首页 > 最新文献

CIRP Journal of Manufacturing Science and Technology最新文献

英文 中文
Experimental study on morphology, microstructure and mechanical properties of adjustable-ring-mode (ARM) laser welded Al-Mg alloy 可调环模 (ARM) 激光焊接铝镁合金的形态、微观结构和力学性能的实验研究
IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-19 DOI: 10.1016/j.cirpj.2024.07.004
Kai Guo , Hongxi Jin , Yanhong Wei , Qingguo Wang , Jicheng Chen

Adjustable-ring-mode (ARM) laser welding displays great potential for improving the stability of the molten pool and the weld quality of aluminum alloys through the coaxial attachment of a large-sized ring-beam spot. In this paper, the author embarked on a systematic study on the impact of varied core powers, ring powers, and core/ring power ratios on the weld morphology, microstructure, and mechanical properties of Al-Mg alloy during the laser welding process with ARM. The results showed that the core power led to higher depth of penetration, and the superheating of the molten pool it created caused grain coarsening and reduced properties. The ring beam effectively decreased weld spatter and enhanced the surface roughness of the weld. Furthermore, the ring beam was more likely to obtain a wider columnar crystal zone and a more homogeneous grain size distribution. The welded joints possessed higher tensile strength values when ring beam power was increased from 1.5 to 2 kW due to the improvement of surface flatness and porosity defects by the ring beam.

可调环模(ARM)激光焊接通过大尺寸环形光斑的同轴附着,在提高熔池稳定性和铝合金焊接质量方面显示出巨大潜力。在本文中,作者着手系统研究了 ARM 激光焊接过程中不同的核心功率、环形功率和核心/环形功率比对铝镁合金焊缝形貌、微观结构和机械性能的影响。结果表明,核心功率会导致更高的熔透深度,其产生的熔池过热会导致晶粒粗化和性能降低。环形光束能有效减少焊接飞溅并提高焊缝表面粗糙度。此外,环形梁更容易获得更宽的柱状晶区和更均匀的晶粒尺寸分布。当环形束功率从 1.5 kW 提高到 2 kW 时,由于环形束改善了表面平整度和气孔缺陷,焊接接头具有更高的抗拉强度值。
{"title":"Experimental study on morphology, microstructure and mechanical properties of adjustable-ring-mode (ARM) laser welded Al-Mg alloy","authors":"Kai Guo ,&nbsp;Hongxi Jin ,&nbsp;Yanhong Wei ,&nbsp;Qingguo Wang ,&nbsp;Jicheng Chen","doi":"10.1016/j.cirpj.2024.07.004","DOIUrl":"10.1016/j.cirpj.2024.07.004","url":null,"abstract":"<div><p>Adjustable-ring-mode (ARM) laser welding displays great potential for improving the stability of the molten pool and the weld quality of aluminum alloys through the coaxial attachment of a large-sized ring-beam spot. In this paper, the author embarked on a systematic study on the impact of varied core powers, ring powers, and core/ring power ratios on the weld morphology, microstructure, and mechanical properties of Al-Mg alloy during the laser welding process with ARM. The results showed that the core power led to higher depth of penetration, and the superheating of the molten pool it created caused grain coarsening and reduced properties. The ring beam effectively decreased weld spatter and enhanced the surface roughness of the weld. Furthermore, the ring beam was more likely to obtain a wider columnar crystal zone and a more homogeneous grain size distribution. The welded joints possessed higher tensile strength values when ring beam power was increased from 1.5 to 2 kW due to the improvement of surface flatness and porosity defects by the ring beam.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 81-94"},"PeriodicalIF":4.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and mechanical properties of additively manufactured Ti6Al4VxCryNi alloy 快速成型 Ti6Al4VxCryNi 合金的微观结构和机械性能
IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-17 DOI: 10.1016/j.cirpj.2024.07.001
Pradyumn Kumar Arya, Neelesh Kumar Jain, Dan Sathiaraj

This paper describes development of multi-layer deposition of Ti6Al4V added with 5 at% of Cr, 5 at% of Ni, and 2.5 at% of each Cr and Ni by μ-plasma powder arc additive manufacturing process. It presents findings on their microstructure, porosity, evolution of phases, microhardness, tensile strength, ductility, fracture morphology, fracture toughness, and abrasion resistance. Phase evolution found that α/α’-Ti and β-Ti phases are formed in all the alloys, intermetallic phase Cr2Ti evolved in Ti6Al4V5Cr and Ti6Al4V2.5Cr2.5Ni alloys whereas intermetallic phase Ti2Ni is formed in Ti6Al4V5Ni alloy. Their microstructure revealed that addition of chromium and nickel refined grains of their α-Ti and β-Ti phases. Elemental composition of the evolved phases found that at% of chromium, nickel, and vanadium in β-Ti phase is more than the α-Ti phase of the developed alloys. It enhanced their ultimate tensile and yield strength, and microhardness but reduced ductility. It changed the fracture mode from ductile to a combination of ductile and brittle mode possessing large size dimples, micropores, and cleavage facets. It is due to solid solution strengthening, evolution of intermetallic phases Cr2Ti and Ti2Ni, and grain refinement of β-Ti and α-Ti phases. Enhanced microhardness and presence of intermetallic phases improved fracture toughness and abrasion resistance of the developed alloys thus imparting them higher resistance to propagation of cracks and abrasive wear.

本文介绍了通过μ-等离子体粉末电弧增材制造工艺,在Ti6Al4V中添加5%的Cr、5%的Ni以及Cr和Ni各2.5%的多层沉积的发展情况。报告介绍了它们的微观结构、孔隙率、相演化、显微硬度、抗拉强度、延展性、断口形貌、断裂韧性和耐磨性。相演变发现,在所有合金中都形成了 α/α'-Ti 和 β-Ti 相,在 Ti6Al4V5Cr 和 Ti6Al4V2.5Cr2.5Ni 合金中形成了金属间相 Cr2Ti,而在 Ti6Al4V5Ni 合金中形成了金属间相 Ti2Ni。它们的微观结构显示,铬和镍的加入细化了它们的 α-Ti 和 β-Ti 相的晶粒。元素组成发现,β-Ti 相中铬、镍和钒的含量高于所开发合金中的α-Ti 相。它提高了合金的极限拉伸强度、屈服强度和显微硬度,但降低了延展性。它使断裂模式从韧性模式转变为韧性和脆性模式的结合,并具有大尺寸凹坑、微孔和劈裂面。这是由于固溶强化、金属间相 Cr2Ti 和 Ti2Ni 的演变以及 β-Ti 和 α-Ti 相的晶粒细化。微硬度的增强和金属间相的存在提高了所开发合金的断裂韧性和耐磨性,从而使其具有更强的抗裂纹扩展和抗磨料磨损能力。
{"title":"Microstructure and mechanical properties of additively manufactured Ti6Al4VxCryNi alloy","authors":"Pradyumn Kumar Arya,&nbsp;Neelesh Kumar Jain,&nbsp;Dan Sathiaraj","doi":"10.1016/j.cirpj.2024.07.001","DOIUrl":"10.1016/j.cirpj.2024.07.001","url":null,"abstract":"<div><p>This paper describes development of multi-layer deposition of Ti6Al4V added with 5 at% of Cr, 5 at% of Ni, and 2.5 at% of each Cr and Ni by μ-plasma powder arc additive manufacturing process. It presents findings on their microstructure, porosity, evolution of phases, microhardness, tensile strength, ductility, fracture morphology, fracture toughness, and abrasion resistance. Phase evolution found that α/α’-Ti and β-Ti phases are formed in all the alloys, intermetallic phase Cr<sub>2</sub>Ti evolved in Ti6Al4V5Cr and Ti6Al4V2.5Cr2.5Ni alloys whereas intermetallic phase Ti<sub>2</sub>Ni is formed in Ti6Al4V5Ni alloy. Their microstructure revealed that addition of chromium and nickel refined grains of their α-Ti and β-Ti phases. Elemental composition of the evolved phases found that at% of chromium, nickel, and vanadium in β-Ti phase is more than the α-Ti phase of the developed alloys. It enhanced their ultimate tensile and yield strength, and microhardness but reduced ductility. It changed the fracture mode from ductile to a combination of ductile and brittle mode possessing large size dimples, micropores, and cleavage facets. It is due to solid solution strengthening, evolution of intermetallic phases Cr<sub>2</sub>Ti and Ti<sub>2</sub>Ni, and grain refinement of β-Ti and α-Ti phases. Enhanced microhardness and presence of intermetallic phases improved fracture toughness and abrasion resistance of the developed alloys thus imparting them higher resistance to propagation of cracks and abrasive wear.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 67-80"},"PeriodicalIF":4.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141638710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled optimization of task sequence and hoist scheduling for electroplating production lines based on an improved salp swarm algorithm 基于改进的萨尔普群算法的电镀生产线任务序列和提升机调度耦合优化
IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-13 DOI: 10.1016/j.cirpj.2024.07.002
Xiaoxue Chen , Bo Yang , Zhi Pang , Peng Zhou , Guang Fu

Automatic electroplating production lines have been widely used in electronics industries to reduce the labour intensity and improve the production efficiency. In the multi-variety and low-volume electroplating production, it is known that the task loading sequence and hoist scheduling are coupled with each other, and they codetermine the production efficiency, while all the existing scheduling methods consider them separately, and thus the optimal production schemes become unavailable. Therefore, this paper develops a Task sequence-Hoist scheduling Coupled Optimization (THCO) model which simultaneously considers the requirements and practical constrains of task sequence and hoist scheduling, having an optimization objective of minimizing the maximum completion time. For this model, a double-layer code is developed and an Improved Salp Swarm Algorithm (ISSA) is developed by introducing three improvement strategies: the random spare strategy which is used to increase the population diversity, the nonlinear adaptive weight strategy which is used to balance the exploration and exploitation capacities, and a golden sine algorithm which is used to improve the convergence rate. Experiments based on 23 benchmark functions are then conducted. The obtained results show that ISSA has better convergence and solving quality than existing algorithms. Furthermore, several production cases prove that THCO can generate production schemes that better meet the requirements of production lines.

自动电镀生产线已广泛应用于电子行业,以降低劳动强度,提高生产效率。众所周知,在多品种、小批量的电镀生产中,任务装载顺序和提升机调度是相互耦合的,它们共同决定着生产效率,而现有的所有调度方法都是将它们分开考虑的,因此无法获得最优的生产方案。因此,本文建立了一个任务序列-提升机调度耦合优化(THCO)模型,该模型同时考虑了任务序列和提升机调度的要求和实际约束,其优化目标是最大完成时间最小化。针对该模型,我们开发了双层代码,并通过引入三种改进策略开发了改进 Salp 蜂群算法(ISSA):用于增加种群多样性的随机备用策略、用于平衡探索和开发能力的非线性自适应权重策略,以及用于提高收敛速度的黄金正弦算法。然后进行了基于 23 个基准函数的实验。实验结果表明,与现有算法相比,ISSA 具有更好的收敛性和求解质量。此外,几个生产案例证明,THCO 可以生成更符合生产线要求的生产方案。
{"title":"Coupled optimization of task sequence and hoist scheduling for electroplating production lines based on an improved salp swarm algorithm","authors":"Xiaoxue Chen ,&nbsp;Bo Yang ,&nbsp;Zhi Pang ,&nbsp;Peng Zhou ,&nbsp;Guang Fu","doi":"10.1016/j.cirpj.2024.07.002","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.07.002","url":null,"abstract":"<div><p>Automatic electroplating production lines have been widely used in electronics industries to reduce the labour intensity and improve the production efficiency. In the multi-variety and low-volume electroplating production, it is known that the task loading sequence and hoist scheduling are coupled with each other, and they codetermine the production efficiency, while all the existing scheduling methods consider them separately, and thus the optimal production schemes become unavailable. Therefore, this paper develops a Task sequence-Hoist scheduling Coupled Optimization (THCO) model which simultaneously considers the requirements and practical constrains of task sequence and hoist scheduling, having an optimization objective of minimizing the maximum completion time. For this model, a double-layer code is developed and an Improved Salp Swarm Algorithm (ISSA) is developed by introducing three improvement strategies: the random spare strategy which is used to increase the population diversity, the nonlinear adaptive weight strategy which is used to balance the exploration and exploitation capacities, and a golden sine algorithm which is used to improve the convergence rate. Experiments based on 23 benchmark functions are then conducted. The obtained results show that ISSA has better convergence and solving quality than existing algorithms. Furthermore, several production cases prove that THCO can generate production schemes that better meet the requirements of production lines.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 34-47"},"PeriodicalIF":4.6,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Output-only complete mode shape identification of milling robot body structures using a limited number of current sensors 使用数量有限的电流传感器,对铣削机器人主体结构进行仅输出的完整模式形状识别
IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-13 DOI: 10.1016/j.cirpj.2024.06.014
Xinyong Mao , Yi Chen , Tao Ma , Juntong Guo , Xing Yuan , Nan Jiang , Yanyan Xu , Lei Zhang , Xiaowei Tang , Yili Peng

Milling robots have the advantage of large workspace and high flexibility compared to machine tools, and are more suitable for machining large and complex surfaces. However, the stiffness of robots is significantly lower than that of machine tools, and they are more prone to chattering. Compared to machine tools, robots mainly occur mode coupling chatter. Analyzing chatter in robots is a great challenge due to the highly flexible and pose-dependent position of the robotic arm. Mode coupling chatter is caused by the most flexible and dominant structural modes of the robot milling system. Available methods are unable to identify the structural modal parameters of a milling robot at all poses in the actual working state. This paper proposes a modal analysis method for robots, which can realize the automatic traversal of the pose of the milling robot and the automatic identification of modal parameters. This paper analyzes the robot multi-joint flexibility characteristics, spatial structure characteristics, and machining vibration characteristics, correlates the joint motor control system and current power characteristics, finds the correlation between the current information and the vibration information, and identifies the modal frequency through the current signals, and realizes the modal frequency identification in the entire workspace. This method is capable of output-only complete mode shape identification, can quickly analyze the main vibration modes, and is of great significance for the study of robot milling chattering.

与机床相比,铣削机器人具有工作空间大、灵活性高的优势,更适合加工大型复杂表面。但是,机器人的刚度明显低于机床,更容易产生颤振。与机床相比,机器人主要发生模式耦合颤振。由于机器人手臂高度灵活,其位置取决于姿势,因此分析机器人的颤振是一项巨大的挑战。模式耦合颤振是由机器人铣削系统中最灵活、最主要的结构模式引起的。现有的方法无法确定铣削机器人在实际工作状态下所有姿势的结构模态参数。本文提出了一种机器人模态分析方法,可实现铣削机器人姿态的自动遍历和模态参数的自动识别。本文通过分析机器人多关节柔性特征、空间结构特征和加工振动特征,关联关节电机控制系统和电流功率特征,找到电流信息与振动信息的关联性,并通过电流信号识别模态频率,实现整个工作空间的模态频率识别。该方法能够只输出完整的模态振型识别,能快速分析主要振动模态,对研究机器人铣削颤振具有重要意义。
{"title":"Output-only complete mode shape identification of milling robot body structures using a limited number of current sensors","authors":"Xinyong Mao ,&nbsp;Yi Chen ,&nbsp;Tao Ma ,&nbsp;Juntong Guo ,&nbsp;Xing Yuan ,&nbsp;Nan Jiang ,&nbsp;Yanyan Xu ,&nbsp;Lei Zhang ,&nbsp;Xiaowei Tang ,&nbsp;Yili Peng","doi":"10.1016/j.cirpj.2024.06.014","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.014","url":null,"abstract":"<div><p>Milling robots have the advantage of large workspace and high flexibility compared to machine tools, and are more suitable for machining large and complex surfaces. However, the stiffness of robots is significantly lower than that of machine tools, and they are more prone to chattering. Compared to machine tools, robots mainly occur mode coupling chatter. Analyzing chatter in robots is a great challenge due to the highly flexible and pose-dependent position of the robotic arm. Mode coupling chatter is caused by the most flexible and dominant structural modes of the robot milling system. Available methods are unable to identify the structural modal parameters of a milling robot at all poses in the actual working state. This paper proposes a modal analysis method for robots, which can realize the automatic traversal of the pose of the milling robot and the automatic identification of modal parameters. This paper analyzes the robot multi-joint flexibility characteristics, spatial structure characteristics, and machining vibration characteristics, correlates the joint motor control system and current power characteristics, finds the correlation between the current information and the vibration information, and identifies the modal frequency through the current signals, and realizes the modal frequency identification in the entire workspace. This method is capable of output-only complete mode shape identification, can quickly analyze the main vibration modes, and is of great significance for the study of robot milling chattering.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 48-66"},"PeriodicalIF":4.6,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of depositional direction and current on microstructure and mechanical properties of the bimetallic wall of ER5356/ER4043 fabricated by cold metal transfer based wire arc additive manufacturing 沉积方向和电流对基于冷金属转移的线弧增材制造ER5356/ER4043双金属壁微观结构和力学性能的影响
IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-09 DOI: 10.1016/j.cirpj.2024.06.013
Soni Kesarwani , Narayana Yuvaraj, Mahendra Singh Niranjan

Wire arc additive manufacturing (WAAM) is increasingly gaining attraction from researchers and industries worldwide due to its low cost and the ability to produce intricate parts in a shorter time. In this study, the bimetallic wall of aluminium alloys (ER5356/ER4043) is fabricated by cold metal transfer based WAAM technique using two deposition directions (unidirectional and bidirectional) and three current combinations (115 A/90 A, 120 A/95 A, 125 A/100 A). The effect of deposition direction and current on microstructure evolution, mechanical properties, and residual stress has been investigated. Experimental results displayed better properties in bi-directional wall build at a current combination of 115 A/90 A. This is confirmed by optical microstructure as well as field emission scanning electron microscopy, which shows equiaxed grains on the ER4043 layer, fine grains on the ER5356 layer, and columnar-fine grains at the interface of the bi-directional wall while discontinuous dendritic grains is displayed in ER5356 layer of unidirectional wall. Energy dispersive spectroscopy analysis indicates a main difference in weight percentage for Si and Mg contents at the interface layer of the bidirectional wall than the unidirectional wall, with X-ray diffraction analysis specifying the intermetallic compounds like α-Al, Al12Mg17, Mg2Si, AlMg, and Al3.21Si0.47 in both depositional directions. Tensile strength at the interface layer of the bi-directional wall surpasses the tensile strength of the unidirectional wall's interface layer, with fracture morphology indicating ductile fracture in all specimens. The microhardness test reveals an increase in hardness in the transverse direction at the current combination of 115 A/90 A and also in the bidirectional deposition wall compared to the unidirectional wall. Bidirectional deposition has generated less residual stress than unidirectional walls.

线弧增材制造(WAAM)因其成本低、能在较短时间内制造出复杂零件而日益受到全球研究人员和工业界的青睐。本研究采用基于冷金属转移的 WAAM 技术,使用两种沉积方向(单向和双向)和三种电流组合(115 A/90 A、120 A/95A、125 A/100A)制造了铝合金双金属壁(ER5356/ER4043)。研究了沉积方向和电流对微观结构演变、机械性能和残余应力的影响。光学显微结构和场发射扫描电子显微镜证实了这一点,显微结构显示 ER4043 层上有等轴晶粒,ER5356 层上有细小晶粒,双向壁界面上有柱状细小晶粒,而单向壁的 ER5356 层上则有不连续的树枝状晶粒。能量色散光谱分析表明,双向壁界面层的硅和镁含量的重量百分比与单向壁相比存在较大差异,X 射线衍射分析显示,在两个沉积方向上都存在金属间化合物,如 α-Al、Al12Mg17、Mg2Si、AlMg 和 Al3.21Si0.47。双向壁界面层的抗拉强度超过了单向壁界面层的抗拉强度,所有试样的断裂形态均显示为延展性断裂。显微硬度测试显示,与单向壁相比,在 115 A/90 A 的电流组合下,双向沉积壁的横向硬度有所提高。与单向壁相比,双向沉积产生的残余应力较小。
{"title":"Impact of depositional direction and current on microstructure and mechanical properties of the bimetallic wall of ER5356/ER4043 fabricated by cold metal transfer based wire arc additive manufacturing","authors":"Soni Kesarwani ,&nbsp;Narayana Yuvaraj,&nbsp;Mahendra Singh Niranjan","doi":"10.1016/j.cirpj.2024.06.013","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.013","url":null,"abstract":"<div><p>Wire arc additive manufacturing (WAAM) is increasingly gaining attraction from researchers and industries worldwide due to its low cost and the ability to produce intricate parts in a shorter time. In this study, the bimetallic wall of aluminium alloys (ER5356/ER4043) is fabricated by cold metal transfer based WAAM technique using two deposition directions (unidirectional and bidirectional) and three current combinations (115 A/90 A, 120 A/95 A, 125 A/100 A). The effect of deposition direction and current on microstructure evolution, mechanical properties, and residual stress has been investigated. Experimental results displayed better properties in bi-directional wall build at a current combination of 115 A/90 A. This is confirmed by optical microstructure as well as field emission scanning electron microscopy, which shows equiaxed grains on the ER4043 layer, fine grains on the ER5356 layer, and columnar-fine grains at the interface of the bi-directional wall while discontinuous dendritic grains is displayed in ER5356 layer of unidirectional wall. Energy dispersive spectroscopy analysis indicates a main difference in weight percentage for Si and Mg contents at the interface layer of the bidirectional wall than the unidirectional wall, with X-ray diffraction analysis specifying the intermetallic compounds like α-Al, Al<sub>12</sub>Mg<sub>17</sub>, Mg<sub>2</sub>Si, AlMg, and Al<sub>3.21</sub>Si<sub>0.47</sub> in both depositional directions. Tensile strength at the interface layer of the bi-directional wall surpasses the tensile strength of the unidirectional wall's interface layer, with fracture morphology indicating ductile fracture in all specimens. The microhardness test reveals an increase in hardness in the transverse direction at the current combination of 115 A/90 A and also in the bidirectional deposition wall compared to the unidirectional wall. Bidirectional deposition has generated less residual stress than unidirectional walls.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 17-33"},"PeriodicalIF":4.6,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of acoustic cavitation streaming: A study on surface finishing of additively manufactured components 增强声空化流:对快速成型部件表面处理的研究
IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-08 DOI: 10.1016/j.cirpj.2024.06.015
Saikat Medya , S.H. Yeo

Due to the poor surface characteristics of additively manufactured parts, the necessity for post-process surface enhancement is crucial. Among the prevalent post-processing techniques, the acoustic cavitation-based surface finishing technique has recently emerged. Despite a considerable amount of focused research on the material removal mechanisms of this technique, less attention has been devoted to addressing its limitations associated with enhancing the process capability towards achieving a better surface finish. The driving force behind the acoustic cavitation technique is the bubble implosion through cavitation streaming, and the cessation of the acoustic cavitation streaming beyond a certain length is the main limitation. It has restrained the process capability towards finishing both external and internal surfaces. Hence, this research aims to unravel novel ways of employing the acoustic cavitation-generating parameters and achieving better-quality surface finishing of additively manufactured (AM) components. A study has been conducted on different AM materials, including Inconel 625 and aluminum alloy, by introducing various methods associated with acoustic amplitude, working mediums, temperature, and external vibration. The results reveal a significant reduction in average surface roughness for both materials. The topographical and morphological observations confirm the qualitative improvement on the surfaces. In addition, the conical bubble structures that frame the acoustic cavitation streaming are elucidated by implementing high-speed imaging techniques, and their enhancement at different parametric conditions is delineated. Henceforth, the findings suggest a notable insight into the potential of the employed approaches in enhancing the acoustic cavitation streaming for achieving a better surface finish of AM components.

由于快速成型零件的表面特性较差,因此必须进行后处理表面强化。在流行的后处理技术中,基于声空化的表面处理技术是最近出现的。尽管对这一技术的材料去除机制进行了大量的集中研究,但却较少关注如何解决其在提高加工能力以实现更好的表面光洁度方面的局限性。声空化技术背后的驱动力是通过空化流产生的气泡内爆,而超过一定长度的声空化流停止是其主要局限。这限制了加工内外表面的能力。因此,本研究旨在探索利用声空化产生参数的新方法,实现更高质量的增材制造(AM)部件表面精加工。通过引入与声波振幅、工作介质、温度和外部振动相关的各种方法,对不同的 AM 材料(包括铬镍铁合金 625 和铝合金)进行了研究。结果表明,这两种材料的平均表面粗糙度都明显降低。地形和形态观察证实了表面质量的改善。此外,通过采用高速成像技术,阐明了声空化流的锥形气泡结构,并描述了在不同参数条件下气泡结构的增强情况。因此,研究结果表明,所采用的方法在增强声空化流以实现更好的 AM 部件表面光洁度方面具有显著的潜力。
{"title":"Enhancement of acoustic cavitation streaming: A study on surface finishing of additively manufactured components","authors":"Saikat Medya ,&nbsp;S.H. Yeo","doi":"10.1016/j.cirpj.2024.06.015","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.015","url":null,"abstract":"<div><p>Due to the poor surface characteristics of additively manufactured parts, the necessity for post-process surface enhancement is crucial. Among the prevalent post-processing techniques, the acoustic cavitation-based surface finishing technique has recently emerged. Despite a considerable amount of focused research on the material removal mechanisms of this technique, less attention has been devoted to addressing its limitations associated with enhancing the process capability towards achieving a better surface finish. The driving force behind the acoustic cavitation technique is the bubble implosion through cavitation streaming, and the cessation of the acoustic cavitation streaming beyond a certain length is the main limitation. It has restrained the process capability towards finishing both external and internal surfaces. Hence, this research aims to unravel novel ways of employing the acoustic cavitation-generating parameters and achieving better-quality surface finishing of additively manufactured (AM) components. A study has been conducted on different AM materials, including Inconel 625 and aluminum alloy, by introducing various methods associated with acoustic amplitude, working mediums, temperature, and external vibration. The results reveal a significant reduction in average surface roughness for both materials. The topographical and morphological observations confirm the qualitative improvement on the surfaces. In addition, the conical bubble structures that frame the acoustic cavitation streaming are elucidated by implementing high-speed imaging techniques, and their enhancement at different parametric conditions is delineated. Henceforth, the findings suggest a notable insight into the potential of the employed approaches in enhancing the acoustic cavitation streaming for achieving a better surface finish of AM components.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 1-16"},"PeriodicalIF":4.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue on Machinability Revisited: Integrated Machining Performance For Assessment of Cutting Tools (IMPACT) 再论加工性能特刊:切削工具综合加工性能评估(IMPACT)
IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-05 DOI: 10.1016/j.cirpj.2024.06.012
I.S. Jawahir , Y. Altintas
{"title":"Special Issue on Machinability Revisited: Integrated Machining Performance For Assessment of Cutting Tools (IMPACT)","authors":"I.S. Jawahir ,&nbsp;Y. Altintas","doi":"10.1016/j.cirpj.2024.06.012","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.012","url":null,"abstract":"","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 386-388"},"PeriodicalIF":4.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knowledge transfer in Digital Twins: The methodology to develop Cognitive Digital Twins 数字孪生中的知识转移:开发认知数字孪生的方法论
IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-02 DOI: 10.1016/j.cirpj.2024.06.007
Rosario Davide D’Amico , Arkopaul Sarkar , Mohamed Hedi Karray , Sri Addepalli , John Ahmet Erkoyuncu

In the realm of Digital Twins (DTs), industry experts have emphasised the pivotal concept of the Federation of Twins, envisioning seamless collaboration across sectors driven by shared semantics. In response to this challenge, the Cognitive Digital Twin (CDT) integrates the DT framework with formal semantics, specifically ontologies. This paper introduces a comprehensive five-step methodology for CDT development. Furthermore, it becomes possible to incorporate human expertise into the DT ecosystem by adopting an ontological approach. The CDT enhances DT services with advanced reasoning capabilities, leading to a profound semantic enrichment of the data. The presented methodology has been validated using a use case where the CDT is employed to detect malfunctions, significantly reducing manual intervention. This paper advocates for the adoption of CDTs, which represent a harmonious fusion of formal semantics and human expertise, enhancing system efficiency and operational performance.

在数字孪生(DTs)领域,行业专家强调了孪生联盟(Federation of Twins)这一关键概念,希望通过共享语义实现跨部门的无缝协作。为了应对这一挑战,认知数字孪生(CDT)将数字孪生框架与正式语义(特别是本体)整合在一起。本文介绍了 CDT 开发的五步综合方法。此外,通过采用本体论方法,将人类专业知识纳入数字孪生生态系统成为可能。CDT 通过先进的推理能力增强了 DT 服务,从而极大地丰富了数据的语义。本文介绍的方法已通过一个使用案例进行了验证,在该案例中,CDT 被用于检测故障,大大减少了人工干预。本文提倡采用 CDT,它代表了正式语义与人类专业知识的和谐融合,可提高系统效率和运行性能。
{"title":"Knowledge transfer in Digital Twins: The methodology to develop Cognitive Digital Twins","authors":"Rosario Davide D’Amico ,&nbsp;Arkopaul Sarkar ,&nbsp;Mohamed Hedi Karray ,&nbsp;Sri Addepalli ,&nbsp;John Ahmet Erkoyuncu","doi":"10.1016/j.cirpj.2024.06.007","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.007","url":null,"abstract":"<div><p>In the realm of Digital Twins (DTs), industry experts have emphasised the pivotal concept of the Federation of Twins, envisioning seamless collaboration across sectors driven by shared semantics. In response to this challenge, the Cognitive Digital Twin (CDT) integrates the DT framework with formal semantics, specifically ontologies. This paper introduces a comprehensive five-step methodology for CDT development. Furthermore, it becomes possible to incorporate human expertise into the DT ecosystem by adopting an ontological approach. The CDT enhances DT services with advanced reasoning capabilities, leading to a profound semantic enrichment of the data. The presented methodology has been validated using a use case where the CDT is employed to detect malfunctions, significantly reducing manual intervention. This paper advocates for the adoption of CDTs, which represent a harmonious fusion of formal semantics and human expertise, enhancing system efficiency and operational performance.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 366-385"},"PeriodicalIF":4.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755581724000932/pdfft?md5=4763b10e338c48e1800bad67ff75a44d&pid=1-s2.0-S1755581724000932-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling of material behavior for additively manufactured 17-4 PH stainless steel produced by fused filament fabrication 用熔融长丝制造技术为添加式制造的 17-4 PH 不锈钢建立材料行为模型
IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-02 DOI: 10.1016/j.cirpj.2024.06.011
Saba Molazadeh, Ali Hosseini

This paper proposes a model to predict the tensile characteristics of metal fused filament fabricated (MFFF) components. The proposed model consists of mathematical, experimental, and finite element (FE) models. The mathematical model was constructed based on the composite laminate theory and was combined with experiments for basic layup of 0° and 90° raster angle to describe the behavior of MFFF parts. The FE model was built to simulate the behavior of MFFF parts in a virtual environment and its validity was verified using independent experiments for a more common layup of +45°/−45°.

本文提出了一种预测金属熔丝制造(MFFF)部件拉伸特性的模型。该模型由数学模型、实验模型和有限元(FE)模型组成。数学模型以复合材料层压理论为基础,结合 0° 和 90° 光栅角的基本铺层实验来描述 MFFF 部件的行为。建立的 FE 模型可在虚拟环境中模拟 MFFF 零件的行为,其有效性则通过更常见的 +45°/-45° 层叠方式的独立实验来验证。
{"title":"Modelling of material behavior for additively manufactured 17-4 PH stainless steel produced by fused filament fabrication","authors":"Saba Molazadeh,&nbsp;Ali Hosseini","doi":"10.1016/j.cirpj.2024.06.011","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.06.011","url":null,"abstract":"<div><p>This paper proposes a model to predict the tensile characteristics of metal fused filament fabricated (MFFF) components. The proposed model consists of mathematical, experimental, and finite element (FE) models. The mathematical model was constructed based on the composite laminate theory and was combined with experiments for basic layup of 0° and 90° raster angle to describe the behavior of MFFF parts. The FE model was built to simulate the behavior of MFFF parts in a virtual environment and its validity was verified using independent experiments for a more common layup of +45°/−45°.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 341-365"},"PeriodicalIF":4.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S175558172400097X/pdfft?md5=4131ca63fb2e9dfab1ec88824faeee39&pid=1-s2.0-S175558172400097X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherent Point Drift derived algorithm enhanced with locality preserving matching for point cloud registration of roll formed parts 相干点漂移推导算法增强了用于滚动成形部件点云注册的位置保全匹配功能
IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-01 DOI: 10.1016/j.cirpj.2024.05.011
Benzhao Wu , Kang Wu , Ziliu Xiong , Junfeng Xiao , Yong Sun

Due to severe deformation, noise, and occlusion, the registration problem of non-rigid point sets in rolling formed metal workpieces poses challenges, and the demand for real-time data storage and registration during the rolling forming process makes this problem even more prominent. This paper proposes an enhanced nonrigid point set registration algorithm based on the Coherent Point Drift (CPD) framework, introducing novel methods to improve accuracy and efficiency. A refined local distance calculation method combining spatial distance has been proposed to improve matching accuracy. In contrast, an optimized shape context method introduces a new driving force criterion to expedite initial registration and reduce subsequent errors. Leveraging the Expectation-Maximization (EM) algorithm, the approach iteratively solves point correspondences, demonstrating robustness in handling complex scenarios like non-rigid deformation and noise. Experimental validation using real production datasets shows superior accuracy and efficiency over classical algorithms, showcasing a practical solution for non-rigid point set registration challenges in roll forming applications.

由于严重的变形、噪声和遮挡,轧制成形金属工件中的非刚性点集的注册问题带来了挑战,而轧制成形过程中对实时数据存储和注册的需求使这一问题更加突出。本文提出了一种基于相干点漂移(CPD)框架的增强型非刚性点组注册算法,引入了新的方法来提高精度和效率。本文提出了一种结合空间距离的精细局部距离计算方法,以提高匹配精度。相比之下,优化形状上下文方法引入了新的驱动力标准,以加快初始注册并减少后续错误。利用期望最大化(EM)算法,该方法可以迭代求解点的对应关系,在处理非刚性变形和噪声等复杂情况时表现出鲁棒性。使用真实生产数据集进行的实验验证表明,该方法比传统算法具有更高的精度和效率,为辊式成型应用中的非刚性点组注册难题提供了实用的解决方案。
{"title":"Coherent Point Drift derived algorithm enhanced with locality preserving matching for point cloud registration of roll formed parts","authors":"Benzhao Wu ,&nbsp;Kang Wu ,&nbsp;Ziliu Xiong ,&nbsp;Junfeng Xiao ,&nbsp;Yong Sun","doi":"10.1016/j.cirpj.2024.05.011","DOIUrl":"https://doi.org/10.1016/j.cirpj.2024.05.011","url":null,"abstract":"<div><p>Due to severe deformation, noise, and occlusion, the registration problem of non-rigid point sets in rolling formed metal workpieces poses challenges, and the demand for real-time data storage and registration during the rolling forming process makes this problem even more prominent. This paper proposes an enhanced nonrigid point set registration algorithm based on the Coherent Point Drift (CPD) framework, introducing novel methods to improve accuracy and efficiency. A refined local distance calculation method combining spatial distance has been proposed to improve matching accuracy. In contrast, an optimized shape context method introduces a new driving force criterion to expedite initial registration and reduce subsequent errors. Leveraging the Expectation-Maximization (EM) algorithm, the approach iteratively solves point correspondences, demonstrating robustness in handling complex scenarios like non-rigid deformation and noise. Experimental validation using real production datasets shows superior accuracy and efficiency over classical algorithms, showcasing a practical solution for non-rigid point set registration challenges in roll forming applications.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"52 ","pages":"Pages 330-340"},"PeriodicalIF":4.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
CIRP Journal of Manufacturing Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1