首页 > 最新文献

Journal of Sol-Gel Science and Technology最新文献

英文 中文
Unveiling Bi-functional potential of ZnMoO4-enriched nanoflakes modified electrodes for efficient photocatalysis and supercapacitors 揭示富含 ZnMoO4 的纳米片修饰电极在高效光催化和超级电容器方面的双功能潜力
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-07 DOI: 10.1007/s10971-024-06500-y
Sufyan Ashraf, Zeshan Ali Sandhu, Muhammad Asam Raza, Ali Haider Bhalli, Muhammad Hamayun, Adnan Ashraf, Abdullah G. Al-Sehemi

The sol-gel method was used to synthesize pure ZnO and MoO4@ZnO nanostructures for dual functionality in supercapacitors and photocatalysis. The material properties were examined using photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX). A PL study showed the presence of an intense peak centering approximately around 405 nm, which is primarily due to the near-band edge emission of ZnO excitonic recombination. XRD confirmed the formation of the ZnMoO4 crystal system. The SEM showed uniformed nano-flakes which was validated by EDX analysis having typical peaks of Zn, O, and Mo. The synthesized materials were evaluated for bi-functional application, including energy storage and photocatalytic degradation of methylene blue (MB) under solar irradiation. The 5% MoO4@ZnO nanomaterials showed uniform nanoflakes morphology with remarkable photocatalytic as well as electrochemical excellence. Notably, the 5% MoO4@ZnO nanomaterial degraded MB about 90.02% within 200 min. Galvanostatic charge discharge (GCD) exhibited an outstanding specific capacitance of 1026 F/g at 1 A/g for 5% MoO4@ZnO. The columbic efficiency of the 5% MoO4@ZnO electrode material was assessed until 2000 cycles, that retains its stability about 87%. The cyclic voltammetry was also assessed for the calculation of specific capacitance and energy density. The 5% MoO4@ZnO depicted excellent capacitance and energy density about 915.62 F/g and 53.72 Wh/kg respectively. This study showed that 5% MoO4@ZnO is a suitable candidate with the exceptional dual function that can be employed for the development of next-generation energy storage and photocatalysis.

Graphical Abstract

采用溶胶-凝胶法合成了纯氧化锌和 MoO4@ZnO 纳米结构,用于超级电容器和光催化的双重功能。使用光致发光光谱(PL)、傅立叶变换红外光谱(FTIR)、X 射线衍射光谱(XRD)、扫描电子显微镜(SEM)和能量色散光谱(EDX)对材料特性进行了检测。聚光研究显示,在大约 405 纳米波长的中心存在一个强烈的峰值,这主要是由于氧化锌激子重组的近带边缘发射所致。XRD 证实了 ZnMoO4 晶体体系的形成。扫描电子显微镜(SEM)显示出均匀的纳米薄片,EDX 分析也验证了这一点,该分析具有典型的 Zn、O 和 Mo 峰。对合成材料的双功能应用进行了评估,包括储能和在太阳照射下光催化降解亚甲基蓝(MB)。5%的MoO4@ZnO纳米材料呈现出均匀的纳米片状形态,具有显著的光催化和电化学性能。值得注意的是,5% MoO4@ZnO 纳米材料在 200 分钟内降解了约 90.02% 的甲基溴。电静电荷放电(GCD)显示,5% MoO4@ZnO 在 1 A/g 时的比电容为 1026 F/g。对 5% MoO4@ZnO 电极材料的电容效率进行了评估,直到 2000 次循环后,其稳定性仍保持在 87% 左右。还对循环伏安法进行了评估,以计算比电容和能量密度。5%MoO4@ZnO 的电容和能量密度分别达到了 915.62 F/g 和 53.72 Wh/kg。这项研究表明,5% MoO4@ZnO 是一种具有特殊双重功能的合适候选材料,可用于开发下一代储能和光催化技术。
{"title":"Unveiling Bi-functional potential of ZnMoO4-enriched nanoflakes modified electrodes for efficient photocatalysis and supercapacitors","authors":"Sufyan Ashraf,&nbsp;Zeshan Ali Sandhu,&nbsp;Muhammad Asam Raza,&nbsp;Ali Haider Bhalli,&nbsp;Muhammad Hamayun,&nbsp;Adnan Ashraf,&nbsp;Abdullah G. Al-Sehemi","doi":"10.1007/s10971-024-06500-y","DOIUrl":"10.1007/s10971-024-06500-y","url":null,"abstract":"<div><p>The sol-gel method was used to synthesize pure ZnO and MoO<sub>4</sub>@ZnO nanostructures for dual functionality in supercapacitors and photocatalysis. The material properties were examined using photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX). A PL study showed the presence of an intense peak centering approximately around 405 nm, which is primarily due to the near-band edge emission of ZnO excitonic recombination. XRD confirmed the formation of the ZnMoO<sub>4</sub> crystal system. The SEM showed uniformed nano-flakes which was validated by EDX analysis having typical peaks of Zn, O, and Mo. The synthesized materials were evaluated for bi-functional application, including energy storage and photocatalytic degradation of methylene blue (MB) under solar irradiation. The 5% MoO<sub>4</sub>@ZnO nanomaterials showed uniform nanoflakes morphology with remarkable photocatalytic as well as electrochemical excellence. Notably, the 5% MoO<sub>4</sub>@ZnO nanomaterial degraded MB about 90.02% within 200 min. Galvanostatic charge discharge (GCD) exhibited an outstanding specific capacitance of 1026 F/g at 1 A/g for 5% MoO<sub>4</sub>@ZnO. The columbic efficiency of the 5% MoO<sub>4</sub>@ZnO electrode material was assessed until 2000 cycles, that retains its stability about 87%. The cyclic voltammetry was also assessed for the calculation of specific capacitance and energy density. The 5% MoO<sub>4</sub>@ZnO depicted excellent capacitance and energy density about 915.62 F/g and 53.72 Wh/kg respectively. This study showed that 5% MoO<sub>4</sub>@ZnO is a suitable candidate with the exceptional dual function that can be employed for the development of next-generation energy storage and photocatalysis.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"25 - 43"},"PeriodicalIF":2.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery 用于高性能水性锌离子电池的掺锌四氧化三锰/氧化石墨烯阴极材料
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-06 DOI: 10.1007/s10971-024-06499-2
Linheng Ge, Hong Zhang, Zirui Wang, Qingli Gao, Manman Ren, Xiaoxia Cai, Qinze Liu, Weiliang Liu, Jinshui Yao

Due to its abundant zinc resources, high safety and low cost, aqueous zinc-ion batteries (AZIBs) are considered one of the most interesting lithium-ion battery replacement technologies. Herein, a novel Zn-doped cathode material is achieved via pre-intercalation of Zn2+ into the prepared manganese tetroxide (Mn3O4)/graphene oxide (GO). The pre-intercalation of Zn2+ effectively increases the lattice spacing of Mn3O4 and reduces the barrier of insertion/extraction of Zn2+, thus improving the kinetic properties of the material. Meanwhile, the conductive carbon skeleton GO successfully combines with polyethyleneimine and Mn3O4, which can expand electron and ion conductivity and avoid chemical bulk change. This unique structure enables the Zn-doped cathode a reversible specific capacity with excellent performance (170 mAh g−1 at 200 mA g−1). Furthermore, the diffusion coefficient of the Zn-doped cathode is 10−9–10−10cm−2 s−1. Therefore, this study introduces a viable approach for the practical implementation of advanced electrode materials in AZIBs applications.

Graphical Abstract

由于锌资源丰富、安全性高且成本低,锌离子水电池(AZIBs)被认为是最有趣的锂离子电池替代技术之一。本文通过在制备的四氧化三锰(Mn3O4)/氧化石墨烯(GO)中预掺杂 Zn2+ 实现了一种新型掺锌正极材料。Zn2+ 的预掺杂有效地增加了 Mn3O4 的晶格间距,降低了 Zn2+ 的插入/萃取障碍,从而改善了材料的动力学特性。同时,导电碳骨架 GO 成功地与聚乙烯亚胺和 Mn3O4 结合在一起,扩大了电子和离子的导电性,避免了化学块体变化。这种独特的结构使掺锌阴极具有可逆的比容量和优异的性能(200 mA g-1 时为 170 mAh g-1)。此外,掺锌阴极的扩散系数为 10-9-10-10cm-2 s-1。因此,这项研究为先进电极材料在 AZIBs 应用中的实际应用引入了一种可行的方法。
{"title":"Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery","authors":"Linheng Ge,&nbsp;Hong Zhang,&nbsp;Zirui Wang,&nbsp;Qingli Gao,&nbsp;Manman Ren,&nbsp;Xiaoxia Cai,&nbsp;Qinze Liu,&nbsp;Weiliang Liu,&nbsp;Jinshui Yao","doi":"10.1007/s10971-024-06499-2","DOIUrl":"10.1007/s10971-024-06499-2","url":null,"abstract":"<div><p>Due to its abundant zinc resources, high safety and low cost, aqueous zinc-ion batteries (AZIBs) are considered one of the most interesting lithium-ion battery replacement technologies. Herein, a novel Zn-doped cathode material is achieved via pre-intercalation of Zn<sup>2+</sup> into the prepared manganese tetroxide (Mn<sub>3</sub>O<sub>4</sub>)/graphene oxide (GO). The pre-intercalation of Zn<sup>2+</sup> effectively increases the lattice spacing of Mn<sub>3</sub>O<sub>4</sub> and reduces the barrier of insertion/extraction of Zn<sup>2+</sup>, thus improving the kinetic properties of the material. Meanwhile, the conductive carbon skeleton GO successfully combines with polyethyleneimine and Mn<sub>3</sub>O<sub>4</sub>, which can expand electron and ion conductivity and avoid chemical bulk change. This unique structure enables the Zn-doped cathode a reversible specific capacity with excellent performance (170 mAh g<sup>−1</sup> at 200 mA g<sup>−1</sup>). Furthermore, the diffusion coefficient of the Zn-doped cathode is 10<sup>−9</sup>–10<sup>−10</sup>cm<sup>−2</sup> s<sup>−1</sup>. Therefore, this study introduces a viable approach for the practical implementation of advanced electrode materials in AZIBs applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"15 - 24"},"PeriodicalIF":2.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of perovskite nanocrystals in hot injection process with various ligand-rich systems 热注入过程中富含各种配体的过氧化物纳米晶体的演变
IF 2.5 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-06 DOI: 10.1007/s10971-024-06507-5
Huazheng Li, Gaoling Zhao, Bin Song, Zhoujian Mao, Yixiao Qian, Weixia Dong, Gaorong Han

Colloidal CsPbBr3 perovskite nanocrystals have attracted much attention due to their unique physical and chemical properties. As an important factor to control the crystalline phase and morphology of perovskite, the mechanism of the action of the crystal surface ligands, however, still remains unclear. In this work, the variation of the crystalline phase and morphology with reaction time in the conventional hot injection method was studied, and the ligands on various crystals were characterized. Based on above work, a hot injection process with various ligand-rich system was proposed. Oleic acid (OA) and oleylamine (OAm) were employed to replace octadecene (ODE) as the solvent. The relationship between OA/OAm ratio and the composition and structure of the product was studied, and a variety of perovskite structures with different components, crystalline phases and morphologies were obtained. Moreover, the binding modes between ligands and surfaces of different perovskite nanocrystals were further explored by using first-principles simulation. This work helps further understand the role of OA, OAm and other ligands in perovskite nanocrystal formation and proposes an approach for the controlled synthesis of perovskite nanocrystals.

Graphical Abstract

由于其独特的物理和化学性质,胶态 CsPbBr3 包晶纳米晶体备受关注。然而,作为控制透辉石晶相和形貌的重要因素,晶面配体的作用机理仍不清楚。本文研究了传统热注入法中晶相和形态随反应时间的变化,并对不同晶体上的配体进行了表征。在此基础上,提出了一种富含各种配体体系的热注入工艺。采用油酸(OA)和油胺(OAm)代替十八烯(ODE)作为溶剂。研究了 OA/OAm 比例与产物组成和结构之间的关系,得到了多种不同组分、晶相和形态的包晶结构。此外,还利用第一原理模拟进一步探讨了配体与不同过氧化物纳米晶体表面的结合模式。这项工作有助于进一步了解 OA、OAm 和其他配体在形成包晶纳米晶体中的作用,并提出了一种可控合成包晶纳米晶体的方法。
{"title":"Evolution of perovskite nanocrystals in hot injection process with various ligand-rich systems","authors":"Huazheng Li, Gaoling Zhao, Bin Song, Zhoujian Mao, Yixiao Qian, Weixia Dong, Gaorong Han","doi":"10.1007/s10971-024-06507-5","DOIUrl":"https://doi.org/10.1007/s10971-024-06507-5","url":null,"abstract":"<p>Colloidal CsPbBr<sub>3</sub> perovskite nanocrystals have attracted much attention due to their unique physical and chemical properties. As an important factor to control the crystalline phase and morphology of perovskite, the mechanism of the action of the crystal surface ligands, however, still remains unclear. In this work, the variation of the crystalline phase and morphology with reaction time in the conventional hot injection method was studied, and the ligands on various crystals were characterized. Based on above work, a hot injection process with various ligand-rich system was proposed. Oleic acid (OA) and oleylamine (OAm) were employed to replace octadecene (ODE) as the solvent. The relationship between OA/OAm ratio and the composition and structure of the product was studied, and a variety of perovskite structures with different components, crystalline phases and morphologies were obtained. Moreover, the binding modes between ligands and surfaces of different perovskite nanocrystals were further explored by using first-principles simulation. This work helps further understand the role of OA, OAm and other ligands in perovskite nanocrystal formation and proposes an approach for the controlled synthesis of perovskite nanocrystals.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"23 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of Al and Co co-doping on structural, electrical and luminescence properties of gallium ferrites synthesized by sol-gel method 铝和钴共掺杂对溶胶-凝胶法合成的镓铁氧体的结构、电学和发光特性的协同效应
IF 2.5 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-05 DOI: 10.1007/s10971-024-06498-3
Pritam Das, Nandni Sharma, Kulwinder Singh, Sur Sharma Kongbrailatpam, Sawini, Mukul Kumar, Sanjeev Kumar, Ashish Kumar Mall, Deepak Kumar, Suresh Ghotekar

In the present manuscript, synergic impacts of aluminum and cobalt co-doping on the structural, optical, P-E and leakage current densities of gallium ferrite (GFO) have been investigated. We have synthesized polycrystalline Ga1-xAlxFeO3 (x = 0.0, 0.50) and Ga0.5Al0.5Fe1-yCoyO3 (y = 0, 0.025, 0.05) samples using the sol-gel method. XRD analysis shows the orthorhombic crystal structure corresponding to the Pc21n space group with no secondary or impurity peaks. The unit cell volume decreases with Al and Co co-doping in GFO. The leakage current density is significantly decreased (2.71 × 10−8 A/cm2) when Al and Co are co-doped in GFO. The ferroelectricity at room temperature is confirmed by the P-E measurements of the Al and Co co-doped GFO samples. The co-doped GFO samples showed better ferroelectric properties compared to bare sample. At room temperature, photoluminescence (PL) spectra have been recorded using 440 nm excitation for the reflection detections of Al and Co replacements on GFO. By using PL emission spectral analysis, the site disorder and cation redistribution have been also verified.

Graphical Abstract

本手稿研究了铝和钴共掺杂对镓铁氧体(GFO)的结构、光学、P-E 和漏电流密度的协同影响。我们采用溶胶-凝胶法合成了多晶 Ga1-xAlxFeO3 (x = 0.0, 0.50) 和 Ga0.5Al0.5Fe1-yCoyO3 (y = 0, 0.025, 0.05) 样品。X 射线衍射分析表明,该样品具有与 Pc21n 空间群相对应的正方晶体结构,没有次级峰或杂质峰。随着 Al 和 Co 在 GFO 中的共掺杂,单位晶胞体积减小。当 Al 和 Co 共掺杂在 GFO 中时,漏电流密度明显降低(2.71 × 10-8 A/cm2)。对共掺杂 Al 和 Co 的 GFO 样品进行的 P-E 测量证实了它们在室温下的铁电性。与裸样品相比,共掺杂 GFO 样品显示出更好的铁电特性。在室温下,使用 440 纳米激发波长记录了光致发光(PL)光谱,以对 GFO 上的铝和钴替代物进行反射检测。通过 PL 发射光谱分析,还验证了位点无序和阳离子重新分布的情况。
{"title":"Synergistic effects of Al and Co co-doping on structural, electrical and luminescence properties of gallium ferrites synthesized by sol-gel method","authors":"Pritam Das, Nandni Sharma, Kulwinder Singh, Sur Sharma Kongbrailatpam, Sawini, Mukul Kumar, Sanjeev Kumar, Ashish Kumar Mall, Deepak Kumar, Suresh Ghotekar","doi":"10.1007/s10971-024-06498-3","DOIUrl":"https://doi.org/10.1007/s10971-024-06498-3","url":null,"abstract":"<p>In the present manuscript, synergic impacts of aluminum and cobalt co-doping on the structural, optical, P-E and leakage current densities of gallium ferrite (GFO) have been investigated. We have synthesized polycrystalline Ga<sub>1-x</sub>Al<sub>x</sub>FeO<sub>3</sub> (x = 0.0, 0.50) and Ga<sub>0.5</sub>Al<sub>0.5</sub>Fe<sub>1-y</sub>Co<sub>y</sub>O<sub>3</sub> (y = 0, 0.025, 0.05) samples using the sol-gel method. XRD analysis shows the orthorhombic crystal structure corresponding to the Pc21n space group with no secondary or impurity peaks. The unit cell volume decreases with Al and Co co-doping in GFO. The leakage current density is significantly decreased (2.71 × 10<sup>−8</sup> A/cm<sup>2</sup>) when Al and Co are co-doped in GFO. The ferroelectricity at room temperature is confirmed by the P-E measurements of the Al and Co co-doped GFO samples. The co-doped GFO samples showed better ferroelectric properties compared to bare sample. At room temperature, photoluminescence (PL) spectra have been recorded using 440 nm excitation for the reflection detections of Al and Co replacements on GFO. By using PL emission spectral analysis, the site disorder and cation redistribution have been also verified.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"43 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
La+3-doped CoFe2O4@MXene bifunctional electrocatalyst for superior OER and HER activity 掺杂 La+3 的 CoFe2O4@MXene 双功能电催化剂具有优异的 OER 和 HER 活性
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-05 DOI: 10.1007/s10971-024-06504-8
Sheraz Yousaf, Safaa N. Abdou, Muhammad Afaq, Mohamed M. Ibrahim, Imran Shakir, Salah M. El-Bahy, Iqbal Ahmad, Muhammad Shahid, Muhammad Farooq Warsi

The lanthanum doped cobalt ferrite (La+3-CoFe2O4) incorporated in MXene sheets bifunctional electrocatalyst was prepared and then subjected to various analyses to assess their structural, morphological, and functional group characteristics. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) were employed for this purpose. The electrochemical performance of La-CoFe2O4@MXene was investigated in an alkaline solution to assess the bifunctional (OER/HER) performances. The results revealed that La-CoFe2O4@MXene exhibited significantly lower overpotential and a lesser Tafel slope during OER compared to both CoFe2O4 and La-CoFe2O4 materials. Similarly, during HER, La-CoFe2O4@MXene demonstrated superior performance. The electrochemical impedance (EIS) analysis was also conducted on all samples. These results indicated that the La-CoFe2O4@MXene electrocatalyst displayed reduced charge transfer resistance (2.18 Ω) and a higher exchange current density (2.94 mA cm−2) compared to its counterparts. These results collectively demonstrate the exceptional electrocatalytic behavior of La-CoFe2O4@MXene. This enhanced performance is likely attributable to the synergistic effect of lanthanum doping, which introduces defects into the material, and the presence of MXene sheets, which facilitates faster charge transfer within the electrocatalyst. To the best of our knowledge, this is the first study to explore La-CoFe₂O₄@MXene for water splitting. Our results demonstrate that this material requires significantly lower overpotential for OER and HER in an alkaline medium, showcasing its potential as an efficient and cost-effective catalyst for water splitting.

Graphical Abstract

制备了掺杂镧的钴铁氧体(La+3-CoFe2O4),并将其纳入 MXene 片状双功能电催化剂,然后对其进行了各种分析,以评估其结构、形态和官能团特征。为此采用了 X 射线衍射 (XRD)、扫描电子显微镜 (SEM) 和傅立叶变换红外 (FTIR)。研究了 La-CoFe2O4@MXene 在碱性溶液中的电化学性能,以评估其双功能(OER/HER)性能。结果表明,与 CoFe2O4 和 La-CoFe2O4 材料相比,La-CoFe2O4@MXene 在 OER 过程中的过电位明显较低,塔菲尔斜率也较小。同样,在 HER 过程中,La-CoFe2O4@MXene 也表现出卓越的性能。此外,还对所有样品进行了电化学阻抗(EIS)分析。这些结果表明,与同类样品相比,La-CoFe2O4@MXene 电催化剂显示出更低的电荷转移电阻(2.18 Ω)和更高的交换电流密度(2.94 mA cm-2)。这些结果共同证明了 La-CoFe2O4@MXene 的卓越电催化性能。这种性能的增强很可能归因于镧的掺杂和 MXene 片的存在所产生的协同效应,镧的掺杂会在材料中引入缺陷,而 MXene 片的存在则会促进电荷在电催化剂中的快速转移。据我们所知,这是第一项探索用于水分离的 La-CoFe₂O₄@MXene 的研究。我们的研究结果表明,在碱性介质中,这种材料的 OER 和 HER 所需的过电位明显较低,这展示了它作为一种高效、经济的水分离催化剂的潜力。
{"title":"La+3-doped CoFe2O4@MXene bifunctional electrocatalyst for superior OER and HER activity","authors":"Sheraz Yousaf,&nbsp;Safaa N. Abdou,&nbsp;Muhammad Afaq,&nbsp;Mohamed M. Ibrahim,&nbsp;Imran Shakir,&nbsp;Salah M. El-Bahy,&nbsp;Iqbal Ahmad,&nbsp;Muhammad Shahid,&nbsp;Muhammad Farooq Warsi","doi":"10.1007/s10971-024-06504-8","DOIUrl":"10.1007/s10971-024-06504-8","url":null,"abstract":"<div><p>The lanthanum doped cobalt ferrite (La<sup>+3</sup>-CoFe<sub>2</sub>O<sub>4</sub>) incorporated in MXene sheets bifunctional electrocatalyst was prepared and then subjected to various analyses to assess their structural, morphological, and functional group characteristics. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) were employed for this purpose. The electrochemical performance of La-CoFe<sub>2</sub>O<sub>4</sub>@MXene was investigated in an alkaline solution to assess the bifunctional (OER/HER) performances. The results revealed that La-CoFe<sub>2</sub>O<sub>4</sub>@MXene exhibited significantly lower overpotential and a lesser Tafel slope during OER compared to both CoFe<sub>2</sub>O<sub>4</sub> and La-CoFe<sub>2</sub>O<sub>4</sub> materials. Similarly, during HER, La-CoFe<sub>2</sub>O<sub>4</sub>@MXene demonstrated superior performance. The electrochemical impedance (EIS) analysis was also conducted on all samples. These results indicated that the La-CoFe<sub>2</sub>O<sub>4</sub>@MXene electrocatalyst displayed reduced charge transfer resistance (2.18 Ω) and a higher exchange current density (2.94 mA cm<sup>−2</sup>) compared to its counterparts. These results collectively demonstrate the exceptional electrocatalytic behavior of La-CoFe<sub>2</sub>O<sub>4</sub>@MXene. This enhanced performance is likely attributable to the synergistic effect of lanthanum doping, which introduces defects into the material, and the presence of MXene sheets, which facilitates faster charge transfer within the electrocatalyst. To the best of our knowledge, this is the first study to explore La-CoFe₂O₄@MXene for water splitting. Our results demonstrate that this material requires significantly lower overpotential for OER and HER in an alkaline medium, showcasing its potential as an efficient and cost-effective catalyst for water splitting.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"1 - 14"},"PeriodicalIF":2.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations on structural and magnetic behavior of LaPrCo1-xFexMnO6 double perovskite system LaPrCo1-xFexMnO6 双包晶系的结构和磁性行为研究
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-03 DOI: 10.1007/s10971-024-06501-x
Reena Sharma, Neelam Hooda, Ashima Hooda, Satish Khasa

Double perovskite system LaPrCo1-xFexMnO6; (x = 0.2, 0.5, 0.8, & 1.0) was synthesized by sol–gel method and its structural and magnetic properties were studied. XRD analysis followed by Rietveld refinement inveterate the phase formation without impurities and validated the co-existence of three phases; monoclinic (P21/n, ordered), orthorhombic, and rhombohedral (Pbnm & R3c, disordered). LPCFMO1 (x = 0.2) exhibited highest extent of ordering (monoclinic phase, 77.67%) of Co/Fe & Mn ions at alternate octahedral sites among all prepared compositions. The crystallite size (D) and strain (ε), both showed an irregular trend with increase in iron content, and maximum strain (8.24 × 10−3) is observed for LPCFMO1 (x = 0.2) sample. The overlapping of Electron density gradients for upper and lower bounds in 2-D maps revealed crystallographic symmetry. XPS study confirmed the coexistence of different oxidation states of B/B’-site transition metal cations (Co, Fe & Mn) in the prepared samples. BET analysis suggested that samples are mesoporous as pore size is >2 nm. LPCFMO1 is observed to have maximum magnetization (Mmax) of 40.43 emu/g which decreases continuously with increase in iron content and takes value 21.55 emu/g for LPFMO (x = 1.0). Antiferromagnetic coupling among Fe3+ and Mn3+ ions is responsible for the continuous decrease in Mmax with increase in iron content. The multi-domain structure of the prepared samples makes them suitable for memory device application.

Graphical Abstract

采用溶胶-凝胶法合成了双包晶系 LaPrCo1-xFexMnO6;(x = 0.2、0.5、0.8、& 1.0),并对其结构和磁性能进行了研究。通过 XRD 分析和 Rietveld 精炼,确定了无杂质相的形成,并验证了三种相的共存:单斜(P21/n,有序相)、正方体和斜方体(Pbnm & R3c,无序相)。在所有制备的成分中,LPCFMO1(x = 0.2)在交替八面体位点上的 Co/Feamp; Mn 离子有序化程度最高(单斜相,77.67%)。结晶尺寸(D)和应变(ε)都随着铁含量的增加而呈现出不规则的趋势,在 LPCFMO1 (x = 0.2) 样品中观察到了最大应变(8.24 × 10-3)。二维图中上下限电子密度梯度的重叠显示了晶体学对称性。XPS 研究证实,制备的样品中同时存在不同氧化态的 B/B'-site 过渡金属阳离子(Co、Fe & Mn)。BET 分析表明,样品具有介孔,孔径为 2 纳米。据观察,LPCFMO1 的最大磁化率(Mmax)为 40.43 emu/g,随着铁含量的增加,磁化率不断降低,LPFMO(x = 1.0)的磁化率为 21.55 emu/g。Fe3+和 Mn3+离子之间的反铁磁耦合是导致 Mmax 随铁含量增加而持续降低的原因。所制备样品的多域结构使其适用于存储器件应用。
{"title":"Investigations on structural and magnetic behavior of LaPrCo1-xFexMnO6 double perovskite system","authors":"Reena Sharma,&nbsp;Neelam Hooda,&nbsp;Ashima Hooda,&nbsp;Satish Khasa","doi":"10.1007/s10971-024-06501-x","DOIUrl":"10.1007/s10971-024-06501-x","url":null,"abstract":"<div><p>Double perovskite system LaPrCo<sub>1-x</sub>Fe<sub>x</sub>MnO<sub>6</sub>; (<i>x</i> = 0.2, 0.5, 0.8, &amp; 1.0) was synthesized by sol–gel method and its structural and magnetic properties were studied. XRD analysis followed by Rietveld refinement inveterate the phase formation without impurities and validated the co-existence of three phases; monoclinic (<i>P2</i><sub><i>1</i></sub><i>/n</i>, ordered), orthorhombic, and rhombohedral (<i>Pbnm &amp; R3c</i>, disordered). LPCFMO1 (<i>x</i> = 0.2) exhibited highest extent of ordering (monoclinic phase, 77.67%) of Co/Fe &amp; Mn ions at alternate octahedral sites among all prepared compositions. The crystallite size (<i>D</i>) and strain (<i>ε</i>), both showed an irregular trend with increase in iron content, and maximum strain (8.24 × 10<sup>−3</sup>) is observed for LPCFMO1 (<i>x</i> = 0.2) sample. The overlapping of Electron density gradients for upper and lower bounds in 2-D maps revealed crystallographic symmetry. XPS study confirmed the coexistence of different oxidation states of B/B’-site transition metal cations (Co, Fe &amp; Mn) in the prepared samples. BET analysis suggested that samples are mesoporous as pore size is &gt;2 nm. LPCFMO1 is observed to have maximum magnetization (<i>M</i><sub><i>max</i></sub>) of 40.43 emu/g which decreases continuously with increase in iron content and takes value 21.55 emu/g for LPFMO (<i>x</i> = 1.0). Antiferromagnetic coupling among Fe<sup>3+</sup> and Mn<sup>3+</sup> ions is responsible for the continuous decrease in <i>M</i><sub><i>max</i></sub> with increase in iron content. The multi-domain structure of the prepared samples makes them suitable for memory device application.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"989 - 1004"},"PeriodicalIF":2.3,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of direct and indirect in-situ sonochemical synthesis methods of MWCNTs–CoNiFerrite on the hydrogen storage MWCNTs-CoNiFerrite 的直接和间接原位声化学合成方法对储氢的影响
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-08-01 DOI: 10.1007/s10971-024-06502-w
Saadoon M. Abdulkareem, Rusul Mohamed Alsaffar, Ghassan Hassan Abdul Razzaq, Jalal Hasan Mohammed, Tabarak Mohammed Awad, Mustafa A. Alheety, Leqaa A. Mohammed, Abdulwahhab H. Mageed, Ehab M. Ali, Adil Hussein Dalaf, Sarvesh Rustagi, Suresh Ghotekar

This work includes the synthesis of MWCNTs–CoNiFerrite composites in two methods, direct method and indirect method; however, in both cases, ultrasound was used as an environmentally friendly method. These composites were characterized using XRD, SEM, and TEM to verify the compositional effects of both methods, which would have effects on hydrogen storage capacity. The XRD measurements showed that, in both cases, cobalt–nickel ferrite was formed on the carbon nanotubes. Furthermore, the SEM and TEM measurements proved that the composition of the resulting materials was different in shape and size. The prepared composites were used as new materials for hydrogen storage in the solid state, using two different temperatures, 298 and 77 K, at a pressure ranging from 0 to 900 mmHg. The results showed that the H2 storage results reached 1.65 and 1.12 wt% at 77 K for both direct and indirect synthesized MWCNTs–CoNiFe2O4, respectively, which indicates the importance of the preparation method in the ability to store gases.

Graphical Abstract

这项工作包括用两种方法合成 MWCNTs-CoNiFerrite 复合材料,即直接法和间接法;不过,在这两种方法中,都使用了超声作为一种环境友好型方法。使用 XRD、SEM 和 TEM 对这些复合材料进行了表征,以验证这两种方法的成分效应,这将对储氢能力产生影响。XRD 测量结果表明,在这两种情况下,碳纳米管上都形成了钴镍铁素体。此外,扫描电子显微镜(SEM)和透射电子显微镜(TEM)的测量结果证明,所制备材料的成分在形状和尺寸上都有所不同。制备的复合材料被用作固态储氢的新材料,使用了 298 和 77 K 两种不同的温度,压力范围为 0 至 900 mmHg。结果表明,直接合成和间接合成的 MWCNTs-CoNiFe2O4 在 77 K 时的氢气储存量分别达到了 1.65 和 1.12 wt%,这表明制备方法对储存气体能力的重要性。
{"title":"Effect of direct and indirect in-situ sonochemical synthesis methods of MWCNTs–CoNiFerrite on the hydrogen storage","authors":"Saadoon M. Abdulkareem,&nbsp;Rusul Mohamed Alsaffar,&nbsp;Ghassan Hassan Abdul Razzaq,&nbsp;Jalal Hasan Mohammed,&nbsp;Tabarak Mohammed Awad,&nbsp;Mustafa A. Alheety,&nbsp;Leqaa A. Mohammed,&nbsp;Abdulwahhab H. Mageed,&nbsp;Ehab M. Ali,&nbsp;Adil Hussein Dalaf,&nbsp;Sarvesh Rustagi,&nbsp;Suresh Ghotekar","doi":"10.1007/s10971-024-06502-w","DOIUrl":"10.1007/s10971-024-06502-w","url":null,"abstract":"<div><p>This work includes the synthesis of MWCNTs–CoNiFerrite composites in two methods, direct method and indirect method; however, in both cases, ultrasound was used as an environmentally friendly method. These composites were characterized using XRD, SEM, and TEM to verify the compositional effects of both methods, which would have effects on hydrogen storage capacity. The XRD measurements showed that, in both cases, cobalt–nickel ferrite was formed on the carbon nanotubes. Furthermore, the SEM and TEM measurements proved that the composition of the resulting materials was different in shape and size. The prepared composites were used as new materials for hydrogen storage in the solid state, using two different temperatures, 298 and 77 K, at a pressure ranging from 0 to 900 mmHg. The results showed that the H<sub>2</sub> storage results reached 1.65 and 1.12 wt% at 77 K for both direct and indirect synthesized MWCNTs–CoNiFe<sub>2</sub>O<sub>4</sub>, respectively, which indicates the importance of the preparation method in the ability to store gases.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"979 - 988"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First principles study to investigate structural, optical properties and bandgap engineering of XSnI3(X=Rb, K, Tl, Cs) materials for solar cell applications 研究太阳能电池应用中 XSnI3(X=Rb、K、Tl、Cs)材料的结构、光学特性和带隙工程的第一性原理研究
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-07-31 DOI: 10.1007/s10971-024-06496-5
Muhammad Hasnain Jameel, Alaa Nihad Tuama, Aqeela Yasin, Mohd Zul Hilmi Bin Mayzan, Muhammad Sufi bin Roslan, Laith H. Alzubaidi

The PBE-GGA (Perdew Burke-Ernzerhof Generalized Gradient Approximation) for the exchange-correlation potentials, based on first-principles density functional theory (DFT) study is used to investigate the structural, optical, and electrical aspects of XSnI3 (X = Rb, K, Tl, and Cs) materials. According to the DFT calculation, the energy band gaps (Eg) of XSnI3 (X = Rb, K, Tl, and Cs) materials are 2.76, 2.01, 1.90, and 0.34 eV respectively. The direct energy bandgap (Eg) indicates that halide perovskite materials are appropriate semiconductors for solar cell application. A thorough analysis of optical conductivity indicates that, the optical conductance peaks of XSnI3 (X = Rb, K, Tl, and Cs) halide perovskite materials reach maximum values of 2.3, 2.2, 4.5, and 5.2 eV, respectively, in the ultraviolet spectrum and shift slightly at higher energy bands. The maximal optical conductivity of XSnI3 (X = Rb, K, Tl, and Cs) materials were (1.6 × 105Ω−1cm−1, 1.8 × 105Ω−1) cm−1, 2.2 × 105Ω−1cm−1 and 2.4 × 105Ω−1cm−1 respectively. The XSnI3 (X = Rb, K, Tl, and Cs) is a group of materials with enhanced surface area for light photon absorption and enhanced optical conductivity, energy absorption, and refractive index properties make them suitable for perovskite solar cell application.

Graphical Abstract

基于第一原理密度泛函理论(DFT)的交换相关势 PBE-GGA(Perdew Burke-Ernzerhof Generalized Gradient Approximation)用于研究 XSnI3(X = Rb、K、Tl 和 Cs)材料的结构、光学和电学方面。根据 DFT 计算,XSnI3(X = Rb、K、Tl 和 Cs)材料的能带隙(Eg)分别为 2.76、2.01、1.90 和 0.34 eV。直接能带隙(Eg)表明,卤化物包晶材料是太阳能电池应用的合适半导体。对光传导性的全面分析表明,XSnI3(X = Rb、K、Tl 和 Cs)卤化物包晶材料的光传导性峰值在紫外光谱中分别达到 2.3、2.2、4.5 和 5.2 eV 的最大值,并在较高能段略有移动。XSnI3(X = Rb、K、Tl 和 Cs)材料的最大光导率分别为(1.6 × 105 Ω-1 cm-1、1.8 × 105 Ω-1) cm-1、2.2 × 105 Ω-1 cm-1 和 2.4 × 105 Ω-1 cm-1。XSnI3(X = Rb、K、Tl 和 Cs)是一组具有增强的光子吸收表面积和增强的光导率、能量吸收和折射率特性的材料,因此适合应用于过氧化物太阳能电池。
{"title":"First principles study to investigate structural, optical properties and bandgap engineering of XSnI3(X=Rb, K, Tl, Cs) materials for solar cell applications","authors":"Muhammad Hasnain Jameel,&nbsp;Alaa Nihad Tuama,&nbsp;Aqeela Yasin,&nbsp;Mohd Zul Hilmi Bin Mayzan,&nbsp;Muhammad Sufi bin Roslan,&nbsp;Laith H. Alzubaidi","doi":"10.1007/s10971-024-06496-5","DOIUrl":"10.1007/s10971-024-06496-5","url":null,"abstract":"<div><p>The PBE-GGA (Perdew Burke-Ernzerhof Generalized Gradient Approximation) for the exchange-correlation potentials, based on first-principles density functional theory (DFT) study is used to investigate the structural, optical, and electrical aspects of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) materials. According to the DFT calculation, the energy band gaps (E<sub>g</sub>) of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) materials are 2.76, 2.01, 1.90, and 0.34 eV respectively. The direct energy bandgap (E<sub>g</sub>) indicates that halide perovskite materials are appropriate semiconductors for solar cell application. A thorough analysis of optical conductivity indicates that, the optical conductance peaks of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) halide perovskite materials reach maximum values of 2.3, 2.2, 4.5, and 5.2 eV, respectively, in the ultraviolet spectrum and shift slightly at higher energy bands. The maximal optical conductivity of XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) materials were (1.6 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup> <i>cm</i><sup>−1</sup>, 1.8 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup>) <i>cm</i><sup>−1</sup>, 2.2 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup> <i>cm</i><sup>−1</sup> and 2.4 × 10<sup>5</sup> <i>Ω</i><sup>−1</sup> <i>cm</i><sup>−1</sup> respectively. The XSnI<sub>3</sub> (X = Rb, K, Tl, and Cs) is a group of materials with enhanced surface area for light photon absorption and enhanced optical conductivity, energy absorption, and refractive index properties make them suitable for perovskite solar cell application.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"966 - 978"},"PeriodicalIF":2.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium hydroxide aerogels and xerogels toward CO2 fixation: through an epoxide-mediated sol-gel reaction 通过环氧化物介导的溶胶-凝胶反应实现二氧化碳固定的氢氧化钙气凝胶和气凝胶
IF 2.5 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-07-31 DOI: 10.1007/s10971-024-06497-4
Ryota Kobayashi, Shintaro Fujinari, Yasuaki Tokudome, Atsushi Nakahira

Calcium-based CO2 sorbents have garnered attention due to the capability of CO2 separation through a process based on carbonation-calcination reaction from flue gas. Ca-based materials with high porosity, allowing for CO2 diffusion and tolerance for volume change upon carbonation, would be promising for carbon capture and storage (CCS) applications. The present study focused on developing Ca-based aerogels and xerogels prepared through a sol-gel reaction toward CCS application. Calcium hydroxide aerogels and xerogels, which transform into CaO at a high temperature, were prepared through the epoxide-mediated sol-gel reaction using propylene oxide (PO). Two types of carboxylic acids, poly acrylic acid (PAA) and malonic acid (MA), were employed to inhibit the extensive crystal growth of calcium hydroxide in the initial step of the alkalization reaction induced by PO, resulting in the formation of nanocrystalline aerogels and xerogels through supercritical and ambient drying, respectively. The present systematic study revealed that the obtained xerogels prepared with MA exhibit relatively high CO2 fixation characteristics thanks to the unique card-house nanostructure allowing for the formation of high porosity.

Graphical Abstract

钙基二氧化碳吸附剂由于能够通过基于烟气碳化-钙化反应的过程分离二氧化碳而备受关注。钙基材料具有高孔隙率,允许二氧化碳扩散,并能承受碳化时的体积变化,因此在碳捕集与封存(CCS)应用中大有可为。本研究的重点是开发通过溶胶-凝胶反应制备的钙基气凝胶和气凝胶,以实现 CCS 应用。研究人员利用环氧丙烷(PO)通过环氧化物介导的溶胶-凝胶反应制备了氢氧化钙气凝胶和异凝胶,它们在高温下会转化为 CaO。在 PO 诱导的碱化反应初始阶段,采用聚丙烯酸(PAA)和丙二酸(MA)这两种羧酸来抑制氢氧化钙的大量晶体生长,从而分别通过超临界干燥和常温干燥形成了纳米结晶的气凝胶和异凝胶。本系统研究表明,用 MA 制备的 xerogels 具有较高的二氧化碳固定特性,这要归功于其独特的卡室纳米结构,这种结构允许形成高孔隙率。
{"title":"Calcium hydroxide aerogels and xerogels toward CO2 fixation: through an epoxide-mediated sol-gel reaction","authors":"Ryota Kobayashi, Shintaro Fujinari, Yasuaki Tokudome, Atsushi Nakahira","doi":"10.1007/s10971-024-06497-4","DOIUrl":"https://doi.org/10.1007/s10971-024-06497-4","url":null,"abstract":"<p>Calcium-based CO<sub>2</sub> sorbents have garnered attention due to the capability of CO<sub>2</sub> separation through a process based on carbonation-calcination reaction from flue gas. Ca-based materials with high porosity, allowing for CO<sub>2</sub> diffusion and tolerance for volume change upon carbonation, would be promising for carbon capture and storage (CCS) applications. The present study focused on developing Ca-based aerogels and xerogels prepared through a sol-gel reaction toward CCS application. Calcium hydroxide aerogels and xerogels, which transform into CaO at a high temperature, were prepared through the epoxide-mediated sol-gel reaction using propylene oxide (PO). Two types of carboxylic acids, poly acrylic acid (PAA) and malonic acid (MA), were employed to inhibit the extensive crystal growth of calcium hydroxide in the initial step of the alkalization reaction induced by PO, resulting in the formation of nanocrystalline aerogels and xerogels through supercritical and ambient drying, respectively. The present systematic study revealed that the obtained xerogels prepared with MA exhibit relatively high CO<sub>2</sub> fixation characteristics thanks to the unique card-house nanostructure allowing for the formation of high porosity.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"47 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transparent self-cleaning coating prepared from SiO2/B4C and SiO2/B4C/TiO2 for the solar cell 用 SiO2/B4C 和 SiO2/B4C/TiO2 制备太阳能电池的透明自清洁涂层
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-07-31 DOI: 10.1007/s10971-024-06505-7
Hafize Nagehan Koysuren, Ozcan Koysuren

Transparent self-cleaning coatings based on photocatalytic activity have attracted great attention in recent years owing to their promising applications in many fields, such as solar cell cover glass. This study reports a simple method to prepare transparent self-cleaning silicon dioxide (SiO2) coatings filled by boron carbide (B4C) and titanium dioxide (TiO2) nanoparticles. A sol-gel technique was used to synthesize a SiO2 solution containing B4C and TiO2 nanoparticles, and a dip-coating technique was followed to coat the composite solution on glass slides. The SiO2 coating was successfully obtained in the presence of both semiconductor nanoparticles as confirmed by FTIR and XRD measurements. Both the photocatalytic activity and self-cleaning property of the composite coatings were evaluated by photocatalytic degradation of a model dye, methylene blue, under visible light irradiation. The SiO2 coating containing both B4C and TiO2 nanoparticles exhibited an improved photocatalytic activity compared to the SiO2 coating including only B4C. In particular, a 46% degradation rate of the model dye methylene blue was achieved for the SiO2 coating containing 15 wt% B4C and 5 wt% TiO2 nanoparticles. Highly transparent composite coatings on glass slides were prepared. The SiO2 coating containing both B4C and TiO2 nanoparticles was found to exhibit ~8% reduction in the optical transmission of the glass slide and ~1% reduction in the efficiency of a solar cell containing the coated glass slide. These findings demonstrated that the SiO2 composite coatings have potential for self-cleaning applications in removing contaminants from the glass cover of the solar cell under visible light irradiation.

Graphical Abstract

近年来,基于光催化活性的透明自清洁涂层因其在太阳能电池盖板玻璃等许多领域的应用前景而备受关注。本研究报告了一种用碳化硼(B4C)和二氧化钛(TiO2)纳米颗粒填充制备透明自清洁二氧化硅(SiO2)涂层的简单方法。采用溶胶-凝胶技术合成了含有碳化硼和二氧化钛纳米颗粒的二氧化硅溶液,然后采用浸涂技术将复合溶液涂覆在玻璃载玻片上。经傅立叶变换红外光谱和 XRD 测量证实,在这两种半导体纳米粒子存在的情况下,成功地获得了 SiO2 涂层。通过在可见光照射下光催化降解模型染料亚甲基蓝,评估了复合涂层的光催化活性和自清洁性能。与仅含有 B4C 的二氧化硅涂层相比,同时含有 B4C 和 TiO2 纳米颗粒的二氧化硅涂层表现出更高的光催化活性。特别是,含有 15 wt% B4C 和 5 wt% TiO2 纳米粒子的 SiO2 涂层对模型染料亚甲基蓝的降解率达到了 46%。在玻璃载玻片上制备了高透明度的复合涂层。研究发现,同时含有 B4C 和 TiO2 纳米粒子的二氧化硅涂层会使玻璃载玻片的光学透射率降低约 8%,并使含有涂层玻璃载玻片的太阳能电池的效率降低约 1%。这些研究结果表明,SiO2 复合涂层具有在可见光照射下清除太阳能电池玻璃盖板上污染物的自清洁应用潜力。
{"title":"Transparent self-cleaning coating prepared from SiO2/B4C and SiO2/B4C/TiO2 for the solar cell","authors":"Hafize Nagehan Koysuren,&nbsp;Ozcan Koysuren","doi":"10.1007/s10971-024-06505-7","DOIUrl":"10.1007/s10971-024-06505-7","url":null,"abstract":"<div><p>Transparent self-cleaning coatings based on photocatalytic activity have attracted great attention in recent years owing to their promising applications in many fields, such as solar cell cover glass. This study reports a simple method to prepare transparent self-cleaning silicon dioxide (SiO<sub>2</sub>) coatings filled by boron carbide (B<sub>4</sub>C) and titanium dioxide (TiO<sub>2</sub>) nanoparticles. A sol-gel technique was used to synthesize a SiO<sub>2</sub> solution containing B<sub>4</sub>C and TiO<sub>2</sub> nanoparticles, and a dip-coating technique was followed to coat the composite solution on glass slides. The SiO<sub>2</sub> coating was successfully obtained in the presence of both semiconductor nanoparticles as confirmed by FTIR and XRD measurements. Both the photocatalytic activity and self-cleaning property of the composite coatings were evaluated by photocatalytic degradation of a model dye, methylene blue, under visible light irradiation. The SiO<sub>2</sub> coating containing both B<sub>4</sub>C and TiO<sub>2</sub> nanoparticles exhibited an improved photocatalytic activity compared to the SiO<sub>2</sub> coating including only B<sub>4</sub>C. In particular, a 46% degradation rate of the model dye methylene blue was achieved for the SiO<sub>2</sub> coating containing 15 wt% B<sub>4</sub>C and 5 wt% TiO<sub>2</sub> nanoparticles. Highly transparent composite coatings on glass slides were prepared. The SiO<sub>2</sub> coating containing both B<sub>4</sub>C and TiO<sub>2</sub> nanoparticles was found to exhibit ~8% reduction in the optical transmission of the glass slide and ~1% reduction in the efficiency of a solar cell containing the coated glass slide. These findings demonstrated that the SiO<sub>2</sub> composite coatings have potential for self-cleaning applications in removing contaminants from the glass cover of the solar cell under visible light irradiation.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"955 - 965"},"PeriodicalIF":2.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06505-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Sol-Gel Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1