The crosslinked gelatin/CuS/PVA nanocomposite catalyst prepared using gamma irradiation as initiator was extensively characterized using several techniques including transmission electron microscopy (TEM), UV-Vis spectroscopy, infrared spectroscopy (IR) and X-ray diffraction (XRD). We chose Rhodamine B (RhB) dye as a model contaminant in order to investigate its Photocatalytic activity under solar light irradiation. The effects of pH, catalyst concentration and RhB concentration on degradation reaction were also investigated. Similar to the observed trend for the photocatalytic oxidation of other organic compounds, the efficiency of photocatalytic degradation of RhB tended to decrease with increasing the concentration of RhB. The degradation efficiency of RhB is found to increase as pH is increased up to pH of 10, then starts decreasing at pH values higher than 10. The degradation efficient of RhB is found to increase as the amount of the catalyst dosage increases up to an optimum value of 0.25 g. Increasing the concentrations of photocatalyst beyond 0.25 g was found to decrease the photocatalytic activity of RhB. It was proven that the degradation process of RhB reaction rate obeyed a pseudo-first-order reaction of the catalyst concentration of gelatin/CuS/PVA nanocomposite. The degradation kinetics was found to fit well Langmuir-Hinshelwood rate law. The results obtained showed that after using the catalyst five times repeatedly, the catalyst retained its efficiency and the rate of the degradation process was still above 80%.
{"title":"Photocatalytic Degradation of Rhodamine B Dye in Wastewater Using Gelatin/CuS/PVA Nanocomposites under Solar Light Irradiation","authors":"A. Al-Kahtani","doi":"10.4236/JBNB.2017.81005","DOIUrl":"https://doi.org/10.4236/JBNB.2017.81005","url":null,"abstract":"The crosslinked gelatin/CuS/PVA nanocomposite catalyst prepared using gamma irradiation as initiator was extensively characterized using several techniques including transmission electron microscopy (TEM), UV-Vis spectroscopy, infrared spectroscopy (IR) and X-ray diffraction (XRD). We chose Rhodamine B (RhB) dye as a model contaminant in order to investigate its Photocatalytic activity under solar light irradiation. The effects of pH, catalyst concentration and RhB concentration on degradation reaction were also investigated. Similar to the observed trend for the photocatalytic oxidation of other organic compounds, the efficiency of photocatalytic degradation of RhB tended to decrease with increasing the concentration of RhB. The degradation efficiency of RhB is found to increase as pH is increased up to pH of 10, then starts decreasing at pH values higher than 10. The degradation efficient of RhB is found to increase as the amount of the catalyst dosage increases up to an optimum value of 0.25 g. Increasing the concentrations of photocatalyst beyond 0.25 g was found to decrease the photocatalytic activity of RhB. It was proven that the degradation process of RhB reaction rate obeyed a pseudo-first-order reaction of the catalyst concentration of gelatin/CuS/PVA nanocomposite. The degradation kinetics was found to fit well Langmuir-Hinshelwood rate law. The results obtained showed that after using the catalyst five times repeatedly, the catalyst retained its efficiency and the rate of the degradation process was still above 80%.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"08 1","pages":"66-82"},"PeriodicalIF":0.0,"publicationDate":"2017-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48447003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Fu, W. Xia, Torbjörn Mellgren, M. Moge, H. Engqvist
α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commercially available calcium sulfate dihydrates (DH, CaSO4·2H2O) with different sizes and surface morphologies were used as starting materials to synthesize high percentage α-HH via a hydrothermal method. The median particle sizes of the three types of DH were 946.7 μm, 162.4 μm and 62.4 μm, respectively. They were named as DH-L, DH-M and DH-S in this paper. The particle size distribution, morphology and phase composition of the raw materials were evaluated before synthesis. SEM results revealed that DH-L consisted of irregular large particles, while DH-M and DH-S were composed of plate-like particles with some small ones. High percentage HH can be obtained with proper synthesis parameters by hydrothermal method, specifically, 105 °C/90 min for DH-L (achieving 98.8% HH), 105°C/30 min for DH-M (achieving 96.7% HH) and 100°C/45 min for DH-S (achieving 98.4% HH). All the synthesized HH were hexagonal columns, demonstrating that they were α-phase HH. The particle size and morphology of starting material (DH) have significant influences on not only the rate of phase transition but also the morphology of the synthesized α-HH. Calcium sulfate dihydrate cements were prepared by the synthesized α-HH. The highest compressive strength of calcium sulfate dihydrate cement was 17.2 MPa. The results show that the preparation of high percentage α-HH is feasible via a hydrothermal method and the process can be further scaled up to industrial scale production.
{"title":"Preparation of High Percentage α -Calcium Sulfate Hemihydrate via a Hydrothermal Method","authors":"L. Fu, W. Xia, Torbjörn Mellgren, M. Moge, H. Engqvist","doi":"10.4236/JBNB.2017.81003","DOIUrl":"https://doi.org/10.4236/JBNB.2017.81003","url":null,"abstract":"α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commercially available calcium sulfate dihydrates (DH, CaSO4·2H2O) with different sizes and surface morphologies were used as starting materials to synthesize high percentage α-HH via a hydrothermal method. The median particle sizes of the three types of DH were 946.7 μm, 162.4 μm and 62.4 μm, respectively. They were named as DH-L, DH-M and DH-S in this paper. The particle size distribution, morphology and phase composition of the raw materials were evaluated before synthesis. SEM results revealed that DH-L consisted of irregular large particles, while DH-M and DH-S were composed of plate-like particles with some small ones. High percentage HH can be obtained with proper synthesis parameters by hydrothermal method, specifically, 105 °C/90 min for DH-L (achieving 98.8% HH), 105°C/30 min for DH-M (achieving 96.7% HH) and 100°C/45 min for DH-S (achieving 98.4% HH). All the synthesized HH were hexagonal columns, demonstrating that they were α-phase HH. The particle size and morphology of starting material (DH) have significant influences on not only the rate of phase transition but also the morphology of the synthesized α-HH. Calcium sulfate dihydrate cements were prepared by the synthesized α-HH. The highest compressive strength of calcium sulfate dihydrate cement was 17.2 MPa. The results show that the preparation of high percentage α-HH is feasible via a hydrothermal method and the process can be further scaled up to industrial scale production.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"8 1","pages":"36-49"},"PeriodicalIF":0.0,"publicationDate":"2017-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44721415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Fennell, Patrick Ymele-Leki, T. A. Adegboye, Kimberly L. Jones
Silver nanoparticles (Ag-NPs), one of the most common types of nanomaterials in medical fields and consumer products, are known to have antimicrobial effects; these materials also undergo a series of chemical and biological transformations in the environment. Although the pristine form of silver nanoparticles has been studied, less is known about the impacts of the transformed Ag-NPs on biological systems. This knowledge gap hinders the progress of effectively assessing the impacts of Ag-NPs on the environment and human health. In this study, we demonstrate that the most common form of transformed Ag-NPs, sulfidized silver nano-particles (Ag2S-NPs), show less damage on established Pseudomonas aeruginosa GFP (ATCC® 10145 GFP™) biofilm than the pristine form of the nanoparticle. At a dosage of 0.625 mg/L, the total biomass in the biofilm decreased 64% after being exposed to Ag-NPs and 44% after exposure to Ag2S-NPs. Live biofilms were also interrogated. We observed high reduction in live population for biofilm exposed to Ag-NPs and relatively low reduction by Ag2S-NPs at exposure concentrations higher than 0.625 mg/L. Compared with Ag-NPs, the lower solubility of Ag2S-NPs results in less Ag+ diffusion into established biofilms. Our results suggest that the sulfidation of Ag-NPs reduces their impacts on established biofilms, indicating that the transformed Ag-NPs may have less environmental or human health risks.
{"title":"Impact of Sulfidation of Silver Nanoparticles on Established P. aeruginosa Biofilm","authors":"Y. Fennell, Patrick Ymele-Leki, T. A. Adegboye, Kimberly L. Jones","doi":"10.4236/JBNB.2017.81006","DOIUrl":"https://doi.org/10.4236/JBNB.2017.81006","url":null,"abstract":"Silver nanoparticles (Ag-NPs), one of the most common types of nanomaterials in medical fields and consumer products, are known to have antimicrobial effects; these materials also undergo a series of chemical and biological transformations in the environment. Although the pristine form of silver nanoparticles has been studied, less is known about the impacts of the transformed Ag-NPs on biological systems. This knowledge gap hinders the progress of effectively assessing the impacts of Ag-NPs on the environment and human health. In this study, we demonstrate that the most common form of transformed Ag-NPs, sulfidized silver nano-particles (Ag2S-NPs), show less damage on established Pseudomonas aeruginosa GFP (ATCC® 10145 GFP™) biofilm than the pristine form of the nanoparticle. At a dosage of 0.625 mg/L, the total biomass in the biofilm decreased 64% after being exposed to Ag-NPs and 44% after exposure to Ag2S-NPs. Live biofilms were also interrogated. We observed high reduction in live population for biofilm exposed to Ag-NPs and relatively low reduction by Ag2S-NPs at exposure concentrations higher than 0.625 mg/L. Compared with Ag-NPs, the lower solubility of Ag2S-NPs results in less Ag+ diffusion into established biofilms. Our results suggest that the sulfidation of Ag-NPs reduces their impacts on established biofilms, indicating that the transformed Ag-NPs may have less environmental or human health risks.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"38 1","pages":"83-95"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70896168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antibacterial activity of biosynthesized silver nanoparticles (AgNPs) was significant in therapeutic application of nanotechnology. These researchers studied an ecofriendly and rapid method for the first time to synthesize silver nanoparticles using Zizyphus spina christi L aqueous leaves extract (ZSE), and their antibacterial properties. The extract was found to have the potential to form silver nanoparticles at room temperature within few minutes. The green synthesized silver nanoparticles were characterized using different techniques. The UV-visible spectrum of the solution containing AgNPs showed a peak at 414 nm corresponding to the plasmon absorbance of silver nanoparticles. The transmission electron microscopy (TEM) showed that the formed particles were hexagonal in shape with appreciable Nano size ranging from 21.5 to 59.67 nm. Fourier Transform Infrared Spectroscopy analysis (FTIR) of biosynthesized AgNPs affirmed the role of ZSE as reducing and capping agent of Ag+ ions to AgNPs, and X-Ray Diffraction patterns (XRD) showed that they could be indexed as face-centered-cubic structure of silver. Antibacterial activity of AgNPs was determined by well diffusion and micro plate assay methods, showing maximum inhibition zones of 24 mm, 23 mm, 15 mm and 17 mm against Staphylococcus aureus, Acinetobacter sp., Pseudomonas aeruginosa and Escherichia coli respectively. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) results showed that AgNPs had MIC, MBC of 45, 57 μg/mL, 49, 61 μg/mL, 63, 90 μg/mL and 59, 82 μg/mL against S. aureus, Acinetobacter sp., P. aeruginosa and E. coli respectively. Furthermore, the green synthesized AgNPs were loaded on band-aids and screened for antibacterial activity. The AgNPs loaded on band-aids exhibited strong antibacterial effect against multi drug resistant bacteria. These nanoparticles could be used for treating wounds and preparing wound dressing. Such researches are crucial in the demonstration of therapeutic importance of silver nanoparticles in medical application.
{"title":"Rapid Biosynthesis Method and Characterization of Silver Nanoparticles Using Zizyphus spina christi Leaf Extract and Their Antibacterial Efficacy in Therapeutic Application","authors":"E. Halawani","doi":"10.4236/JBNB.2017.81002","DOIUrl":"https://doi.org/10.4236/JBNB.2017.81002","url":null,"abstract":"Antibacterial activity of biosynthesized silver nanoparticles (AgNPs) was significant in therapeutic application of nanotechnology. These researchers studied an ecofriendly and rapid method for the first time to synthesize silver nanoparticles using Zizyphus spina christi L aqueous leaves extract (ZSE), and their antibacterial properties. The extract was found to have the potential to form silver nanoparticles at room temperature within few minutes. The green synthesized silver nanoparticles were characterized using different techniques. The UV-visible spectrum of the solution containing AgNPs showed a peak at 414 nm corresponding to the plasmon absorbance of silver nanoparticles. The transmission electron microscopy (TEM) showed that the formed particles were hexagonal in shape with appreciable Nano size ranging from 21.5 to 59.67 nm. Fourier Transform Infrared Spectroscopy analysis (FTIR) of biosynthesized AgNPs affirmed the role of ZSE as reducing and capping agent of Ag+ ions to AgNPs, and X-Ray Diffraction patterns (XRD) showed that they could be indexed as face-centered-cubic structure of silver. Antibacterial activity of AgNPs was determined by well diffusion and micro plate assay methods, showing maximum inhibition zones of 24 mm, 23 mm, 15 mm and 17 mm against Staphylococcus aureus, Acinetobacter sp., Pseudomonas aeruginosa and Escherichia coli respectively. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) results showed that AgNPs had MIC, MBC of 45, 57 μg/mL, 49, 61 μg/mL, 63, 90 μg/mL and 59, 82 μg/mL against S. aureus, Acinetobacter sp., P. aeruginosa and E. coli respectively. Furthermore, the green synthesized AgNPs were loaded on band-aids and screened for antibacterial activity. The AgNPs loaded on band-aids exhibited strong antibacterial effect against multi drug resistant bacteria. These nanoparticles could be used for treating wounds and preparing wound dressing. Such researches are crucial in the demonstration of therapeutic importance of silver nanoparticles in medical application.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"08 1","pages":"22-35"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70896079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuta Igawa, Hironobu Ise, Sakina Ichinoseki, Fumie Maeda, Ai Kobayashi, Kazutsugu Matsumoto
The enzyme-mediated highly enantioselective hydrolysis of aliphatic dicarboxylic acid diesters has been developed. The racemic diesters were easily prepared by the coupling of racemic alcohols with dicarboxylic anhydrides followed by esterification or with dicarboxylic acids. In the cases of bis(1-phenylethyl) glutarate and bis(1-phenylethyl) adipate, the diesters which contained the dl- and meso-form diastereomers, were enantioselectively hydrolyzed by lipase from Candida antarctica (Novozym 435) in buffer at 30°C to afford the almost optically pure (R)-1-phenylethanol. On the other hand, the following chemical hydrolysis of the remaining (S, S)-diesters and (S)-monoesters gave the (S)-alcohol. Finally, both enantiomers were stoichiometrically obtained in about 100% isolated yield based on the racemic diesters. The enzymatic reaction was also applicable for the preparation of several optically active alcohols. In some cases, both the reactivities and enantioselectivities were quite different from those in the case of the corresponding simple acetates.
{"title":"Enzyme-Mediated Enantioselective Hydrolysis of Aliphatic Dicarboxylic Acid Diesters","authors":"Yuta Igawa, Hironobu Ise, Sakina Ichinoseki, Fumie Maeda, Ai Kobayashi, Kazutsugu Matsumoto","doi":"10.4236/JBNB.2017.81004","DOIUrl":"https://doi.org/10.4236/JBNB.2017.81004","url":null,"abstract":"The enzyme-mediated highly enantioselective hydrolysis of aliphatic dicarboxylic acid diesters has been developed. The racemic diesters were easily prepared by the coupling of racemic alcohols with dicarboxylic anhydrides followed by esterification or with dicarboxylic acids. In the cases of bis(1-phenylethyl) glutarate and bis(1-phenylethyl) adipate, the diesters which contained the dl- and meso-form diastereomers, were enantioselectively hydrolyzed by lipase from Candida antarctica (Novozym 435) in buffer at 30°C to afford the almost optically pure (R)-1-phenylethanol. On the other hand, the following chemical hydrolysis of the remaining (S, S)-diesters and (S)-monoesters gave the (S)-alcohol. Finally, both enantiomers were stoichiometrically obtained in about 100% isolated yield based on the racemic diesters. The enzymatic reaction was also applicable for the preparation of several optically active alcohols. In some cases, both the reactivities and enantioselectivities were quite different from those in the case of the corresponding simple acetates.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"18 1","pages":"50-65"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70896148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One pot rapid and green bio-synthesis of stable fluorescent silver nanoparticles (Ag-NPs) from silver nitrate solution using root extract of Gymnadenia orchidis Lindlat at ambient temperature is demonstrated productively. Surface Plasmon resonance of the synthesized Ag-NPs was shown to occur at 439 nm and two sharp fluorescence peaks at 610 and 780 nm were observed. FTIR study publicized the presence of chemically functional groups in the root extract surrounding the Ag-NPs, acting as stabilizers. XRD and FESEM analysis revealed that Ag-NPs were face centred cubic structure being spherical in shape with an average particle size of 28 ± 2 nm (n = 100). The stability of Ag-NPs in neutral pH environment was confirmed by Zeta Potential (ζ) behaviour. The Ag-NPs showed superior antioxidant activity. The notable photo-catalytic activity of biosynthesized Ag-NPs attributed to the existence of some proteins, responsible for degradation of methylene blue dye. Furthermore, Ag-NPs were found to exhibit a significant antibacterial effect against gram positive Staphylococcus aureus (S. aureus) bacteria.
{"title":"Root Extracts (Gymnadenia orchidis Lindl) Facilitated Rapid Synthesis of Fluorescent Silver Nanoparticles (Ag-NPs) for Various Biological Applications","authors":"S. Show, Chetana Ghosal, B. Chattopadhyay","doi":"10.4236/JBNB.2017.81008","DOIUrl":"https://doi.org/10.4236/JBNB.2017.81008","url":null,"abstract":"One pot rapid and green bio-synthesis of stable fluorescent silver nanoparticles (Ag-NPs) from silver nitrate solution using root extract of Gymnadenia orchidis Lindlat at ambient temperature is demonstrated productively. Surface Plasmon resonance of the synthesized Ag-NPs was shown to occur at 439 nm and two sharp fluorescence peaks at 610 and 780 nm were observed. FTIR study publicized the presence of chemically functional groups in the root extract surrounding the Ag-NPs, acting as stabilizers. XRD and FESEM analysis revealed that Ag-NPs were face centred cubic structure being spherical in shape with an average particle size of 28 ± 2 nm (n = 100). The stability of Ag-NPs in neutral pH environment was confirmed by Zeta Potential (ζ) behaviour. The Ag-NPs showed superior antioxidant activity. The notable photo-catalytic activity of biosynthesized Ag-NPs attributed to the existence of some proteins, responsible for degradation of methylene blue dye. Furthermore, Ag-NPs were found to exhibit a significant antibacterial effect against gram positive Staphylococcus aureus (S. aureus) bacteria.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"08 1","pages":"109-124"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70896232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ulrica Englund-Johansson, Eitan Netanyah, F. Johansson
In neuroscience research, cell culture systems are essential experimental platforms. It is of great interest to explore in vivo-like culture substrates. We explored how basic properties of neural cells, nuclei polarization, phenotypic differentiation and distribution/migration, were affected by the culture at poly-L-lactic acid (PLLA) fibrous scaffolds, using a multipotent mitogen-expanded human neural progenitor cell (HNPC) line. HNPCs were seeded, at four different surfaces: two different electrospun PLLA (d = 1.2 - 1.3 μm) substrates (parallel or random aligned fibers), and planar PLL- and PLLA surfaces. Nuclei analysis demonstrated a non-directed cellular migration at planar surfaces and random fibers, different from cultures at aligned fibers where HNPCs were oriented parallel with the fibers. At aligned fibers, HNPCs displayed the same capacity for phenotypic differentiation as after culture on the planar surfaces. However, at random fibers, HNPCs showed a significant lower level of phenotypic differentiation compared with cultures at the planar surfaces. A clear trend towards greater neuronal formation at aligned fibers, compared to cultures at random fibers, was noted. We demonstrated that the topography of in vivo-resembling PLLA scaffolds significantly influences HNPC behavior, proven by different migration behavior, phenotypic differentiation potential and nuclei polarization. This knowledge is useful in future exploration of in vivo-resembling neural cell system using electrospun scaffolds.
{"title":"Tailor-Made Electrospun Culture Scaffolds Control Human Neural Progenitor Cell Behavior—Studies on Cellular Migration and Phenotypic Differentiation","authors":"Ulrica Englund-Johansson, Eitan Netanyah, F. Johansson","doi":"10.4236/JBNB.2017.81001","DOIUrl":"https://doi.org/10.4236/JBNB.2017.81001","url":null,"abstract":"In neuroscience research, cell culture systems are essential experimental platforms. It is of great interest to explore in vivo-like culture substrates. We explored how basic properties of neural cells, nuclei polarization, phenotypic differentiation and distribution/migration, were affected by the culture at poly-L-lactic acid (PLLA) fibrous scaffolds, using a multipotent mitogen-expanded human neural progenitor cell (HNPC) line. HNPCs were seeded, at four different surfaces: two different electrospun PLLA (d = 1.2 - 1.3 μm) substrates (parallel or random aligned fibers), and planar PLL- and PLLA surfaces. Nuclei analysis demonstrated a non-directed cellular migration at planar surfaces and random fibers, different from cultures at aligned fibers where HNPCs were oriented parallel with the fibers. At aligned fibers, HNPCs displayed the same capacity for phenotypic differentiation as after culture on the planar surfaces. However, at random fibers, HNPCs showed a significant lower level of phenotypic differentiation compared with cultures at the planar surfaces. A clear trend towards greater neuronal formation at aligned fibers, compared to cultures at random fibers, was noted. We demonstrated that the topography of in vivo-resembling PLLA scaffolds significantly influences HNPC behavior, proven by different migration behavior, phenotypic differentiation potential and nuclei polarization. This knowledge is useful in future exploration of in vivo-resembling neural cell system using electrospun scaffolds.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"8 1","pages":"1-21"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70895990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
After setting the ground of the quantum innovation potential of biosourced entities and outlining the inventive spectrum of adjacent technologies that can derive from those, the current review highlights, with the support of Bigger Data approaches, and a fairly large number of articles, more than 250 and 10,000 patents, the following. It covers an overview of biosourced chemicals and materials, mainly biomonomers, biooligomers and biopolymers; these are produced today in a way that allows reducing the fossil resources depletion and dependency, and obtaining environmentally-friendlier goods in a leaner energy consuming society. A process with a realistic productivity is underlined thanks to the implementation of recent and specifically effective processes where engineered microorganisms are capable to convert natural non-fossil goods, at industrial scale, into fuels and useful high-value chemicals in good yield. Those processes, further detailed, integrate: metabolic engineering involving 1) system biology, 2) synthetic biology and 3) evolutionary engineering. They enable acceptable production yield and productivity, meet the targeted chemical profiles, minimize the consumption of inputs, reduce the production of by-products and further diminish the overall operation costs. As generally admitted the properties of most natural occurring biopolymers (e.g., starch, poly (lactic acid), PHAs.) are often inferior to those of the polymers derived from petroleum; blends and composites, exhibiting improved properties, are now successfully produced. Specific attention is paid to these aspects. Then further evidence is provided to support the important potential and role of products deriving from the biomass in general. The need to enter into the era of Bigger Data, to grow and increase the awareness and multidimensional role and opportunity of biosourcing serves as a conclusion and future prospects. Although providing a large reference database, this review is largely initiatory, therefore not mimicking previous classic reviews but putting them in a multiplying synergistic prospective.
{"title":"Recent Strategies for the Development of Biosourced-Monomers, Oligomers and Polymers-Based Materials: A Review with an Innovation and a Bigger Data Focus","authors":"S. Rebouillat, F. Pla","doi":"10.4236/JBNB.2016.74017","DOIUrl":"https://doi.org/10.4236/JBNB.2016.74017","url":null,"abstract":"After setting the ground of the quantum innovation potential of biosourced entities and outlining the inventive spectrum of adjacent technologies that can derive from those, the current review highlights, with the support of Bigger Data approaches, and a fairly large number of articles, more than 250 and 10,000 patents, the following. It covers an overview of biosourced chemicals and materials, mainly biomonomers, biooligomers and biopolymers; these are produced today in a way that allows reducing the fossil resources depletion and dependency, and obtaining environmentally-friendlier goods in a leaner energy consuming society. A process with a realistic productivity is underlined thanks to the implementation of recent and specifically effective processes where engineered microorganisms are capable to convert natural non-fossil goods, at industrial scale, into fuels and useful high-value chemicals in good yield. Those processes, further detailed, integrate: metabolic engineering involving 1) system biology, 2) synthetic biology and 3) evolutionary engineering. They enable acceptable production yield and productivity, meet the targeted chemical profiles, minimize the consumption of inputs, reduce the production of by-products and further diminish the overall operation costs. As generally admitted the properties of most natural occurring biopolymers (e.g., starch, poly (lactic acid), PHAs.) are often inferior to those of the polymers derived from petroleum; blends and composites, exhibiting improved properties, are now successfully produced. Specific attention is paid to these aspects. Then further evidence is provided to support the important potential and role of products deriving from the biomass in general. The need to enter into the era of Bigger Data, to grow and increase the awareness and multidimensional role and opportunity of biosourcing serves as a conclusion and future prospects. Although providing a large reference database, this review is largely initiatory, therefore not mimicking previous classic reviews but putting them in a multiplying synergistic prospective.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"10 1","pages":"167-213"},"PeriodicalIF":0.0,"publicationDate":"2016-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70895918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Vasilyeva, V. I. Prokhorenkov, A. Puzyr, V. Bondar
The protective effect of modified nanodiamonds (MND) under the action of cobalt and nickel ions on the skin of Guinea pigs was shown. At the action of chromium ions on the skin of animals, the protective effect of MND was not found. The differences are related to different adsorption properties of MND to the investigated colored metal ions. It is shown in vitro that MND can adsorb ions of cobalt and nickel and don’t bind ions of chromium from aqueous medium. The perspectives using of MND as a new drug for the prevention allergic dermatitis caused by action of bivalent ions of metals are discussed.
{"title":"The Effects of Nanodiamonds at the Action of Colored Metal Ions on the Skin of Guinea Pigs","authors":"E. Vasilyeva, V. I. Prokhorenkov, A. Puzyr, V. Bondar","doi":"10.4236/JBNB.2016.74018","DOIUrl":"https://doi.org/10.4236/JBNB.2016.74018","url":null,"abstract":"The protective effect of modified nanodiamonds (MND) \u0000under the action of cobalt and nickel ions on the skin of Guinea pigs was \u0000shown. At the action of chromium ions on the skin of animals, the protective \u0000effect of MND was not found. The differences are related to different \u0000adsorption properties of MND to the investigated colored metal ions. It is \u0000shown in vitro that MND can adsorb ions of cobalt and nickel and don’t \u0000bind ions of chromium from aqueous medium. The perspectives using of MND as a \u0000new drug for the prevention allergic dermatitis caused by action of bivalent \u0000ions of metals are discussed.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"07 1","pages":"214-224"},"PeriodicalIF":0.0,"publicationDate":"2016-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70895936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A simple cantilever beam vibration test method made of biomorph and insect wing, were used to measure the vibrational stiffness and the air damping of insect wings. Vibration tests were performed in vacuum pressures to atmosphere and the wing stiffness and air damping factor were measured. The test method was found to be a viable method for measuring wing stiffness, natural frequencies and mode shapes. The vibrational deformation of the insect wings was found to be combination of bending and torsion because of unsymmetrical geometry of wing. The measured stiffness (K) of damselfly wings varied from 0.18 to 0.31 N/m and the air damping ratio ranged from 0.72 to 0.79. The undamped natural frequency (fn) at 13 kPa varied from 249 to 299 Hz and at atmosphere it varied from 168 to 198 Hz.
{"title":"Measurement of Vibrational Stiffness and Air Damping of Damselfly Wings","authors":"R. Talukder, K. Shivakumar","doi":"10.4236/JBNB.2016.73014","DOIUrl":"https://doi.org/10.4236/JBNB.2016.73014","url":null,"abstract":"A simple cantilever \u0000beam vibration test method made of biomorph and insect wing, were used to \u0000measure the vibrational stiffness and the air damping of insect wings. Vibration \u0000tests were performed in vacuum pressures to atmosphere and the wing stiffness \u0000and air damping factor were measured. The test method was found to be a viable \u0000method for measuring wing stiffness, natural frequencies and mode shapes. The \u0000vibrational deformation of the insect wings was found to be combination of \u0000bending and torsion because of unsymmetrical geometry of wing. The measured \u0000stiffness (K) of damselfly wings \u0000varied from 0.18 to 0.31 N/m and the air damping ratio ranged from 0.72 to \u00000.79. The undamped natural frequency (fn) \u0000at 13 kPa varied from 249 to 299 Hz and at atmosphere it varied from 168 to 198 \u0000Hz.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"07 1","pages":"127-141"},"PeriodicalIF":0.0,"publicationDate":"2016-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70896294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}