Pub Date : 2024-03-05DOI: 10.1007/s10910-024-01583-y
Jorge I. Martínez-Araya
The dual descriptor potential (DDP) has appeared in several papers, It is proposed as a local reactivity descriptor within the framework of the Conceptual Density Functional Theory and as a complementary tool of the molecular electrostatic potential (MEP) rather than the dual descriptor (DD). DDP provides information concerning the most energetically favorable sites to undergo nucleophilic and electrophilic attacks. Unlike the dual descriptor, DDP is directly related with energy. Furthermore, the DDP seems to depure the scalar field, allowing us to unveil the predominance of nucleophilic and electrophilic regions on a molecule. This is in stark contrast to the dual descriptor, which tends to scatter around the molecule, hindering the interpretation of the local reactivity on regions that exceed the atomic volume. To the best of our knowledge, this is the first time that DDP is represented as a 3D picture. To assess its capability to describe interaction among molecules, DDP was tested on some molecular systems, along with MEP. Results show that the joint use of these tools helps in the understanding of certain experimental evidences, serving as an alternative to the molecular orbital theory.
{"title":"The dual descriptor potential","authors":"Jorge I. Martínez-Araya","doi":"10.1007/s10910-024-01583-y","DOIUrl":"10.1007/s10910-024-01583-y","url":null,"abstract":"<div><p>The dual descriptor potential (DDP) has appeared in several papers, It is proposed as a local reactivity descriptor within the framework of the Conceptual Density Functional Theory and as a complementary tool of the molecular electrostatic potential (MEP) rather than the dual descriptor (DD). DDP provides information concerning the most energetically favorable sites to undergo nucleophilic and electrophilic attacks. Unlike the dual descriptor, DDP is directly related with energy. Furthermore, the DDP seems to depure the scalar field, allowing us to unveil the predominance of nucleophilic and electrophilic regions on a molecule. This is in stark contrast to the dual descriptor, which tends to scatter around the molecule, hindering the interpretation of the local reactivity on regions that exceed the atomic volume. To the best of our knowledge, this is the first time that DDP is represented as a 3D picture. To assess its capability to describe interaction among molecules, DDP was tested on some molecular systems, along with MEP. Results show that the joint use of these tools helps in the understanding of certain experimental evidences, serving as an alternative to the molecular orbital theory.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1007/s10910-024-01581-0
Yaser Alizadeh, Nino Bašić, Ivan Damnjanović, Tomislav Došlić, Tomaž Pisanski, Dragan Stevanović, Kexiang Xu
A nonnegative integer p is realizable by a graph-theoretical invariant I if there exists a graph G such that (I(G) = p). The inverse problem for I consists of finding all nonnegative integers p realizable by I. In this paper, we consider and solve the inverse problem for the Mostar index, a recently introduced graph-theoretical invariant which attracted a lot of attention in recent years in both the mathematical and the chemical community. We show that a nonnegative integer is realizable by the Mostar index if and only if it is not equal to one. Besides presenting the complete solution to the problem, we also present some empirical observations and outline several open problems and possible directions for further research.
如果存在一个图 G,使得 (I(G) = p) ,那么一个非负整数 p 就可以通过图论不变式 I 来实现。在本文中,我们考虑并解决了莫斯塔尔指数的逆问题。莫斯塔尔指数是最近引入的图论不变式,近年来在数学界和化学界引起了广泛关注。我们证明,当且仅当莫斯塔尔指数不等于 1 时,一个非负整数是可以通过莫斯塔尔指数实现的。除了提出问题的完整解决方案,我们还提出了一些经验观察,并概述了几个未决问题和可能的进一步研究方向。
{"title":"Solving the Mostar index inverse problem","authors":"Yaser Alizadeh, Nino Bašić, Ivan Damnjanović, Tomislav Došlić, Tomaž Pisanski, Dragan Stevanović, Kexiang Xu","doi":"10.1007/s10910-024-01581-0","DOIUrl":"10.1007/s10910-024-01581-0","url":null,"abstract":"<div><p>A nonnegative integer <i>p</i> is realizable by a graph-theoretical invariant <i>I</i> if there exists a graph <i>G</i> such that <span>(I(G) = p)</span>. The inverse problem for <i>I</i> consists of finding all nonnegative integers <i>p</i> realizable by <i>I</i>. In this paper, we consider and solve the inverse problem for the Mostar index, a recently introduced graph-theoretical invariant which attracted a lot of attention in recent years in both the mathematical and the chemical community. We show that a nonnegative integer is realizable by the Mostar index if and only if it is not equal to one. Besides presenting the complete solution to the problem, we also present some empirical observations and outline several open problems and possible directions for further research.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.1007/s10910-024-01576-x
Praful Gagrani, Victor Blanco, Eric Smith, David Baum
Developing a mathematical understanding of autocatalysis in reaction networks has both theoretical and practical implications. We review definitions of autocatalytic networks and prove some properties for minimal autocatalytic subnetworks (MASs). We show that it is possible to classify MASs in equivalence classes, and develop mathematical results about their behavior. We also provide linear-programming algorithms to exhaustively enumerate them and a scheme to visualize their polyhedral geometry and combinatorics. We then define cluster chemical reaction networks, a framework for coarse-graining real chemical reactions with positive integer conservation laws. We find that the size of the list of minimal autocatalytic subnetworks in a maximally connected cluster chemical reaction network with one conservation law grows exponentially in the number of species. We end our discussion with open questions concerning an ecosystem of autocatalytic subnetworks and multidisciplinary opportunities for future investigation.
从数学角度理解反应网络中的自催化既有理论意义,也有实践意义。我们回顾了自催化网络的定义,并证明了最小自催化子网络(MAS)的一些特性。我们证明可以将 MAS 划分为等价类,并得出了有关其行为的数学结果。我们还提供了详尽列举 MAS 的线性编程算法,以及可视化其多面体几何和组合的方案。然后,我们定义了簇化学反应网络,这是一个对具有正整数守恒定律的真实化学反应进行粗粒化的框架。我们发现,在具有一个守恒定律的最大连接簇化学反应网络中,最小自催化子网络列表的大小会随着物种数量的增加而呈指数增长。最后,我们讨论了有关自催化子网络生态系统的开放性问题以及未来研究的多学科机会。
{"title":"Polyhedral geometry and combinatorics of an autocatalytic ecosystem","authors":"Praful Gagrani, Victor Blanco, Eric Smith, David Baum","doi":"10.1007/s10910-024-01576-x","DOIUrl":"10.1007/s10910-024-01576-x","url":null,"abstract":"<div><p>Developing a mathematical understanding of autocatalysis in reaction networks has both theoretical and practical implications. We review definitions of autocatalytic networks and prove some properties for minimal autocatalytic subnetworks (MASs). We show that it is possible to classify MASs in equivalence classes, and develop mathematical results about their behavior. We also provide linear-programming algorithms to exhaustively enumerate them and a scheme to visualize their polyhedral geometry and combinatorics. We then define <i>cluster chemical reaction networks</i>, a framework for coarse-graining real chemical reactions with positive integer conservation laws. We find that the size of the list of minimal autocatalytic subnetworks in a maximally connected cluster chemical reaction network with one conservation law grows exponentially in the number of species. We end our discussion with open questions concerning an ecosystem of autocatalytic subnetworks and multidisciplinary opportunities for future investigation.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1007/s10910-024-01577-w
R. K. Mohanty, Divya Sharma
This paper discusses about a new compact 2-level implicit numerical method in the form of exponential approximation for finding the approximate solution of nonlinear fourth order Kuramoto–Sivashinsky and Fisher–Kolmogorov equations, which have applications in chemical engineering. The described method has an accuracy of temporal order two and a spatial order three (or four) on a variable (or constant) mesh. The approach has been demonstrated to be applicable to both non-singular and singular issues. This article has established the stability of the current technique. The suggested approach is used to solve several benchmark nonlinear parabolic problems associated in chemistry and chemical engineering, and the computed results are compared with the existing results to demonstrate the proposed method's superiority.
{"title":"A new 2-level implicit high accuracy compact exponential approximation for the numerical solution of nonlinear fourth order Kuramoto–Sivashinsky and Fisher–Kolmogorov equations","authors":"R. K. Mohanty, Divya Sharma","doi":"10.1007/s10910-024-01577-w","DOIUrl":"10.1007/s10910-024-01577-w","url":null,"abstract":"<div><p>This paper discusses about a new compact 2-level implicit numerical method in the form of exponential approximation for finding the approximate solution of nonlinear fourth order Kuramoto–Sivashinsky and Fisher–Kolmogorov equations, which have applications in chemical engineering. The described method has an accuracy of temporal order two and a spatial order three (or four) on a variable (or constant) mesh. The approach has been demonstrated to be applicable to both non-singular and singular issues. This article has established the stability of the current technique. The suggested approach is used to solve several benchmark nonlinear parabolic problems associated in chemistry and chemical engineering, and the computed results are compared with the existing results to demonstrate the proposed method's superiority.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1007/s10910-024-01578-9
Samir Kenouche, Jorge I. Martínez-Araya
In this paper, we propose a conceptual approach to assign a “mathematical meaning” to the non-local function (chi (textbf{r}, mathbf{r'})). Mathematical evaluation of this kernel remains difficult since it is a function depending on six Cartesian coordinates. The idea behind this approach is to look for a limit process in order to explore mathematically this non-local function. According to our approach, the bra (langle chi ^{xi }_{r'} vert ) is the linear functional that corresponds to any ket (vert psi rangle ), the value (langle textbf{r}' vert psi rangle ). In condensed writing (langle chi ^{xi }_{r'} vert , langle textbf{r} vert psi rangle = langle textbf{r}' vert psi rangle ), and this is achieved by exploiting the sifting property of the delta function that gives it the sense of a measure, i.e. measuring the value of (psi (textbf{r})) at the point (textbf{r}'). It is worth noting that (langle chi ^{xi }_{r'} vert ) is not an operator in the sense that when it is applied on a ket, it produces a number (psi (textbf{r} = textbf{r}')) and not a ket. The quantity (chi ^{xi }_{r'} (textbf{r})) proceed as nascent delta function, turning into a real delta function in the limit where (xi rightarrow 0). In this regard, (chi ^{xi }_{r'} (textbf{r})) acts as a limit of an integral operator kernel in a convolution integration procedure.
在本文中,我们提出了一种概念方法来为非局部函数 (chi (textbf{r}, mathbf{r'})) 赋予 "数学意义"。由于这个核是一个取决于六个直角坐标的函数,因此对它进行数学评估仍然很困难。这种方法背后的想法是寻找一个极限过程,以便从数学上探索这个非局部函数。根据我们的方法,bra (langle chi ^{xi }_{r'} vert )是线性函数,它对应于任意 ket (vert psi rangle ),值 (langle textbf{r}' vert psi rangle )。用浓缩的写法来写(langle chi ^{xi }_{r'}vert , langle textbf{r}vert psi rangle = langle textbf{r}' vert psi rangle ),而这是通过利用德尔塔函数的筛分特性实现的,该特性使德尔塔函数具有度量的意义,即度量在点(textbf{r}')上的(psi (textbf{r})) 的值。值得注意的是(langle chi ^{xi }_{r'} vert )不是一个算子,因为当它应用在一个ket上时,它产生的是(psi (textbf{r} = textbf{r}')) 而不是一个ket。量 (chi ^{xi }_{r'} (textbf{r})) 作为新生德尔塔函数进行,在 (xi rightarrow 0) 的极限处变成实德尔塔函数。在这方面,(chi ^{xi }_{r'} (textbf{r})) 在卷积积分过程中充当了积分算子核的极限。
{"title":"The linear response function (chi (textbf{r}, textbf{r}^{'})): another perspective","authors":"Samir Kenouche, Jorge I. Martínez-Araya","doi":"10.1007/s10910-024-01578-9","DOIUrl":"10.1007/s10910-024-01578-9","url":null,"abstract":"<div><p>In this paper, we propose a conceptual approach to assign a “mathematical meaning” to the non-local function <span>(chi (textbf{r}, mathbf{r'}))</span>. Mathematical evaluation of this kernel remains difficult since it is a function depending on six Cartesian coordinates. The idea behind this approach is to look for a limit process in order to explore mathematically this non-local function. According to our approach, the bra <span>(langle chi ^{xi }_{r'} vert )</span> is the linear functional that corresponds to any ket <span>(vert psi rangle )</span>, the value <span>(langle textbf{r}' vert psi rangle )</span>. In condensed writing <span>(langle chi ^{xi }_{r'} vert , langle textbf{r} vert psi rangle = langle textbf{r}' vert psi rangle )</span>, and this is achieved by exploiting the sifting property of the delta function that gives it the sense of a measure, i.e. measuring the value of <span>(psi (textbf{r}))</span> at the point <span>(textbf{r}')</span>. It is worth noting that <span>(langle chi ^{xi }_{r'} vert )</span> is not an operator in the sense that when it is applied on a ket, it produces a number <span>(psi (textbf{r} = textbf{r}'))</span> and not a ket. The quantity <span>(chi ^{xi }_{r'} (textbf{r}))</span> proceed as nascent delta function, turning into a real delta function in the limit where <span>(xi rightarrow 0)</span>. In this regard, <span>(chi ^{xi }_{r'} (textbf{r}))</span> acts as a limit of an integral operator kernel in a convolution integration procedure.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 10","pages":"2880 - 2888"},"PeriodicalIF":1.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139918957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1007/s10910-024-01575-y
Béla Barabás, Ottilia Fülöp, Marcell Nagy, Gyula Pályi
Eleven years ago, an important summary of the valorization of biomass (Tuck et al., Science 337:695–699, 2012, https://doi.org/10.1126/science.1218930) appeared. This milestone paper gave a new impulse to biomass research. The goal of the present work was to analyze by means of scientific literature statistics the main parameters of the evolution of thoughts, ideas, and results induced by this paper in a 10-year period following its publication (from August 2012 to August 2022).
{"title":"Progress in the valorization of biomass: a statistical perspective","authors":"Béla Barabás, Ottilia Fülöp, Marcell Nagy, Gyula Pályi","doi":"10.1007/s10910-024-01575-y","DOIUrl":"10.1007/s10910-024-01575-y","url":null,"abstract":"<div><p>Eleven years ago, an important summary of the valorization of biomass (Tuck et al., Science 337:695–699, 2012, https://doi.org/10.1126/science.1218930) appeared. This milestone paper gave a new impulse to biomass research. The goal of the present work was to analyze by means of scientific literature statistics the main parameters of the evolution of thoughts, ideas, and results induced by this paper in a 10-year period following its publication (from August 2012 to August 2022).</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 5","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10910-024-01575-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139918949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20DOI: 10.1007/s10910-023-01570-9
Mehri Hasani, Masoud Ghods
In this research, medications used for treating heart disease, specifically focusing on calcium channel blockers, were analyzed. A computer-based computing technique was used to simplify calculations and data analysis. Using MATLAB coding, we calculated their degree-based topological indices obtained from the M-polynomial. Various regression analyses were used to establish a relationship between these indices and the physicochemical features of the drugs. QSPR models were created to determine the effectiveness by correlating these indices with eight physicochemical features of the drugs. Confidence intervals were calculated at a 95% level for the intercept and slope in the linear regression models. The results indicate that the inverse sum indeg index (I) proved to be the most dependable indices for predicting boiling point, flashpoint, and enthalpy of vaporization. The symmetric division index (SDD) was effective in forecasting polarizability and molar refractivity, while the second modified Zagreb index ((^{m}M_{2})) emerged as the best predictor for molar volume in linear, quadratic, and cubic regression models. Furthermore, the forgotten index (F) was identified as the top estimator for boiling point, flashpoint, enthalpy, and polar surface area in both quadratic and cubic regression models. Lastly, the SDD index, with a correlation coefficient of R = 1, is proposed as the most accurate estimator for the characteristics of polar surface area in quadratic, and cubic regression equations. Calculated feature values show a strong correlation with the actual values, indicating the indices’ reliable predictive capabilities.
本研究分析了治疗心脏病的药物,特别是钙通道阻滞剂。为了简化计算和数据分析,我们采用了基于计算机的计算技术。通过 MATLAB 编码,我们计算了从 M 多项式得到的基于度的拓扑指数。通过各种回归分析,建立了这些指数与药物理化特征之间的关系。通过将这些指数与药物的八个理化特征相关联,我们建立了 QSPR 模型来确定药物的有效性。对线性回归模型中的截距和斜率进行了置信区间计算,置信度为 95%。结果表明,在预测沸点、闪点和汽化焓时,反和 indeg 指数 (I) 被证明是最可靠的指数。对称分割指数(SDD)可有效预测极化率和摩尔折射率,而第二修正萨格勒布指数((^{m}M_{2}))在线性、二次和三次回归模型中成为摩尔体积的最佳预测指标。此外,在二次和三次回归模型中,被遗忘指数(F)被认为是沸点、闪点、焓和极性表面积的最佳预测指标。最后,相关系数为 R = 1 的 SDD 指数被认为是二次和三次回归方程中极性表面积特征最准确的估计值。计算得出的特征值与实际值具有很强的相关性,表明这些指数具有可靠的预测能力。
{"title":"Calculation of topological indices along with MATLAB coding in QSPR analysis of calcium channel-blocking cardiac drugs","authors":"Mehri Hasani, Masoud Ghods","doi":"10.1007/s10910-023-01570-9","DOIUrl":"10.1007/s10910-023-01570-9","url":null,"abstract":"<div><p>In this research, medications used for treating heart disease, specifically focusing on calcium channel blockers, were analyzed. A computer-based computing technique was used to simplify calculations and data analysis. Using MATLAB coding, we calculated their degree-based topological indices obtained from the M-polynomial. Various regression analyses were used to establish a relationship between these indices and the physicochemical features of the drugs. QSPR models were created to determine the effectiveness by correlating these indices with eight physicochemical features of the drugs. Confidence intervals were calculated at a 95% level for the intercept and slope in the linear regression models. The results indicate that the inverse sum indeg index (I) proved to be the most dependable indices for predicting boiling point, flashpoint, and enthalpy of vaporization. The symmetric division index (SDD) was effective in forecasting polarizability and molar refractivity, while the second modified Zagreb index (<span>(^{m}M_{2})</span>) emerged as the best predictor for molar volume in linear, quadratic, and cubic regression models. Furthermore, the forgotten index (F) was identified as the top estimator for boiling point, flashpoint, enthalpy, and polar surface area in both quadratic and cubic regression models. Lastly, the SDD index, with a correlation coefficient of R = 1, is proposed as the most accurate estimator for the characteristics of polar surface area in quadratic, and cubic regression equations. Calculated feature values show a strong correlation with the actual values, indicating the indices’ reliable predictive capabilities.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 10","pages":"2456 - 2477"},"PeriodicalIF":1.7,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139910647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14DOI: 10.1007/s10910-024-01580-1
E. Ventura, Rodolpho L. R. Alves, Silmar A. do Monte
A semi-analytical solution for the time dependence of the concentration of the intermediate is derived, in the case of two parallel mixed second order reactions followed by a first order reaction. The solution is restricted to equal initial concentrations for the reactants, and it is connected to the exponential integral. From the solution and through a proper choice of the dimensionless time (u) and concentration of the intermediate (y) one obtains a very simple relation between the maximum concentration of the intermediate (ymax) and the time associated with this concentration (umax). This relation is governed by a parameter (β) which depends on the three rate constants and on the initial concentration. The smaller is β the larger are umax and ymax, and the slower is the decay of y. An approximate expression connecting umax and β, has also been obtained, and it yields maximum errors of ~ 8% and ~ 15% for umax and ymax, respectively. The obtained expression can be very useful from the experimental point of view, as it allows an a priori selection of the most suitable experimental technique to detect the intermediate, simply comparing its time resolution with tmax (that is, umax transformed to a time unit). An illustrative calculation is also discussed.
{"title":"The kinetics of three coupled irreversible elementary reactions: two parallel mixed second order reactions followed by a first order reaction","authors":"E. Ventura, Rodolpho L. R. Alves, Silmar A. do Monte","doi":"10.1007/s10910-024-01580-1","DOIUrl":"10.1007/s10910-024-01580-1","url":null,"abstract":"<div><p>A semi-analytical solution for the time dependence of the concentration of the intermediate is derived, in the case of two parallel mixed second order reactions followed by a first order reaction. The solution is restricted to equal initial concentrations for the reactants, and it is connected to the exponential integral. From the solution and through a proper choice of the dimensionless time (u) and concentration of the intermediate (y) one obtains a very simple relation between the maximum concentration of the intermediate (y<sub>max</sub>) and the time associated with this concentration (u<sub>max</sub>). This relation is governed by a parameter (β) which depends on the three rate constants and on the initial concentration. The smaller is β the larger are u<sub>max</sub> and y<sub>max</sub>, and the slower is the decay of y. An approximate expression connecting u<sub>max</sub> and β, has also been obtained, and it yields maximum errors of ~ 8% and ~ 15% for u<sub>max</sub> and y<sub>max</sub>, respectively. The obtained expression can be very useful from the experimental point of view, as it allows an a priori selection of the most suitable experimental technique to detect the intermediate, simply comparing its time resolution with t<sub>max</sub> (that is, u<sub>max</sub> transformed to a time unit). An illustrative calculation is also discussed.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 4","pages":"922 - 935"},"PeriodicalIF":1.7,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-06DOI: 10.1007/s10910-023-01573-6
Wasim Sajjad, Xiang-Feng Pan, Qura tul Ain
The two-point effective resistance of an electrical network is a classical problem in theory of electrical networks. In a graph G the resistance distance among two vertices is an effective resistance between the respective vertices in the extracted electrical network from a graph G by setting every edge of graph G with a unit resistor. The sum of resistance distance between all pairs of vertices of graph G is the Kirchhoff index. Body centered cubic unit cells are made of atoms arranged in a cube, with one atom at each corner and another atom at the center. Many chemists and mathematicians have studied the body centered cubic structure (BCC) due to its atom arrangement. Utilizing some techniques from electrical networks theory, we compute the effective resistance among every pair of vertices of body centered cubic structure (BCC). We also apply our results to derive the formula for the Kirchhoff index.
电气网络的两点有效电阻是电气网络理论中的一个经典问题。在图 G 中,通过给图 G 的每条边设置一个单位电阻,两个顶点之间的电阻距离即为从图 G 中提取的电气网络中各顶点之间的有效电阻。图 G 中所有顶点对之间的电阻距离之和就是基尔霍夫指数。体心立方单元是由原子排列成的立方体,每个角上有一个原子,中心有另一个原子。由于体心立方结构(BCC)的原子排列方式,许多化学家和数学家都对其进行过研究。我们利用电气网络理论的一些技术,计算了体心立方结构(BCC)每对顶点之间的有效电阻。我们还应用我们的结果推导出了基尔霍夫指数公式。
{"title":"Computation of resistance distance with Kirchhoff index of body centered cubic structure","authors":"Wasim Sajjad, Xiang-Feng Pan, Qura tul Ain","doi":"10.1007/s10910-023-01573-6","DOIUrl":"10.1007/s10910-023-01573-6","url":null,"abstract":"<div><p>The two-point effective resistance of an electrical network is a classical problem in theory of electrical networks. In a graph <i>G</i> the resistance distance among two vertices is an effective resistance between the respective vertices in the extracted electrical network from a graph <i>G</i> by setting every edge of graph <i>G</i> with a unit resistor. The sum of resistance distance between all pairs of vertices of graph <i>G</i> is the Kirchhoff index. Body centered cubic unit cells are made of atoms arranged in a cube, with one atom at each corner and another atom at the center. Many chemists and mathematicians have studied the body centered cubic structure (BCC) due to its atom arrangement. Utilizing some techniques from electrical networks theory, we compute the effective resistance among every pair of vertices of body centered cubic structure (BCC). We also apply our results to derive the formula for the Kirchhoff index.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 4","pages":"902 - 921"},"PeriodicalIF":1.7,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1007/s10910-023-01568-3
David A. Winkler
A large fraction of the world’s population is directly impacted by acute or chronic viral infections, many of which have high mortality. As was brought home to us in 2020, viruses also have great potential to generate global pandemics that have killed millions and caused massive damage to economies. Clearly, we need cost-effective and rapid methods for finding drug treatments for poorly met infectious diseases and for responding effectively to the current and future pandemics. Repurposing or off-label use of existing drugs, whose safety and pharmacokinetics are well understood, is one useful way to provide fast drug therapies for patients. Computational methods have an important role to play because of their increasing effectiveness, high speed, and relatively low cost. Here we review the application of the main types of computational drug repurposing methods to discovery of therapies for viral diseases and for future pandemics highly likely to be caused by viral pathogens.