首页 > 最新文献

Iranian Polymer Journal最新文献

英文 中文
Synergistic effect of a new binary accelerator system on curing characteristics and properties of styrene–butadiene rubber vulcanizates 新型二元促进剂体系对丁苯橡胶硫化胶硫化特性和性能的协同效应
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-07-02 DOI: 10.1007/s13726-024-01344-3
Fahima M. Helaly, Adel A. Koriem, Samaa R. Salem, Sanaa M. El-Sawy, Fikry A. Abdel-Mohdy, Aman I. Khalaf

Enhancing the vulcanization rate of elastomers is a common objective for optimizing their performance. Styrene–butadiene rubber (SBR) was vulcanized employing several conventional systems designed with various amounts of sulfur and activators/accelerators. Herein, it was an attempt to synthesize a copolymer from glycidyl methacrylate (GMA) and diethylaminoethyl methacrylate (DEAEMA)-(GMA-co-DEAEMA) and study its effect as a secondary accelerator on the curing characteristics and vulcanizate properties of SBR. The copolymer GMA-co-DEAEMA (III) was grafted with three different functional groups (R) including thioglycolic acid, 2-aminothiophenol, and 2-amino-5-mercaptothiazole, to yield III/S/1, IIII/S/2, and III/S/3 copolymers, respectively. The three-modified copolymers with an added conventional accelerator N-cyclohexyl-2-benzothiazole sulfenamide (CBS) were used to accelerate the efficiency of the vulcanizing agent (sulfur). Additional characterization of the synthesized copolymer and the obtained cured elastomer were carried out through different techniques, including mass and Fourier-transform infrared spectroscopy and thermogravimetric analysis (TGA), in addition to the rheological and mechanical studies. The results revealed that all the subject copolymers, when applied as a secondary accelerator for the SBR vulcanization reaction, enhanced the rate and the state of the cross-linking process. The findings of this study eruditely recommended that large rubber articles, like tires, could be cured more efficiently and cost-effectively when employing the presented copolymer as a secondary accelerator.

Graphical abstract

提高弹性体的硫化速度是优化其性能的一个共同目标。丁苯橡胶(SBR)的硫化采用了几种传统体系,这些体系设计了不同数量的硫和活化剂/促进剂。本文尝试合成一种甲基丙烯酸缩水甘油酯(GMA)和甲基丙烯酸二乙氨基乙酯(DEAEMA)的共聚物(GMA-co-DEAEMA),并研究其作为辅助促进剂对丁苯橡胶硫化特性和硫化性能的影响。共聚物 GMA-co-DEAEMA (III) 接枝了三种不同的官能团 (R),包括硫代乙醇酸、2-氨基苯硫酚和 2-氨基-5-巯基噻唑,分别得到 III/S/1、III/S/2 和 III/S/3 共聚物。添加了传统促进剂 N-环己基-2-苯并噻唑亚磺酰胺(CBS)的三种改性共聚物可用于提高硫化剂(硫)的效率。除了流变学和力学研究外,还通过不同的技术对合成的共聚物和获得的固化弹性体进行了表征,包括质谱和傅立叶变换红外光谱以及热重分析(TGA)。研究结果表明,所有受试共聚物在用作 SBR 硫化反应的二级促进剂时,都能提高交联过程的速率和状态。这项研究的结果建议,在使用所介绍的共聚物作为辅助促进剂时,可以更高效、更经济地硫化大型橡胶制品(如轮胎)。
{"title":"Synergistic effect of a new binary accelerator system on curing characteristics and properties of styrene–butadiene rubber vulcanizates","authors":"Fahima M. Helaly,&nbsp;Adel A. Koriem,&nbsp;Samaa R. Salem,&nbsp;Sanaa M. El-Sawy,&nbsp;Fikry A. Abdel-Mohdy,&nbsp;Aman I. Khalaf","doi":"10.1007/s13726-024-01344-3","DOIUrl":"10.1007/s13726-024-01344-3","url":null,"abstract":"<div><p>Enhancing the vulcanization rate of elastomers is a common objective for optimizing their performance. Styrene–butadiene rubber (SBR) was vulcanized employing several conventional systems designed with various amounts of sulfur and activators/accelerators. Herein, it was an attempt to synthesize a copolymer from glycidyl methacrylate (GMA) and diethylaminoethyl methacrylate (DEAEMA)-(GMA-<i>co</i>-DEAEMA) and study its effect as a secondary accelerator on the curing characteristics and vulcanizate properties of SBR. The copolymer GMA-<i>co</i>-DEAEMA (III) was grafted with three different functional groups (R) including thioglycolic acid, 2-aminothiophenol, and 2-amino-5-mercaptothiazole, to yield III/S/1, IIII/S/2, and III/S/3 copolymers, respectively. The three-modified copolymers with an added conventional accelerator <i>N</i>-cyclohexyl-2-benzothiazole sulfenamide (CBS) were used to accelerate the efficiency of the vulcanizing agent (sulfur). Additional characterization of the synthesized copolymer and the obtained cured elastomer were carried out through different techniques, including mass and Fourier-transform infrared spectroscopy and thermogravimetric analysis (TGA), in addition to the rheological and mechanical studies. The results revealed that all the subject copolymers, when applied as a secondary accelerator for the SBR vulcanization reaction, enhanced the rate and the state of the cross-linking process. The findings of this study eruditely recommended that large rubber articles, like tires, could be cured more efficiently and cost-effectively when employing the presented copolymer as a secondary accelerator.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 12","pages":"1737 - 1749"},"PeriodicalIF":2.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polylactide/polyvinyl acetate blends containing different molecular weights of poly(ethylene glycol) 含有不同分子量聚乙二醇的聚乳酸/聚醋酸乙烯酯混合物
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-06-24 DOI: 10.1007/s13726-024-01350-5
Wenxi Cheng, Yuanhang Cao, Wei Miao, Yongjian Zhang, Li Tian, Haowei Lin, Weiqiang Song, Yike Zhang, Tao Wang

Polylactide (PLA)/polyvinyl acetate (PVAc)/poly(ethylene glycol) (PEG) blends with different molecular weights of PEG (4000, 10000, and 20000 g/mol) were prepared, and the weight ratio was fixed at 72/18/10 (g/g/g) after the tensile analysis of PLA/PVAc and PLA/PEG blends, and finally the samples were characterized by various methods. The tensile and impact results showed that all the ternary blends were well toughened by PEG, and with the increase of PEG molecular weight, the tensile strength and impact strength increased. Scanning electron microscopy and energy-dispersive X-ray spectroscopy results indicated that 20% (by weight) of PVAc exceeded its solubility limit with PLA, and therefore the excess PVAc was dispersed as nanoparticles in the matrix. When PEG was added, the insoluble amount of PVAc decreased, indicating that the miscibility between PLA and PVAc could be increased by PEG. Differential Scanning Calorimetry results showed that Tm optical microscopy results showed that the number and size of PLA spherulites was peak areas of PLA in PLA/PVAc/PEG blends were smaller than that in PLA/PVAc blend, showing that the crystallinity of PLA was decreased with the addition of PEG in the presence of PVAc, which was confirmed by X-ray diffraction results. Polarization was the smallest in PLA/PVAc/PEG blends. All the ternary blends were transparent and had better visible light transmissions than PLA/PVAc blend. Thermal gravimetric analysis results showed that PLA and its blends had similar thermal stability. Overall, a low-cost PLA-modified material that combined high toughness, strength, and transparency without the need for customization was provided.

Graphical Abstract

制备了不同 PEG 分子量(4000、10000 和 20000 g/mol)的聚乳酸(PLA)/聚醋酸乙烯酯(PVAc)/聚乙二醇(PEG)共混物,在对聚乳酸/PVAc 和聚乳酸/PEG 共混物进行拉伸分析后,确定重量比为 72/18/10(g/g/g),最后通过各种方法对样品进行了表征。拉伸和冲击结果表明,所有三元共混物都得到了 PEG 的良好增韧,并且随着 PEG 分子量的增加,拉伸强度和冲击强度都有所提高。扫描电子显微镜和能量色散 X 射线光谱分析结果表明,20% 的 PVAc(按重量计)超过了其与聚乳酸的溶解极限,因此多余的 PVAc 以纳米颗粒的形式分散在基体中。加入 PEG 后,PVAc 的不溶量减少,这表明 PEG 可以增加聚乳酸与 PVAc 的混溶性。差示扫描量热法结果表明,Tm 光学显微镜结果表明,PLA/PVAc/PEG 共混物中聚乳酸球形颗粒的数量和尺寸、峰面积均小于 PLA/PVAc 共混物,表明在 PVAc 存在下,随着 PEG 的加入,聚乳酸的结晶度降低,X 射线衍射结果也证实了这一点。极化在 PLA/PVAc/PEG 共混物中最小。所有三元共混物都是透明的,其可见光透过率均优于聚乳酸/PVAc 共混物。热重分析结果表明,聚乳酸及其混合物具有相似的热稳定性。总之,这种低成本的聚乳酸改性材料集高韧性、高强度和高透明度于一身,而且无需定制。
{"title":"Polylactide/polyvinyl acetate blends containing different molecular weights of poly(ethylene glycol)","authors":"Wenxi Cheng,&nbsp;Yuanhang Cao,&nbsp;Wei Miao,&nbsp;Yongjian Zhang,&nbsp;Li Tian,&nbsp;Haowei Lin,&nbsp;Weiqiang Song,&nbsp;Yike Zhang,&nbsp;Tao Wang","doi":"10.1007/s13726-024-01350-5","DOIUrl":"10.1007/s13726-024-01350-5","url":null,"abstract":"<div><p>Polylactide (PLA)/polyvinyl acetate (PVAc)/poly(ethylene glycol) (PEG) blends with different molecular weights of PEG (4000, 10000, and 20000 g/mol) were prepared, and the weight ratio was fixed at 72/18/10 (g/g/g) after the tensile analysis of PLA/PVAc and PLA/PEG blends, and finally the samples were characterized by various methods. The tensile and impact results showed that all the ternary blends were well toughened by PEG, and with the increase of PEG molecular weight, the tensile strength and impact strength increased. Scanning electron microscopy and energy-dispersive X-ray spectroscopy results indicated that 20% (by weight) of PVAc exceeded its solubility limit with PLA, and therefore the excess PVAc was dispersed as nanoparticles in the matrix. When PEG was added, the insoluble amount of PVAc decreased, indicating that the miscibility between PLA and PVAc could be increased by PEG. Differential Scanning Calorimetry results showed that T<sub>m</sub> optical microscopy results showed that the number and size of PLA spherulites was peak areas of PLA in PLA/PVAc/PEG blends were smaller than that in PLA/PVAc blend, showing that the crystallinity of PLA was decreased with the addition of PEG in the presence of PVAc, which was confirmed by X-ray diffraction results. Polarization was the smallest in PLA/PVAc/PEG blends. All the ternary blends were transparent and had better visible light transmissions than PLA/PVAc blend. Thermal gravimetric analysis results showed that PLA and its blends had similar thermal stability. Overall, a low-cost PLA-modified material that combined high toughness, strength, and transparency without the need for customization was provided.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 12","pages":"1689 - 1699"},"PeriodicalIF":2.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-fast setting rate of a new bioactive binder for bone repair 用于骨修复的新型生物活性粘合剂的超快凝固率
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-06-23 DOI: 10.1007/s13726-024-01354-1
Ning Gu, Qingxiao Liu, Qichao Liu, Ying Ren, Xiaodong Liu, Youyi Sun, Yang Cao

Polymer bone binder has attracted lots of attention due to its facile preparation, biodegradability, and so on. However, achieving strong adhesion, easy preparation, and fast setting rate for polymer bone binding is still a great challenge. So, here, a new polymer bone binder is developed and prepared to simultaneously improve setting rate and strength. The bone binder is composed of polyethyleneglycol, ethylhydroacrylate, chitosan, and SiO2 nanoparticles. It exhibits good biocompatibility and large bonding strength (ca. 2.0 MPa). Furthermore, the bone binder shows an ultra-fast setting rate (ca. 100 s), which is far faster than that reported in previous works. The bone binder is further evaluated to bond chicken bone, which exhibits a high binding force of 2.0 kgf in a short setting time of only 5.0 min. The good biocompatibility and the large bonding strength of the present bone binder are attributed to the green and environmentally friendly composition (e.g., cyanoacrylate, chitosan, polyethyleneglycol and SiO2 nanoparticles) and cross-linking network between chitosan and SiO2 nanoparticles. The ultra-fast setting process is attributed to the rapid polymerization of cyanoacrylate and the physical interaction of SiO2 nanoparticles with chitosan and polyethyleneglycol. The work provides a new method to design and prepare high-performance bone binders for use in bone fracture repair.

Graphical abstract

聚合物骨粘合剂因其制备简便、可生物降解等优点而备受关注。然而,如何实现聚合物骨粘合剂的强粘合性、易制备性和快速凝固率仍然是一个巨大的挑战。因此,本文开发并制备了一种新型聚合物骨粘合剂,以同时提高固化率和强度。该骨粘合剂由聚乙二醇、氢丙烯酸乙酯、壳聚糖和纳米二氧化硅组成。它具有良好的生物相容性和较大的粘合强度(约 2.0 兆帕)。此外,这种骨粘合剂还具有超快的凝固速度(约 100 秒),远远快于之前的研究成果。我们进一步评估了骨粘合剂粘合鸡骨的效果,其粘合力高达 2.0 kgf,而固化时间仅为 5.0 分钟。本骨粘合剂具有良好的生物相容性和较大的粘合力,这归功于其绿色环保的成分(如氰基丙烯酸酯、壳聚糖、聚乙二醇和二氧化硅纳米粒子)以及壳聚糖和二氧化硅纳米粒子之间的交联网络。超快固化过程归功于氰基丙烯酸酯的快速聚合以及二氧化硅纳米粒子与壳聚糖和聚乙二醇的物理相互作用。这项研究为设计和制备用于骨折修复的高性能骨粘合剂提供了一种新方法。
{"title":"Ultra-fast setting rate of a new bioactive binder for bone repair","authors":"Ning Gu,&nbsp;Qingxiao Liu,&nbsp;Qichao Liu,&nbsp;Ying Ren,&nbsp;Xiaodong Liu,&nbsp;Youyi Sun,&nbsp;Yang Cao","doi":"10.1007/s13726-024-01354-1","DOIUrl":"10.1007/s13726-024-01354-1","url":null,"abstract":"<div><p>Polymer bone binder has attracted lots of attention due to its facile preparation, biodegradability, and so on. However, achieving strong adhesion, easy preparation, and fast setting rate for polymer bone binding is still a great challenge. So, here, a new polymer bone binder is developed and prepared to simultaneously improve setting rate and strength. The bone binder is composed of polyethyleneglycol, ethylhydroacrylate, chitosan, and SiO<sub>2</sub> nanoparticles. It exhibits good biocompatibility and large bonding strength (ca. 2.0 MPa). Furthermore, the bone binder shows an ultra-fast setting rate (ca. 100 s), which is far faster than that reported in previous works. The bone binder is further evaluated to bond chicken bone, which exhibits a high binding force of 2.0 kgf in a short setting time of only 5.0 min. The good biocompatibility and the large bonding strength of the present bone binder are attributed to the green and environmentally friendly composition (e.g., cyanoacrylate, chitosan, polyethyleneglycol and SiO<sub>2</sub> nanoparticles) and cross-linking network between chitosan and SiO<sub>2</sub> nanoparticles. The ultra-fast setting process is attributed to the rapid polymerization of cyanoacrylate and the physical interaction of SiO<sub>2</sub> nanoparticles with chitosan and polyethyleneglycol. The work provides a new method to design and prepare high-performance bone binders for use in bone fracture repair.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 12","pages":"1667 - 1675"},"PeriodicalIF":2.4,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect of graphene and carbon black on the mechanical and vibration damping characteristics of styrene-butadiene rubber 石墨烯和炭黑对丁苯橡胶机械和减振特性的协同效应
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-06-21 DOI: 10.1007/s13726-024-01349-y
Sivakumar Chandramohan, Muralidharan Vaithiyanathan, Bikash Chandra Chakraborty, Murali Manohar Dharmaraj

This work experimentally introduces a novel approach to vibration damping materials in industrial applications, investigating the synergistic effect of graphene nanoplates (GNP) and carbon black (CB) within styrene-butadiene rubber (SBR) to enhance both mechanical properties and vibration damping characteristics. The SBR hybrid nanocomposite containing a fixed amount of CB (20 phr) and a variable amount of GNP (2, 5, 7.5, and 10 phr) was prepared to compare with a neat SBR and 20 phr CB/SBR composite. The hybrid nanocomposites underwent assessment for morphology, tensile strength, tear strength, hardness, and vibration damping characteristics utilizing constrained layer damping (CLD). The results indicated that, in comparison to non-hybrid composites, the addition of GNP to the SBR matrix substantially improved the tensile strength by 64%, modulus by 28%, stiffness by 28%, and tear strength by 31.3%. Experimental modal analysis was used to determine the vibration characteristics. The system loss factor of the CLD exhibited a notable increase of 105% and 44% in the first and second modes, respectively, with the incorporation of 10 phr graphene in the hybridized composite, as compared to the composite containing only carbon black. The experimental damping loss factor was compared with theoretical model values proposed in one available mathematical model revealing a better agreement overall, though an exception was noted in the first mode. This paper can serve as a foundation for fabricating constrained layer damping (CLD) structures using hybrid fillers, resulting in high materials loss factors suitable for low-frequency applications.

Graphical abstract

本研究通过实验介绍了一种新型减振材料在工业应用中的应用,研究了石墨烯纳米板(GNP)和炭黑(CB)在丁苯橡胶(SBR)中的协同作用,以提高机械性能和减振特性。制备了含有固定量 CB(20 phr)和不同量 GNP(2、5、7.5 和 10 phr)的 SBR 混合纳米复合材料,并与纯 SBR 和 20 phr CB/SBR 复合材料进行了比较。对混合纳米复合材料的形态、拉伸强度、撕裂强度、硬度以及利用约束层阻尼(CLD)的减振特性进行了评估。结果表明,与非混合复合材料相比,在丁苯橡胶基体中添加 GNP 可大幅提高拉伸强度 64%、模量 28%、硬度 28%、撕裂强度 31.3%。实验模态分析用于确定振动特性。与仅含炭黑的复合材料相比,在杂化复合材料中加入 10 短片石墨烯后,CLD 的第一和第二模态系统损耗因子分别显著增加了 105% 和 44%。将实验阻尼损失因子与一个现有数学模型中提出的理论模型值进行比较后发现,虽然在第一种模式中存在例外情况,但总体上两者的一致性较好。本文可作为使用混合填料制造约束层阻尼(CLD)结构的基础,从而获得适合低频应用的高材料损耗因子。
{"title":"Synergistic effect of graphene and carbon black on the mechanical and vibration damping characteristics of styrene-butadiene rubber","authors":"Sivakumar Chandramohan,&nbsp;Muralidharan Vaithiyanathan,&nbsp;Bikash Chandra Chakraborty,&nbsp;Murali Manohar Dharmaraj","doi":"10.1007/s13726-024-01349-y","DOIUrl":"10.1007/s13726-024-01349-y","url":null,"abstract":"<div><p>This work experimentally introduces a novel approach to vibration damping materials in industrial applications, investigating the synergistic effect of graphene nanoplates (GNP) and carbon black (CB) within styrene-butadiene rubber (SBR) to enhance both mechanical properties and vibration damping characteristics. The SBR hybrid nanocomposite containing a fixed amount of CB (20 phr) and a variable amount of GNP (2, 5, 7.5, and 10 phr) was prepared to compare with a neat SBR and 20 phr CB/SBR composite. The hybrid nanocomposites underwent assessment for morphology, tensile strength, tear strength, hardness, and vibration damping characteristics utilizing constrained layer damping (CLD). The results indicated that, in comparison to non-hybrid composites, the addition of GNP to the SBR matrix substantially improved the tensile strength by 64%, modulus by 28%, stiffness by 28%, and tear strength by 31.3%. Experimental modal analysis was used to determine the vibration characteristics. The system loss factor of the CLD exhibited a notable increase of 105% and 44% in the first and second modes, respectively, with the incorporation of 10 phr graphene in the hybridized composite, as compared to the composite containing only carbon black. The experimental damping loss factor was compared with theoretical model values proposed in one available mathematical model revealing a better agreement overall, though an exception was noted in the first mode. This paper can serve as a foundation for fabricating constrained layer damping (CLD) structures using hybrid fillers, resulting in high materials loss factors suitable for low-frequency applications.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"34 1","pages":"17 - 27"},"PeriodicalIF":2.4,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The degradation of poly(1-butene) extrudates subjected to artificial and natural aging 经人工老化和自然老化的聚(1-丁烯)挤出物的降解情况
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-06-20 DOI: 10.1007/s13726-024-01348-z
Sona Zenzingerova, Michal Kudlacek, Lubomir Benicek, David Jaska, Jana Navratilova, Lenka Gajzlerova, Roman Cermak

In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples underwent accelerated aging through UV irradiation and natural weathering. Chemical and structural changes in the degraded samples were characterized using Fourier-transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy, surface analysis, and wide-angle X-ray scattering (WAXS). The mechanical properties were evaluated via tensile testing. FTIR–ATR analysis revealed the presence of carbonyl groups in the degraded samples, indicating oxidative degradation. Surface observations employing scanning electron microscopy (SEM) revealed the formation of surface cracks in both samples, with differing crack initiation mechanisms. The two aging methods affected the mechanical properties of the samples: artificial aging induced a gradual reduction in both tensile modulus and strength, whereas natural weathering engendered a marginal increment in modulus alongside diminished strength. Additionally, elongation-at-break value witnessed a marked decrease in both sample sets during the preliminary stages of degradation. This work employed accelerated time equivalent, obtained by juxtaposition of the values of carbonyl index during both artificial aging and natural weathering and their interpolation to determine the degradation rate and adequately to correlate the final properties of the aged PB-1. It was observed that surface morphology and mechanical attributes of degraded samples were subject to additional influences such as temperature, humidity, and precipitation during natural weathering. This research work provided significant insights into PB-1 degradation mechanisms and effect of different aging conditions on its performance.

Graphical abstract

在这项工作中,我们研究了人工老化和自然风化条件下异方性聚 (1-butene) (PB-1) 的降解行为。通过紫外线照射和自然风化,PB-1 样品经历了加速老化。使用傅立叶变换红外-衰减全反射(FTIR-ATR)光谱、表面分析和广角 X 射线散射(WAXS)对降解样品的化学和结构变化进行了表征。机械性能通过拉伸测试进行评估。傅立叶变换红外-ATR 分析表明,降解样品中存在羰基,这表明样品发生了氧化降解。利用扫描电子显微镜(SEM)进行的表面观察显示,两种样品都形成了表面裂纹,裂纹的形成机制各不相同。两种老化方法都会影响样品的机械性能:人工老化会导致拉伸模量和强度逐渐降低,而自然风化则会导致模量略有增加,但强度降低。此外,在降解的初级阶段,两组样品的断裂伸长率值都明显下降。这项研究采用了加速时间当量,通过并列人工老化和自然风化过程中的羰基指数值及其内插法来确定降解速率,并充分关联老化 PB-1 的最终特性。据观察,降解样品的表面形态和机械属性受到自然风化过程中温度、湿度和降水等其他因素的影响。这项研究工作为了解 PB-1 降解机理和不同老化条件对其性能的影响提供了重要依据。
{"title":"The degradation of poly(1-butene) extrudates subjected to artificial and natural aging","authors":"Sona Zenzingerova,&nbsp;Michal Kudlacek,&nbsp;Lubomir Benicek,&nbsp;David Jaska,&nbsp;Jana Navratilova,&nbsp;Lenka Gajzlerova,&nbsp;Roman Cermak","doi":"10.1007/s13726-024-01348-z","DOIUrl":"10.1007/s13726-024-01348-z","url":null,"abstract":"<div><p>In this work, we examined the degradation behavior of isotactic poly(1-butene) (PB-1) under artificial aging and natural weathering conditions. PB-1 samples underwent accelerated aging through UV irradiation and natural weathering. Chemical and structural changes in the degraded samples were characterized using Fourier-transform infrared–attenuated total reflectance (FTIR–ATR) spectroscopy, surface analysis, and wide-angle X-ray scattering (WAXS). The mechanical properties were evaluated via tensile testing. FTIR–ATR analysis revealed the presence of carbonyl groups in the degraded samples, indicating oxidative degradation. Surface observations employing scanning electron microscopy (SEM) revealed the formation of surface cracks in both samples, with differing crack initiation mechanisms. The two aging methods affected the mechanical properties of the samples: artificial aging induced a gradual reduction in both tensile modulus and strength, whereas natural weathering engendered a marginal increment in modulus alongside diminished strength. Additionally, elongation-at-break value witnessed a marked decrease in both sample sets during the preliminary stages of degradation. This work employed accelerated time equivalent, obtained by juxtaposition of the values of carbonyl index during both artificial aging and natural weathering and their interpolation to determine the degradation rate and adequately to correlate the final properties of the aged PB-1. It was observed that surface morphology and mechanical attributes of degraded samples were subject to additional influences such as temperature, humidity, and precipitation during natural weathering. This research work provided significant insights into PB-1 degradation mechanisms and effect of different aging conditions on its performance.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 12","pages":"1725 - 1735"},"PeriodicalIF":2.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13726-024-01348-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study on the impact performance of water-exposed balsa-cored sandwich structures 露水轻木芯夹层结构冲击性能比较研究
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-06-15 DOI: 10.1007/s13726-024-01346-1
Moslem Najafi, Jafar Eskandari Jam, Reza Ansari

This study aims to examine how moisture absorption affects the impact behavior of a recently developed sandwich structure designed for use as a water-resistant system in the marine industry. For this purpose, two types of balsa-cored sandwich systems were manufactured, one with conventional glass fiber-epoxy (GE) skins and the other with novel fiber metal laminates (FML) skins. Subsequently, the specimens were exposed to environmental aging through distilled water immersion for 100 days before impact testing. Low-velocity impact behavior was studied using Charpy tests, while high-velocity impact tests were conducted with a light gas gun. The experimental results showed that FML sandwich systems exhibited significantly better impact characteristics compared to GE systems. Before aging, the Charpy impact strength and high-velocity impact absorbed energy of FML systems were 187% and 49% higher than those of GE ones. Another main finding was the impact properties of the FML systems showed a lower decline due to moisture aging compared to the GE systems, for both low- and high-velocity impacts. The reduction of Charpy impact strength and high-velocity impact absorbed energy due to moisture aging in GE systems with sealed edges was about 15%, and 3%, respectively, and for sealed edges FML systems was less than 12% and 1%, respectively. The results also indicated that the high-velocity impact properties of both sandwich systems studied were not significantly affected by moisture aging. In general, the findings suggest that FML skins significantly enhance both the impact resistance and environmental durability in marine balsa-cored sandwich structures.

Graphical abstract

本研究旨在探讨吸湿性如何影响最近开发的夹层结构的冲击行为,该结构设计用作船舶工业的防水系统。为此,我们制造了两种轻木芯夹层系统,一种是传统的玻璃纤维-环氧树脂(GE)表皮,另一种是新型的纤维金属层压板(FML)表皮。随后,在进行冲击测试之前,将试样通过蒸馏水浸泡 100 天进行环境老化。低速冲击行为采用夏比试验进行研究,高速冲击试验则采用光气枪进行。实验结果表明,FML 夹层系统的冲击特性明显优于 GE 系统。老化前,FML 系统的夏比冲击强度和高速冲击吸收能量分别比 GE 系统高出 187% 和 49%。另一个主要发现是,与 GE 系统相比,FML 系统在低速和高速冲击中因受潮老化而导致的冲击特性下降幅度较小。带密封边缘的 GE 系统因湿气老化导致的夏比冲击强度和高速冲击吸收能量下降分别约为 15%和 3%,而带密封边缘的 FML 系统则分别低于 12%和 1%。研究结果还表明,所研究的两种夹层系统的高速冲击特性都没有受到湿气老化的显著影响。总之,研究结果表明,FML 蒙皮可显著增强船用轻木芯夹层结构的抗冲击性和环境耐久性。
{"title":"A comparative study on the impact performance of water-exposed balsa-cored sandwich structures","authors":"Moslem Najafi,&nbsp;Jafar Eskandari Jam,&nbsp;Reza Ansari","doi":"10.1007/s13726-024-01346-1","DOIUrl":"10.1007/s13726-024-01346-1","url":null,"abstract":"<div><p>This study aims to examine how moisture absorption affects the impact behavior of a recently developed sandwich structure designed for use as a water-resistant system in the marine industry. For this purpose, two types of balsa-cored sandwich systems were manufactured, one with conventional glass fiber-epoxy (GE) skins and the other with novel fiber metal laminates (FML) skins. Subsequently, the specimens were exposed to environmental aging through distilled water immersion for 100 days before impact testing. Low-velocity impact behavior was studied using Charpy tests, while high-velocity impact tests were conducted with a light gas gun. The experimental results showed that FML sandwich systems exhibited significantly better impact characteristics compared to GE systems. Before aging, the Charpy impact strength and high-velocity impact absorbed energy of FML systems were 187% and 49% higher than those of GE ones. Another main finding was the impact properties of the FML systems showed a lower decline due to moisture aging compared to the GE systems, for both low- and high-velocity impacts. The reduction of Charpy impact strength and high-velocity impact absorbed energy due to moisture aging in GE systems with sealed edges was about 15%, and 3%, respectively, and for sealed edges FML systems was less than 12% and 1%, respectively. The results also indicated that the high-velocity impact properties of both sandwich systems studied were not significantly affected by moisture aging. In general, the findings suggest that FML skins significantly enhance both the impact resistance and environmental durability in marine balsa-cored sandwich structures.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 12","pages":"1677 - 1688"},"PeriodicalIF":2.4,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect between ammonium polyphosphate-functionalized poly(lactic acid) and phosphated avocado seed on the flame-retardant properties of poly(lactic acid)/ethylene–vinyl acetate copolymer composites 聚磷酸铵功能化聚(乳酸)和磷化鳄梨籽对聚(乳酸)/乙烯-醋酸乙烯共聚物复合材料阻燃性能的协同效应
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-06-14 DOI: 10.1007/s13726-024-01345-2
José David Zuluaga-Parra, Luis Francisco Ramos-de Valle, Saúl Sánchez-Valdéz, Rachel Faverzani-Magnago, Adriano da Silva, Luciano da Silva

Composites of modified avocado seed with ammonium polyphosphate (APP)-functionalized poly(lactic acid) (PLA), in a PLA/ethylene–vinyl acetate copolymer (EVA) matrix, were prepared in an internal mixer and characterized. The results of flame retardancy tests show that the joint use of APP and modified avocado seeds in the polymer mixture can provide flame-retardant characteristics. We observed a decrease in the heat release peak and in the total energy released, in addition to the generation of a residual intumescent layer after cone calorimeter tests. On the other hand, APP-functionalized PLA and avocado seed in concentrations of 10% and 30% (by weight), respectively, have a synergistic effect when incorporated into the polymer mixture; reducing the peak of the heat release rate (pHRR) by 58% and the total energy released by 34%, resulting in an amount of waste of about 18%. In the same way, this synergistic effect allowed the material to be classified as V-0 in the UL-94 tests as well as achieving LOI values of 30%. The results show that this combination can be classified as a self-extinguishing material. Therefore, this research aims to promote the use of more sustainable and renewable feedstocks to produce flame retardants in polymeric materials.

Graphical Abstract

以聚磷酸铵(APP)功能化聚乳酸(PLA)为基料,在内混机中制备了聚磷酸铵功能化聚乳酸(PLA)改性牛油果籽复合材料,并对其进行了表征。阻燃试验结果表明,APP与改性牛油果籽在聚合物混合物中联合使用可提供阻燃特性。我们观察到,在锥形量热计测试后,除了产生残余膨胀层外,放热峰和释放的总能量也有所下降。另一方面,应用程序功能化PLA和鳄梨种子分别以10%和30%(重量)的浓度加入到聚合物混合物中,具有协同效应;将释热率峰值(pHRR)降低58%,总释放能量降低34%,导致浪费量约为18%。以同样的方式,这种协同效应使材料在UL-94测试中被归类为V-0,并达到30%的LOI值。结果表明,该组合可归类为自熄材料。因此,本研究旨在促进使用更可持续和可再生的原料来生产高分子材料中的阻燃剂。图形抽象
{"title":"Synergistic effect between ammonium polyphosphate-functionalized poly(lactic acid) and phosphated avocado seed on the flame-retardant properties of poly(lactic acid)/ethylene–vinyl acetate copolymer composites","authors":"José David Zuluaga-Parra,&nbsp;Luis Francisco Ramos-de Valle,&nbsp;Saúl Sánchez-Valdéz,&nbsp;Rachel Faverzani-Magnago,&nbsp;Adriano da Silva,&nbsp;Luciano da Silva","doi":"10.1007/s13726-024-01345-2","DOIUrl":"10.1007/s13726-024-01345-2","url":null,"abstract":"<div><p>Composites of modified avocado seed with ammonium polyphosphate (APP)-functionalized poly(lactic acid) (PLA), in a PLA/ethylene–vinyl acetate copolymer (EVA) matrix, were prepared in an internal mixer and characterized. The results of flame retardancy tests show that the joint use of APP and modified avocado seeds in the polymer mixture can provide flame-retardant characteristics. We observed a decrease in the heat release peak and in the total energy released, in addition to the generation of a residual intumescent layer after cone calorimeter tests. On the other hand, APP-functionalized PLA and avocado seed in concentrations of 10% and 30% (by weight), respectively, have a synergistic effect when incorporated into the polymer mixture; reducing the peak of the heat release rate (pHRR) by 58% and the total energy released by 34%, resulting in an amount of waste of about 18%. In the same way, this synergistic effect allowed the material to be classified as V-0 in the UL-94 tests as well as achieving LOI values of 30%. The results show that this combination can be classified as a self-extinguishing material. Therefore, this research aims to promote the use of more sustainable and renewable feedstocks to produce flame retardants in polymeric materials.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"34 1","pages":"1 - 15"},"PeriodicalIF":2.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141340464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of polysulfone membranes and their application for removing rare earth ions from aqueous solutions by polyvinyl alcohol-enhanced ultrafiltration 聚砜膜的开发及其在通过聚乙烯醇增强超滤去除水溶液中稀土离子中的应用
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-06-13 DOI: 10.1007/s13726-024-01325-6
Nourhen Ben Kraiem, Asma Rhimi, Khira Zlaoui, Karima Horchani-Naifer, Amor Hafiane, Dorra Jellouli Ennigrou

A polymeric ultrafiltration membrane was synthesized from a homogeneous solution of polysulfone (16 and 18% by weights) using N-methyl-2-pyrrolidone as the solvent by employing a phase inversion technique. The prepared membranes were characterized by scanning electron microscopy, water contact angle, and Fourier-transform infrared spectroscopy. The membranes were tested for ultrafiltration properties such as yttrium and lanthanum retention, bovine serum albumin rejection, and ultrapure water permeation measurement. To increase the hydrophilicity of the polysulfone membranes, this study investigates how the amount of polysulfone affects the functions and structure of the membranes produced. Moreover, the addition of polyvinyl pyrrolidone improves the pore size of the membrane to become larger, which can increase its permeability and flux. Based on the results of retention and flux permeation results, a polysulfone membrane (16% by weights) showed the best performance. These membranes were subjected to ultrafiltration tests and the results showed an increased retention of yttrium ions and bovine serum albumin of 99.11% and 18%, respectively. The aim of this study is to evaluate the removal efficiency of yttrium and lanthanum ions (98%) at pH 6 under 4 bar transmembrane pressure using the polyelectrolyte-enhanced ultrafiltration process by incorporating polyvinyl alcohol as a polyelectrolyte chelating agent.

Graphical Abstract

采用相反转技术,以 N-甲基-2-吡咯烷酮为溶剂,从聚砜(重量比分别为 16% 和 18%)的均匀溶液中合成了一种聚合物超滤膜。通过扫描电子显微镜、水接触角和傅立叶变换红外光谱对制备的膜进行了表征。膜的超滤性能测试包括钇和镧的截留、牛血清白蛋白的排斥以及超纯水的渗透测量。为了增加聚砜膜的亲水性,本研究探讨了聚砜的用量如何影响所制备膜的功能和结构。此外,聚乙烯吡咯烷酮的加入可使膜的孔径变大,从而提高其渗透性和通量。根据截留和通量渗透的结果,聚砜膜(重量百分比为 16%)的性能最佳。对这些膜进行了超滤测试,结果显示钇离子和牛血清白蛋白的截留率分别提高了 99.11% 和 18%。本研究的目的是评估在 pH 值为 6、跨膜压力为 4 巴的条件下,使用聚乙烯醇作为聚电解质螯合剂的聚电解质增强超滤工艺去除钇离子和镧离子的效率(98%)。
{"title":"Development of polysulfone membranes and their application for removing rare earth ions from aqueous solutions by polyvinyl alcohol-enhanced ultrafiltration","authors":"Nourhen Ben Kraiem,&nbsp;Asma Rhimi,&nbsp;Khira Zlaoui,&nbsp;Karima Horchani-Naifer,&nbsp;Amor Hafiane,&nbsp;Dorra Jellouli Ennigrou","doi":"10.1007/s13726-024-01325-6","DOIUrl":"10.1007/s13726-024-01325-6","url":null,"abstract":"<div><p>A polymeric ultrafiltration membrane was synthesized from a homogeneous solution of polysulfone (16 and 18% by weights) using <i>N</i>-methyl-2-pyrrolidone as the solvent by employing a phase inversion technique. The prepared membranes were characterized by scanning electron microscopy, water contact angle, and Fourier-transform infrared spectroscopy. The membranes were tested for ultrafiltration properties such as yttrium and lanthanum retention, bovine serum albumin rejection, and ultrapure water permeation measurement. To increase the hydrophilicity of the polysulfone membranes, this study investigates how the amount of polysulfone affects the functions and structure of the membranes produced. Moreover, the addition of polyvinyl pyrrolidone improves the pore size of the membrane to become larger, which can increase its permeability and flux. Based on the results of retention and flux permeation results, a polysulfone membrane (16% by weights) showed the best performance. These membranes were subjected to ultrafiltration tests and the results showed an increased retention of yttrium ions and bovine serum albumin of 99.11% and 18%, respectively. The aim of this study is to evaluate the removal efficiency of yttrium and lanthanum ions (98%) at pH 6 under 4 bar transmembrane pressure using the polyelectrolyte-enhanced ultrafiltration process by incorporating polyvinyl alcohol as a polyelectrolyte chelating agent.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 10","pages":"1481 - 1491"},"PeriodicalIF":2.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141348478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green based composite polyurethane coatings for steel 用于钢材的绿色复合聚氨酯涂料
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-06-08 DOI: 10.1007/s13726-024-01341-6
Dmitry S. Konovalov, Natalia N. Saprykina, Vjacheslav V. Zuev

The polyurethane composites based on vegetable source were prepared and their properties were investigated. Castor oil was used as polyol and diatomite and birch flour were used as fillers. The introduction of diatomite led to development of ordered quasi-lamellar morphology of polyurethane matrix. This effect in combination with loading of birch flour with fiber structure allowed to obtain polymer composites with improved tensile strength (up to 14 MPa, an increase on five times in comparison with the neat polyurethane). The glass-transition temperatures of polymer composites increased more than 40 °C relative to the neat polymer. Adhesion to steel increased more than in five times in comparison with the neat polyurethane for composite containing 20 wt% diatomite additives). The SEM and FTIR spectroscopy techniques were used to evaluate the microphase structure of the polyurethane composites. SEM micrographs showed that the diatomite particles served as nucleation centers for formation of lamellar-like structure of PU matrix. At the optimal loading (20 wt%) the almost uniform lamellar-like structure of PU matrix was formed, that provided the best mechanical performance of PU composites. However, as FTIR study showed, formation of lamellar-like structure of PU matrix did not induce its inner microphase transformation. The presence of wood fibers in composites, despite their better mechanical performance, led to the decrease of their adhesion to steel.

Graphical abstract

制备了基于植物来源的聚氨酯复合材料,并对其性能进行了研究。蓖麻油用作多元醇,硅藻土和桦树粉用作填料。硅藻土的引入使聚氨酯基质形成了有序的准胶束状形态。这种效应与纤维结构中的桦树粉负载相结合,使聚合物复合材料的拉伸强度得到提高(高达 14 兆帕,与纯聚氨酯相比提高了五倍)。与纯聚合物相比,聚合物复合材料的玻璃转化温度提高了 40 °C。与纯聚氨酯相比,含有 20 wt%硅藻土添加剂的复合材料对钢材的粘附力增加了五倍以上。)扫描电镜和傅立叶变换红外光谱技术用于评估聚氨酯复合材料的微相结构。扫描电镜显微照片显示,硅藻土颗粒是聚氨酯基质形成片状结构的成核中心。在最佳添加量(20 wt%)下,聚氨酯基体形成了几乎均匀的片状结构,从而使聚氨酯复合材料具有最佳的机械性能。然而,傅立叶变换红外光谱研究表明,聚氨酯基质片状结构的形成并没有引起其内部微相的转变。尽管复合材料具有更好的机械性能,但复合材料中木纤维的存在导致其与钢的粘附力下降。
{"title":"Green based composite polyurethane coatings for steel","authors":"Dmitry S. Konovalov,&nbsp;Natalia N. Saprykina,&nbsp;Vjacheslav V. Zuev","doi":"10.1007/s13726-024-01341-6","DOIUrl":"10.1007/s13726-024-01341-6","url":null,"abstract":"<div><p>The polyurethane composites based on vegetable source were prepared and their properties were investigated. Castor oil was used as polyol and diatomite and birch flour were used as fillers. The introduction of diatomite led to development of ordered quasi-lamellar morphology of polyurethane matrix. This effect in combination with loading of birch flour with fiber structure allowed to obtain polymer composites with improved tensile strength (up to 14 MPa, an increase on five times in comparison with the neat polyurethane). The glass-transition temperatures of polymer composites increased more than 40 °C relative to the neat polymer. Adhesion to steel increased more than in five times in comparison with the neat polyurethane for composite containing 20 wt% diatomite additives). The SEM and FTIR spectroscopy techniques were used to evaluate the microphase structure of the polyurethane composites. SEM micrographs showed that the diatomite particles served as nucleation centers for formation of lamellar-like structure of PU matrix. At the optimal loading (20 wt%) the almost uniform lamellar-like structure of PU matrix was formed, that provided the best mechanical performance of PU composites. However, as FTIR study showed, formation of lamellar-like structure of PU matrix did not induce its inner microphase transformation. The presence of wood fibers in composites, despite their better mechanical performance, led to the decrease of their adhesion to steel.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 11","pages":"1627 - 1636"},"PeriodicalIF":2.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141368756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology and surface properties of polystyrene-block-poly(N-isopropylacrylamide) films 聚苯乙烯-块状-聚(N-异丙基丙烯酰胺)薄膜的形态和表面特性
IF 2.4 3区 化学 Q3 POLYMER SCIENCE Pub Date : 2024-06-08 DOI: 10.1007/s13726-024-01332-7
Elham Sabzi Dizajyekan, Morteza Nasiri, Farhang Abbasi

The self-assembly of diblock copolymers in thin films offers a promising method for developing innovative products in biomedical and engineering applications. In this study, we utilized amphiphilic polystyrene-block-poly(N-isopropylacrylamide) (PS-b-PNIPAM) diblock copolymers to explore and analyze the distinctive properties exhibited by their thin films when formed on the substrate. PS-b-PNIPAM copolymers, with different molecular weights (MWs) and narrow MW distributions, were synthesized via atom transfer radical polymerization. The subsequent fabrication of thin films, achieved through the spin coating method, revealed microphase separation phenomena. The interplay of MW and composition exerted a notable influence on the ordered structures, giving rise to a diverse array of morphologies within the thin films. This intricate relationship between molecular characteristics and the resulting material structures highlights the importance of tailoring both MW and composition for the precise control and manipulation of thin film properties in the context of PS-b-PNIPAM copolymers. We also examined the impact of conducting the direct immersion annealing (DIA) on surfaces created with the amphiphilic PS-b-PNIPAM copolymer. The thermo-responsivity of amphiphilic PS-b-PNIPAM copolymer and the effect of DIA on the surface properties were examined. Our results showed that the surface morphology could be controlled by the DIA process. Furthermore, it was observed that the MW of the diblock copolymers played a significant role in influencing the orientation of the separated microdomains, further emphasizing the multifaceted interplay of parameters in tailoring the properties of surfaces created with PS-b-PNIPAM copolymers.

Graphical Abstract

薄膜中二嵌段共聚物的自组装为开发生物医学和工程应用领域的创新产品提供了一种前景广阔的方法。在这项研究中,我们利用两亲性聚苯乙烯-嵌段-聚(N-异丙基丙烯酰胺)(PS-b-PNIPAM)二嵌段共聚物来探索和分析它们在基底上形成薄膜时所表现出的独特性能。PS-b-PNIPAM 共聚物具有不同的分子量(MW)和较窄的分子量分布,是通过原子转移自由基聚合合成的。随后通过旋涂法制造薄膜,发现了微相分离现象。分子量和成分的相互作用对有序结构产生了显著的影响,从而在薄膜中形成了多种多样的形态。分子特性和由此产生的材料结构之间的这种错综复杂的关系突出表明,在 PS-b-PNIPAM 共聚物中,调整分子量和成分对于精确控制和操纵薄膜特性非常重要。我们还研究了直接浸渍退火(DIA)对两亲性 PS-b-PNIPAM 共聚物表面的影响。我们考察了两亲性 PS-b-PNIPAM 共聚物的热响应性以及 DIA 对表面特性的影响。结果表明,表面形态可由 DIA 工艺控制。此外,我们还观察到,二嵌段共聚物的分子量在影响分离微域的取向方面发挥了重要作用,这进一步强调了各种参数在定制 PS-b-PNIPAM 共聚物表面特性方面的多方面相互作用。
{"title":"Morphology and surface properties of polystyrene-block-poly(N-isopropylacrylamide) films","authors":"Elham Sabzi Dizajyekan,&nbsp;Morteza Nasiri,&nbsp;Farhang Abbasi","doi":"10.1007/s13726-024-01332-7","DOIUrl":"10.1007/s13726-024-01332-7","url":null,"abstract":"<div><p>The self-assembly of diblock copolymers in thin films offers a promising method for developing innovative products in biomedical and engineering applications. In this study, we utilized amphiphilic polystyrene-<i>block</i>-poly(<i>N</i>-isopropylacrylamide) (PS-<i>b</i>-PNIPAM) diblock copolymers to explore and analyze the distinctive properties exhibited by their thin films when formed on the substrate. PS-<i>b</i>-PNIPAM copolymers, with different molecular weights (MWs) and narrow MW distributions, were synthesized via atom transfer radical polymerization. The subsequent fabrication of thin films, achieved through the spin coating method, revealed microphase separation phenomena. The interplay of MW and composition exerted a notable influence on the ordered structures, giving rise to a diverse array of morphologies within the thin films. This intricate relationship between molecular characteristics and the resulting material structures highlights the importance of tailoring both MW and composition for the precise control and manipulation of thin film properties in the context of PS-<i>b</i>-PNIPAM copolymers. We also examined the impact of conducting the direct immersion annealing (DIA) on surfaces created with the amphiphilic PS-<i>b</i>-PNIPAM copolymer. The thermo-responsivity of amphiphilic PS-<i>b</i>-PNIPAM copolymer and the effect of DIA on the surface properties were examined. Our results showed that the surface morphology could be controlled by the DIA process. Furthermore, it was observed that the MW of the diblock copolymers played a significant role in influencing the orientation of the separated microdomains, further emphasizing the multifaceted interplay of parameters in tailoring the properties of surfaces created with PS-<i>b</i>-PNIPAM copolymers.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 11","pages":"1637 - 1649"},"PeriodicalIF":2.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141370621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Iranian Polymer Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1