and computational collective intelligence are recognized research topics, spanning various techniques, kinds of target systems, and application domains. However, there is still a lot of fragmentation in the research panorama of the topic within computer science, and the verticality of most communities and contributions makes it difficult to extract the core underlying ideas and frames of reference. The challenge is to identify, place in a common structure, and ultimately connect the different areas and methods addressing intelligent collectives. To address this gap, this article considers a set of broad scoping questions providing a map of collective intelligence research, mostly by the point of view of computer scientists and engineers. Accordingly, it covers preliminary notions, fundamental concepts, and the main research perspectives, identifying opportunities and challenges for researchers on artificial and computational collective intelligence engineering.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 4","pages":"433-467"},"PeriodicalIF":2.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9823817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}