{"title":"Editorial: A Word from the Editors","authors":"Alan Dorin;Susan Stepney","doi":"10.1162/artl_e_00422","DOIUrl":"10.1162/artl_e_00422","url":null,"abstract":"","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 4","pages":"389-389"},"PeriodicalIF":2.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138447204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The main idea behind artificial intelligence was simple: what if we study living systems to develop new, practical computing systems that possess “lifelike” properties? And that’s exactly how evolutionary computing emerged. Researchers came up with ideas inspired by the principles of evolution to develop intelligent methods to tackle hard problems. The efficacy of these methods made researchers seek inspiration in living organisms and systems and extend the evolutionary concept to other nature-inspired ideas. In recent years, nature-inspired computing has exhibited an exponential increase in the number of algorithms that are presented each year. Authors claim that they are inspired by a behavior found in nature to come up with a lifelike algorithm. However, the mathematical background does not match the behavior in the majority of these cases. Thus the question is, do all nature-inspired algorithms remain lifelike? Also, are there any ideas included that contribute to computing? This study aims to (a) present some nature-inspired methods that contribute to achieving lifelike features of computing systems and (b) discuss if there is any need for new lifelike features.
{"title":"Does the Field of Nature-Inspired Computing Contribute to Achieving Lifelike Features?","authors":"Alexandros Tzanetos","doi":"10.1162/artl_a_00407","DOIUrl":"10.1162/artl_a_00407","url":null,"abstract":"The main idea behind artificial intelligence was simple: what if we study living systems to develop new, practical computing systems that possess “lifelike” properties? And that’s exactly how evolutionary computing emerged. Researchers came up with ideas inspired by the principles of evolution to develop intelligent methods to tackle hard problems. The efficacy of these methods made researchers seek inspiration in living organisms and systems and extend the evolutionary concept to other nature-inspired ideas. In recent years, nature-inspired computing has exhibited an exponential increase in the number of algorithms that are presented each year. Authors claim that they are inspired by a behavior found in nature to come up with a lifelike algorithm. However, the mathematical background does not match the behavior in the majority of these cases. Thus the question is, do all nature-inspired algorithms remain lifelike? Also, are there any ideas included that contribute to computing? This study aims to (a) present some nature-inspired methods that contribute to achieving lifelike features of computing systems and (b) discuss if there is any need for new lifelike features.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 4","pages":"487-511"},"PeriodicalIF":2.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9834236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Heider;Helena Stegherr;Richard Nordsieck;Jörg Hähner
In sociotechnical settings, human operators are increasingly assisted by decision support systems. By employing such systems, important properties of sociotechnical systems, such as self-adaptation and self-optimization, are expected to improve further. To be accepted by and engage efficiently with operators, decision support systems need to be able to provide explanations regarding the reasoning behind specific decisions. In this article, we propose the use of learning classifier systems (LCSs), a family of rule-based machine learning methods, to facilitate and highlight techniques to improve transparent decision-making. Furthermore, we present a novel approach to assessing application-specific explainability needs for the design of LCS models. For this, we propose an application-independent template of seven questions. We demonstrate the approach’s use in an interview-based case study for a manufacturing scenario. We find that the answers received do yield useful insights for a well-designed LCS model and requirements for stakeholders to engage actively with an intelligent agent.
{"title":"Assessing Model Requirements for Explainable AI: A Template and Exemplary Case Study","authors":"Michael Heider;Helena Stegherr;Richard Nordsieck;Jörg Hähner","doi":"10.1162/artl_a_00414","DOIUrl":"10.1162/artl_a_00414","url":null,"abstract":"In sociotechnical settings, human operators are increasingly assisted by decision support systems. By employing such systems, important properties of sociotechnical systems, such as self-adaptation and self-optimization, are expected to improve further. To be accepted by and engage efficiently with operators, decision support systems need to be able to provide explanations regarding the reasoning behind specific decisions. In this article, we propose the use of learning classifier systems (LCSs), a family of rule-based machine learning methods, to facilitate and highlight techniques to improve transparent decision-making. Furthermore, we present a novel approach to assessing application-specific explainability needs for the design of LCS models. For this, we propose an application-independent template of seven questions. We demonstrate the approach’s use in an interview-based case study for a manufacturing scenario. We find that the answers received do yield useful insights for a well-designed LCS model and requirements for stakeholders to engage actively with an intelligent agent.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 4","pages":"468-486"},"PeriodicalIF":2.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508338","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10408327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article tackles the topic of the special issue “Biology in AI: New Frontiers in Hardware, Software and Wetware Modeling of Cognition” in two ways. It addresses the problem of the relevance of hardware, software, and wetware models for the scientific understanding of biological cognition, and it clarifies the contributions that synthetic biology, construed as the synthetic exploration of cognition, can offer to artificial intelligence (AI). The research work proposed in this article is based on the idea that the relevance of hardware, software, and wetware models of biological and cognitive processes—that is, the concrete contribution that these models can make to the scientific understanding of life and cognition—is still unclear, mainly because of the lack of explicit criteria to assess in what ways synthetic models can support the experimental exploration of biological and cognitive phenomena. Our article draws on elements from cybernetic and autopoietic epistemology to define a framework of reference, for the synthetic study of life and cognition, capable of generating a set of assessment criteria and a classification of forms of relevance, for synthetic models, able to overcome the sterile, traditional polarization of their evaluation between mere imitation and full reproduction of the target processes. On the basis of these tools, we tentatively map the forms of relevance characterizing wetware models of living and cognitive processes that synthetic biology can produce and outline a programmatic direction for the development of “organizationally relevant approaches” applying synthetic biology techniques to the investigative field of (embodied) AI.
{"title":"Explorative Synthetic Biology in AI: Criteria of Relevance and a Taxonomy for Synthetic Models of Living and Cognitive Processes","authors":"Luisa Damiano;Pasquale Stano","doi":"10.1162/artl_a_00411","DOIUrl":"10.1162/artl_a_00411","url":null,"abstract":"This article tackles the topic of the special issue “Biology in AI: New Frontiers in Hardware, Software and Wetware Modeling of Cognition” in two ways. It addresses the problem of the relevance of hardware, software, and wetware models for the scientific understanding of biological cognition, and it clarifies the contributions that synthetic biology, construed as the synthetic exploration of cognition, can offer to artificial intelligence (AI). The research work proposed in this article is based on the idea that the relevance of hardware, software, and wetware models of biological and cognitive processes—that is, the concrete contribution that these models can make to the scientific understanding of life and cognition—is still unclear, mainly because of the lack of explicit criteria to assess in what ways synthetic models can support the experimental exploration of biological and cognitive phenomena. Our article draws on elements from cybernetic and autopoietic epistemology to define a framework of reference, for the synthetic study of life and cognition, capable of generating a set of assessment criteria and a classification of forms of relevance, for synthetic models, able to overcome the sterile, traditional polarization of their evaluation between mere imitation and full reproduction of the target processes. On the basis of these tools, we tentatively map the forms of relevance characterizing wetware models of living and cognitive processes that synthetic biology can produce and outline a programmatic direction for the development of “organizationally relevant approaches” applying synthetic biology techniques to the investigative field of (embodied) AI.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 3","pages":"367-387"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10172559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Can machines ever be sentient? Could they perceive and feel things, be conscious of their surroundings? What are the prospects of achieving sentience in a machine? What are the dangers associated with such an endeavor, and is it even ethical to embark on such a path to begin with? In the series of articles of this column, I discuss one possible path toward “general intelligence” in machines: to use the process of Darwinian evolution to produce artificial brains that can be grafted onto mobile robotic platforms, with the goal of achieving fully embodied sentient machines
{"title":"The Elements of Intelligence","authors":"Christoph Adami","doi":"10.1162/artl_a_00410","DOIUrl":"10.1162/artl_a_00410","url":null,"abstract":"Can machines ever be sentient? Could they perceive and feel things, be conscious of their surroundings? What are the prospects of achieving sentience in a machine? What are the dangers associated with such an endeavor, and is it even ethical to embark on such a path to begin with? In the series of articles of this column, I discuss one possible path toward “general intelligence” in machines: to use the process of Darwinian evolution to produce artificial brains that can be grafted onto mobile robotic platforms, with the goal of achieving fully embodied sentient machines","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 3","pages":"293-307"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10472828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plants thrive in virtually all natural and human-adapted environments and are becoming popular models for developing robotics systems because of their strategies of morphological and behavioral adaptation. Such adaptation and high plasticity offer new approaches for designing, modeling, and controlling artificial systems acting in unstructured scenarios. At the same time, the development of artifacts based on their working principles reveals how plants promote innovative approaches for preservation and management plans and opens new applications for engineering-driven plant science. Environmentally mediated growth patterns (e.g., tropisms) are clear examples of adaptive behaviors displayed through morphological phenotyping. Plants also create networks with other plants through subterranean roots–fungi symbiosis and use these networks to exchange resources or warning signals. This article discusses the functional behaviors of plants and shows the close similarities with a perceptron-like model that could act as a behavior-based control model in plants. We begin by analyzing communication rules and growth behaviors of plants; we then show how we translated plant behaviors into algorithmic solutions for bioinspired robot controllers; and finally, we discuss how those solutions can be extended to embrace original approaches to networking and robotics control architectures.
{"title":"Perspectives on Computation in Plants","authors":"Emanuela Del Dottore;Barbara Mazzolai","doi":"10.1162/artl_a_00396","DOIUrl":"10.1162/artl_a_00396","url":null,"abstract":"Plants thrive in virtually all natural and human-adapted environments and are becoming popular models for developing robotics systems because of their strategies of morphological and behavioral adaptation. Such adaptation and high plasticity offer new approaches for designing, modeling, and controlling artificial systems acting in unstructured scenarios. At the same time, the development of artifacts based on their working principles reveals how plants promote innovative approaches for preservation and management plans and opens new applications for engineering-driven plant science. Environmentally mediated growth patterns (e.g., tropisms) are clear examples of adaptive behaviors displayed through morphological phenotyping. Plants also create networks with other plants through subterranean roots–fungi symbiosis and use these networks to exchange resources or warning signals. This article discusses the functional behaviors of plants and shows the close similarities with a perceptron-like model that could act as a behavior-based control model in plants. We begin by analyzing communication rules and growth behaviors of plants; we then show how we translated plant behaviors into algorithmic solutions for bioinspired robot controllers; and finally, we discuss how those solutions can be extended to embrace original approaches to networking and robotics control architectures.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 3","pages":"336-350"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10170779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The design and implementation of adaptive chemical reaction networks, capable of adjusting their behavior over time in response to experience, is a key goal for the fields of molecular computing and DNA nanotechnology. Mainstream machine learning research offers powerful tools for implementing learning behavior that could one day be realized in a wet chemistry system. Here we develop an abstract chemical reaction network model that implements the backpropagation learning algorithm for a feedforward neural network whose nodes employ the nonlinear “leaky rectified linear unit” transfer function. Our network directly implements the mathematics behind this well-studied learning algorithm, and we demonstrate its capabilities by training the system to learn a linearly inseparable decision surface, specifically, the XOR logic function. We show that this simulation quantitatively follows the definition of the underlying algorithm. To implement this system, we also report ProBioSim, a simulator that enables arbitrary training protocols for simulated chemical reaction networks to be straightforwardly defined using constructs from the host programming language. This work thus provides new insight into the capabilities of learning chemical reaction networks and also develops new computational tools to simulate their behavior, which could be applied in the design and implementations of adaptive artificial life.
{"title":"Design and Simulation of a Multilayer Chemical Neural Network That Learns via Backpropagation","authors":"Matthew R. Lakin","doi":"10.1162/artl_a_00405","DOIUrl":"10.1162/artl_a_00405","url":null,"abstract":"The design and implementation of adaptive chemical reaction networks, capable of adjusting their behavior over time in response to experience, is a key goal for the fields of molecular computing and DNA nanotechnology. Mainstream machine learning research offers powerful tools for implementing learning behavior that could one day be realized in a wet chemistry system. Here we develop an abstract chemical reaction network model that implements the backpropagation learning algorithm for a feedforward neural network whose nodes employ the nonlinear “leaky rectified linear unit” transfer function. Our network directly implements the mathematics behind this well-studied learning algorithm, and we demonstrate its capabilities by training the system to learn a linearly inseparable decision surface, specifically, the XOR logic function. We show that this simulation quantitatively follows the definition of the underlying algorithm. To implement this system, we also report ProBioSim, a simulator that enables arbitrary training protocols for simulated chemical reaction networks to be straightforwardly defined using constructs from the host programming language. This work thus provides new insight into the capabilities of learning chemical reaction networks and also develops new computational tools to simulate their behavior, which could be applied in the design and implementations of adaptive artificial life.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 3","pages":"308-335"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10107301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Much research in robotic artificial intelligence (AI) and Artificial Life has focused on autonomous agents as an embodied and situated approach to AI. Such systems are commonly viewed as overcoming many of the philosophical problems associated with traditional computationalist AI and cognitive science, such as the grounding problem (Harnad) or the lack of intentionality (Searle), because they have the physical and sensorimotor grounding that traditional AI was argued to lack. Robot lawn mowers and self-driving cars, for example, more or less reliably avoid obstacles, approach charging stations, and so on—and therefore might be considered to have some form of artificial intentionality or intentional directedness. It should be noted, though, that the fact that robots share physical environments with people does not necessarily mean that they are situated in the same perceptual and social world as humans. For people encountering socially interactive systems, such as social robots or automated vehicles, this poses the nontrivial challenge to interpret them as intentional agents to understand and anticipate their behavior but also to keep in mind that the intentionality of artificial bodies is fundamentally different from their natural counterparts. This requires, on one hand, a “suspension of disbelief ” but, on the other hand, also a capacity for the “suspension of belief.” This dual nature of (attributed) artificial intentionality has been addressed only rather superficially in embodied AI and social robotics research. It is therefore argued that Bourgine and Varela’s notion of Artificial Life as the practice of autonomous systems needs to be complemented with a practice of socially interactive autonomous systems, guided by a better understanding of the differences between artificial and biological bodies and their implications in the context of social interactions between people and technology.
{"title":"Understanding Social Robots: Attribution of Intentional Agency to Artificial and Biological Bodies","authors":"Tom Ziemke","doi":"10.1162/artl_a_00404","DOIUrl":"10.1162/artl_a_00404","url":null,"abstract":"Much research in robotic artificial intelligence (AI) and Artificial Life has focused on autonomous agents as an embodied and situated approach to AI. Such systems are commonly viewed as overcoming many of the philosophical problems associated with traditional computationalist AI and cognitive science, such as the grounding problem (Harnad) or the lack of intentionality (Searle), because they have the physical and sensorimotor grounding that traditional AI was argued to lack. Robot lawn mowers and self-driving cars, for example, more or less reliably avoid obstacles, approach charging stations, and so on—and therefore might be considered to have some form of artificial intentionality or intentional directedness. It should be noted, though, that the fact that robots share physical environments with people does not necessarily mean that they are situated in the same perceptual and social world as humans. For people encountering socially interactive systems, such as social robots or automated vehicles, this poses the nontrivial challenge to interpret them as intentional agents to understand and anticipate their behavior but also to keep in mind that the intentionality of artificial bodies is fundamentally different from their natural counterparts. This requires, on one hand, a “suspension of disbelief ” but, on the other hand, also a capacity for the “suspension of belief.” This dual nature of (attributed) artificial intentionality has been addressed only rather superficially in embodied AI and social robotics research. It is therefore argued that Bourgine and Varela’s notion of Artificial Life as the practice of autonomous systems needs to be complemented with a practice of socially interactive autonomous systems, guided by a better understanding of the differences between artificial and biological bodies and their implications in the context of social interactions between people and technology.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 3","pages":"351-366"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10116347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The proposal for this special issue was inspired by the main themes around which we organize a series of satellite workshops at Artificial Life conferences (including some of the latest European Conferences on Artificial Life), the title of which is “SB-AI: What can Synthetic Biology (SB) offer to Artificial Intelligence (AI)?” The workshop themes are part of a larger scenario in which we are interested and which we intend to develop. This scenario includes the entire taxonomy of new research frontiers generated within AI, based on the construction and experimental exploration of software, hardware, wetware
{"title":"Biology in AI: New Frontiers in Hardware, Software, and Wetware Modeling of Cognition","authors":"Luisa Damiano;Pasquale Stano","doi":"10.1162/artl_e_00412","DOIUrl":"10.1162/artl_e_00412","url":null,"abstract":"The proposal for this special issue was inspired by the main themes around which we organize a series of satellite workshops at Artificial Life conferences (including some of the latest European Conferences on Artificial Life), the title of which is “SB-AI: What can Synthetic Biology (SB) offer to Artificial Intelligence (AI)?” The workshop themes are part of a larger scenario in which we are interested and which we intend to develop. This scenario includes the entire taxonomy of new research frontiers generated within AI, based on the construction and experimental exploration of software, hardware, wetware","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 3","pages":"289-292"},"PeriodicalIF":2.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10472826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-11DOI: 10.48550/arXiv.2304.05147
Roberto Casadei
Collectiveness is an important property of many systems-both natural and artificial. By exploiting a large number of individuals, it is often possible to produce effects that go far beyond the capabilities of the smartest individuals or even to produce intelligent collective behavior out of not-so-intelligent individuals. Indeed, collective intelligence, namely, the capability of a group to act collectively in a seemingly intelligent way, is increasingly often a design goal of engineered computational systems-motivated by recent technoscientific trends like the Internet of Things, swarm robotics, and crowd computing, to name only a few. For several years, the collective intelligence observed in natural and artificial systems has served as a source of inspiration for engineering ideas, models, and mechanisms. Today, artificial and computational collective intelligence are recognized research topics, spanning various techniques, kinds of target systems, and application domains. However, there is still a lot of fragmentation in the research panorama of the topic within computer science, and the verticality of most communities and contributions makes it difficult to extract the core underlying ideas and frames of reference. The challenge is to identify, place in a common structure, and ultimately connect the different areas and methods addressing intelligent collectives. To address this gap, this article considers a set of broad scoping questions providing a map of collective intelligence research, mostly by the point of view of computer scientists and engineers. Accordingly, it covers preliminary notions, fundamental concepts, and the main research perspectives, identifying opportunities and challenges for researchers on artificial and computational collective intelligence engineering.
{"title":"Artificial Collective Intelligence Engineering: a Survey of Concepts and Perspectives","authors":"Roberto Casadei","doi":"10.48550/arXiv.2304.05147","DOIUrl":"https://doi.org/10.48550/arXiv.2304.05147","url":null,"abstract":"Collectiveness is an important property of many systems-both natural and artificial. By exploiting a large number of individuals, it is often possible to produce effects that go far beyond the capabilities of the smartest individuals or even to produce intelligent collective behavior out of not-so-intelligent individuals. Indeed, collective intelligence, namely, the capability of a group to act collectively in a seemingly intelligent way, is increasingly often a design goal of engineered computational systems-motivated by recent technoscientific trends like the Internet of Things, swarm robotics, and crowd computing, to name only a few. For several years, the collective intelligence observed in natural and artificial systems has served as a source of inspiration for engineering ideas, models, and mechanisms. Today, artificial and computational collective intelligence are recognized research topics, spanning various techniques, kinds of target systems, and application domains. However, there is still a lot of fragmentation in the research panorama of the topic within computer science, and the verticality of most communities and contributions makes it difficult to extract the core underlying ideas and frames of reference. The challenge is to identify, place in a common structure, and ultimately connect the different areas and methods addressing intelligent collectives. To address this gap, this article considers a set of broad scoping questions providing a map of collective intelligence research, mostly by the point of view of computer scientists and engineers. Accordingly, it covers preliminary notions, fundamental concepts, and the main research perspectives, identifying opportunities and challenges for researchers on artificial and computational collective intelligence engineering.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"1 1","pages":"1-35"},"PeriodicalIF":2.6,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48045699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}