首页 > 最新文献

Mechanics of Time-Dependent Materials最新文献

英文 中文
Memory response of porous cylindrical panels with voids in the framework of three-phase-lag theory 三相滞后理论框架下带有空隙的多孔圆柱形面板的记忆响应
IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-06-07 DOI: 10.1007/s11043-024-09717-0
Kirti K. Jojare, Kishor R. Gaikwad

This article explores the memory effects of a three-dimensional cylindrical panel with a void using the Three-Phase-Lag (3PL) theory. The study derives the governing equations for displacement, temperature, void volume fraction, and stress. These equations are solved using Fourier–Laplace transforms and eigenvalue methods. To obtain numerical solutions and generate graphical representations, the transformed equations were inverted. Material properties from Gauthier’s work were used, and graphical results were produced using Mathematica software. The influence of memory response is then demonstrated by comparing kernel functions and time delay parameters within the 3PL porous cylindrical panel. The results show significant changes in the behavior of the panel. The validity of the proposed model is confirmed by comparing its predictions with previously published findings. The authors believe these results can provide valuable insights for various engineering applications involving porous materials. The model allows for accurate prediction of material behavior under different loading conditions, leading to a deeper understanding of various kernel phenomena.

本文利用三相滞后(3PL)理论探讨了带有空隙的三维圆柱形面板的记忆效应。研究得出了位移、温度、空隙体积分数和应力的控制方程。这些方程使用傅里叶-拉普拉斯变换和特征值方法求解。为了获得数值解并生成图形表示,对变换后的方程进行了反演。使用 Gauthier 工作中的材料特性,并使用 Mathematica 软件生成图形结果。然后,通过比较 3PL 多孔圆柱形面板内的核函数和时间延迟参数,证明了记忆响应的影响。结果显示,面板的行为发生了重大变化。通过将预测结果与之前发表的研究结果进行比较,证实了所提议模型的有效性。作者认为,这些结果可以为涉及多孔材料的各种工程应用提供有价值的见解。该模型可以准确预测不同加载条件下的材料行为,从而加深对各种内核现象的理解。
{"title":"Memory response of porous cylindrical panels with voids in the framework of three-phase-lag theory","authors":"Kirti K. Jojare,&nbsp;Kishor R. Gaikwad","doi":"10.1007/s11043-024-09717-0","DOIUrl":"10.1007/s11043-024-09717-0","url":null,"abstract":"<div><p>This article explores the memory effects of a three-dimensional cylindrical panel with a void using the Three-Phase-Lag (3PL) theory. The study derives the governing equations for displacement, temperature, void volume fraction, and stress. These equations are solved using Fourier–Laplace transforms and eigenvalue methods. To obtain numerical solutions and generate graphical representations, the transformed equations were inverted. Material properties from Gauthier’s work were used, and graphical results were produced using Mathematica software. The influence of memory response is then demonstrated by comparing kernel functions and time delay parameters within the 3PL porous cylindrical panel. The results show significant changes in the behavior of the panel. The validity of the proposed model is confirmed by comparing its predictions with previously published findings. The authors believe these results can provide valuable insights for various engineering applications involving porous materials. The model allows for accurate prediction of material behavior under different loading conditions, leading to a deeper understanding of various kernel phenomena.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"709 - 736"},"PeriodicalIF":2.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141371344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of strain rate on nanoparticle debonding in polymer nanocomposites 应变率对聚合物纳米复合材料中纳米颗粒脱粘的影响
IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-06-05 DOI: 10.1007/s11043-024-09713-4
Afshin Zeinedini

This paper attempts to evaluate the influence of strain rate on the debonding stress of the spherical nanoparticles using a closed form solution. A coherent model to correlate a relationship between the debonding stress of polymer-based nanocomposites and the strain rate was developed. A representative volume element (RVE) containing a spherical nanoparticle, an interphase material, and a pure polymer phase was regarded. A relationship between the debonding stress and the applied strain rate, the material, and geometrical properties of the RVE’s constituents was correlated. In addition to the strain rate, the role of some effective variables such as nanoparticles size, interphase thickness, and interphase stiffness on the debonding stress were investigated. To evaluate the model, three case studies based on the experimental studies performed on silica nanoparticles/epoxy, CaCO3 nanoparticles/high-density polyethylene (HDPE), silica nanoparticles/photopolymer nanocomposites were conducted. For the nano-silica/epoxy system, the results revealed that by enhancing the strain rate, the normalized debonding stress decreases. Additionally, under a certain strain rate, the normalized debonding stress enhances as much as the stiffness of interphase material increases and the nanoparticle size decreases. In the case of CaCO3/HDPE nanocomposites, it was observed that by increasing the size of nanoparticles, the normalized debonding stress was reduced significantly. For the nano-silica/photopolymer nanocomposites, it was found that the dependence of the normalized debonding stress on the strain rate is more remarkable for the thicker interphase region. The proposed model can be used to predict the mechanical properties of nanoparticles/polymer systems under high strain rate conditions.

本文试图利用封闭式解决方案评估应变速率对球形纳米颗粒脱粘应力的影响。本文建立了聚合物基纳米复合材料的脱粘应力与应变速率之间的关联模型。代表体积元素(RVE)包含球形纳米粒子、相间材料和纯聚合物相。脱粘应力与施加的应变率、RVE 成分的材料和几何特性之间存在关联。除了应变率之外,还研究了纳米颗粒尺寸、相间厚度和相间刚度等一些有效变量对脱胶应力的作用。为了评估该模型,根据对纳米二氧化硅/环氧树脂、纳米 CaCO3 粒子/高密度聚乙烯(HDPE)、纳米二氧化硅/光聚合物纳米复合材料的实验研究,进行了三项案例研究。对于纳米二氧化硅/环氧树脂体系,研究结果表明,通过提高应变速率,归一化脱粘应力会降低。此外,在一定的应变速率下,随着相间材料刚度的增加和纳米颗粒尺寸的减小,归一化脱粘应力也会增加。在 CaCO3/HDPE 纳米复合材料中,可以观察到随着纳米颗粒尺寸的增大,归一化脱粘应力明显减小。对于纳米二氧化硅/光聚合物纳米复合材料,研究发现在相间较厚的区域,归一化脱粘应力与应变速率的关系更为明显。所提出的模型可用于预测纳米粒子/聚合物体系在高应变速率条件下的力学性能。
{"title":"Influence of strain rate on nanoparticle debonding in polymer nanocomposites","authors":"Afshin Zeinedini","doi":"10.1007/s11043-024-09713-4","DOIUrl":"10.1007/s11043-024-09713-4","url":null,"abstract":"<div><p>This paper attempts to evaluate the influence of strain rate on the debonding stress of the spherical nanoparticles using a closed form solution. A coherent model to correlate a relationship between the debonding stress of polymer-based nanocomposites and the strain rate was developed. A representative volume element (RVE) containing a spherical nanoparticle, an interphase material, and a pure polymer phase was regarded. A relationship between the debonding stress and the applied strain rate, the material, and geometrical properties of the RVE’s constituents was correlated. In addition to the strain rate, the role of some effective variables such as nanoparticles size, interphase thickness, and interphase stiffness on the debonding stress were investigated. To evaluate the model, three case studies based on the experimental studies performed on silica nanoparticles/epoxy, CaCO<sub>3</sub> nanoparticles/high-density polyethylene (HDPE), silica nanoparticles/photopolymer nanocomposites were conducted. For the nano-silica/epoxy system, the results revealed that by enhancing the strain rate, the normalized debonding stress decreases. Additionally, under a certain strain rate, the normalized debonding stress enhances as much as the stiffness of interphase material increases and the nanoparticle size decreases. In the case of CaCO<sub>3</sub>/HDPE nanocomposites, it was observed that by increasing the size of nanoparticles, the normalized debonding stress was reduced significantly. For the nano-silica/photopolymer nanocomposites, it was found that the dependence of the normalized debonding stress on the strain rate is more remarkable for the thicker interphase region. The proposed model can be used to predict the mechanical properties of nanoparticles/polymer systems under high strain rate conditions.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"3069 - 3091"},"PeriodicalIF":2.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141385686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of nonlocal fractional magneto-thermoviscoelastic waves in a micro-rod heated by a moving heat source 被移动热源加热的微棒中的非局部分数磁热动弹性波的特征
IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-06-04 DOI: 10.1007/s11043-024-09701-8
A. Alansari

This research formulates a nonlocal systemic model to integrate viscoelastic and thermal deformations in solid structures based on fractional thermo-viscoelasticity theory. This enhanced model offers a more comprehensive understanding by integrating several existing theories. We apply the model to a one-dimensional problem involving a micro-rod made of an electrically conductive polymer, heated by a moving heat source. The analysis employs Laplace transforms with numerical inversion to determine the effects of fractional order, nonlocal elasticity, and nonlocal thermal conduction on thermal dispersion and the thermoviscoelastic response. Comparative figures illustrate the impact of an applied magnetic field. Results show that nonlocal thermal and viscoelastic parameters significantly influence all measured field values, potentially providing guidelines for the design and analysis of thermal-mechanical features in nanoscale devices.

这项研究以分数热-维斯科弹性理论为基础,建立了一个非局部系统模型,以整合固体结构中的粘弹性和热变形。这一增强模型综合了多种现有理论,提供了更全面的理解。我们将该模型应用于一个涉及由导电聚合物制成的微棒的一维问题,微棒由移动热源加热。分析采用了拉普拉斯变换和数值反演,以确定分数阶、非局部弹性和非局部热传导对热扩散和热致弹性响应的影响。对比图说明了外加磁场的影响。结果表明,非局部热和粘弹性参数对所有测得的磁场值都有显著影响,可能为设计和分析纳米级器件的热机械特性提供指导。
{"title":"Characteristics of nonlocal fractional magneto-thermoviscoelastic waves in a micro-rod heated by a moving heat source","authors":"A. Alansari","doi":"10.1007/s11043-024-09701-8","DOIUrl":"10.1007/s11043-024-09701-8","url":null,"abstract":"<div><p>This research formulates a nonlocal systemic model to integrate viscoelastic and thermal deformations in solid structures based on fractional thermo-viscoelasticity theory. This enhanced model offers a more comprehensive understanding by integrating several existing theories. We apply the model to a one-dimensional problem involving a micro-rod made of an electrically conductive polymer, heated by a moving heat source. The analysis employs Laplace transforms with numerical inversion to determine the effects of fractional order, nonlocal elasticity, and nonlocal thermal conduction on thermal dispersion and the thermoviscoelastic response. Comparative figures illustrate the impact of an applied magnetic field. Results show that nonlocal thermal and viscoelastic parameters significantly influence all measured field values, potentially providing guidelines for the design and analysis of thermal-mechanical features in nanoscale devices.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2937 - 2962"},"PeriodicalIF":2.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of pile-head breaking methods on the triaxial creep behavior of a concrete: a constitutive modeling approach 桩头破除方法对混凝土三轴徐变行为的影响:构成模型方法
IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-06-04 DOI: 10.1007/s11043-024-09690-8
Haikuan Wu, Hangqi Zhang, Shun Kang, Xin Zhang, Yongyi Yang, Xudong Yang, Rongxi Shen, Baoxian Liu, Xun Yuan, Zhile Shu

This study investigated the long-term creep behavior of concrete in drilled shafts using conventional and soft-cutting head techniques, focusing on their propensity for internal defects and crack propagation under sustained loading. Triaxial creep tests were performed on concrete specimens subjected to multistage loading to examine the axial- and radial-creep responses associated with each cutting-head method. The findings reveal that concrete prepared with conventional cutting heads exhibits a higher susceptibility to creep failure, attributed to an increased presence of internal defects. In contrast, specimens using soft-cutting heads demonstrated reduced axial- and radial-creep deformations. Concrete cured in laboratory conditions and those cut with soft-cutting heads at various elevations predominantly experienced shearing failures, whereas specimens with soft-cutting heads positioned at higher elevations were more prone to radial tension-shear failures. Considering the Burgers model and fractional-order theory, we introduce a one-dimensional nonlinear damage creep model, alongside a more comprehensive three-dimensional damage creep model. Validation of these models confirms their effectiveness in describing the creep behavior of concrete under different cutting-head disturbances. Importantly, our analysis suggests that the role of soft-cutting head methods on the integrity of cast-in-place concrete piles is comparatively minimal. This insight underscores the potential for optimizing pile-head breaking techniques to mitigate creep-related failures in concrete structures.

本研究调查了使用传统和软切割头技术的钻井中混凝土的长期徐变行为,重点关注它们在持续加载下产生内部缺陷和裂缝扩展的倾向。对承受多级加载的混凝土试样进行了三轴徐变试验,以检查与每种切割头方法相关的轴向和径向徐变响应。研究结果表明,使用传统切割头制备的混凝土更容易发生蠕变破坏,这是因为内部缺陷增加了。相比之下,使用软切割头的试样显示出较小的轴向和径向蠕变变形。在实验室条件下养护的混凝土和在不同高度使用软切割头切割的混凝土主要出现剪切破坏,而在较高位置使用软切割头的试样更容易出现径向拉伸剪切破坏。考虑到布尔格斯模型和分数阶理论,我们引入了一维非线性损伤蠕变模型,以及更全面的三维损伤蠕变模型。对这些模型的验证证实了它们在描述不同刀头扰动下混凝土徐变行为时的有效性。重要的是,我们的分析表明,软切割头方法对现浇混凝土桩完整性的影响相对较小。这一洞察力强调了优化桩头破除技术以减轻混凝土结构中与徐变相关的故障的潜力。
{"title":"Effect of pile-head breaking methods on the triaxial creep behavior of a concrete: a constitutive modeling approach","authors":"Haikuan Wu,&nbsp;Hangqi Zhang,&nbsp;Shun Kang,&nbsp;Xin Zhang,&nbsp;Yongyi Yang,&nbsp;Xudong Yang,&nbsp;Rongxi Shen,&nbsp;Baoxian Liu,&nbsp;Xun Yuan,&nbsp;Zhile Shu","doi":"10.1007/s11043-024-09690-8","DOIUrl":"10.1007/s11043-024-09690-8","url":null,"abstract":"<div><p>This study investigated the long-term creep behavior of concrete in drilled shafts using conventional and soft-cutting head techniques, focusing on their propensity for internal defects and crack propagation under sustained loading. Triaxial creep tests were performed on concrete specimens subjected to multistage loading to examine the axial- and radial-creep responses associated with each cutting-head method. The findings reveal that concrete prepared with conventional cutting heads exhibits a higher susceptibility to creep failure, attributed to an increased presence of internal defects. In contrast, specimens using soft-cutting heads demonstrated reduced axial- and radial-creep deformations. Concrete cured in laboratory conditions and those cut with soft-cutting heads at various elevations predominantly experienced shearing failures, whereas specimens with soft-cutting heads positioned at higher elevations were more prone to radial tension-shear failures. Considering the Burgers model and fractional-order theory, we introduce a one-dimensional nonlinear damage creep model, alongside a more comprehensive three-dimensional damage creep model. Validation of these models confirms their effectiveness in describing the creep behavior of concrete under different cutting-head disturbances. Importantly, our analysis suggests that the role of soft-cutting head methods on the integrity of cast-in-place concrete piles is comparatively minimal. This insight underscores the potential for optimizing pile-head breaking techniques to mitigate creep-related failures in concrete structures.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2793 - 2817"},"PeriodicalIF":2.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheological analysis of blended vs. recovered asphalt binders in rejuvenated mixtures with high reclaimed asphalt pavement 高再生沥青路面再生混合物中混合沥青粘结剂与回收沥青粘结剂的流变分析
IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-06-03 DOI: 10.1007/s11043-024-09711-6
Reza Imaninasab, Luis Loria-Salazar, Alan Carter

Higher reclaimed asphalt pavement (RAP) in asphalt mixtures requires efficient rejuvenation. The efficiency of the rejuvenation can be evaluated by studying the rejuvenator, new and old binder blend. The blend must represent the binder blend inside the asphalt mixture to reflect reality. Extracting and recovering the binder of the rejuvenated asphalt mixtures containing RAP is the best practice to obtain the binder blend inside the asphalt mixture. However, extraction and recovery is not a common practice to study rejuvenation efficiency since it is time-consuming and energy-demanding with exposure to hazardous chemicals. Instead, blending rejuvenator, new binder and the extracted and recovered (E&R) binder from RAP limits the extraction and recovery to the RAP and minimizes efforts for studying rejuvenation efficiency. This study aims to find the blending conditions under which the blend of the rejuvenator, new and RAP binder represents the E&R binder from asphalt mixture concerning rheological performance and behavior properties. The rheological properties of three binder blends prepared under intense, moderate, and low blending conditions were compared with those of the E&R binder. Performance grade (PG), rutting potential (multiple stress creep and recovery test), fatigue resistance (linear amplitude sweep test) and behavioral characteristics (linearity and complex modulus tests) are the rheological properties of this study. It was found that intense and moderate blending conditions are good representatives of the E&R binder with regard to PG and PG+ designation. In addition, intense, moderate, and low blending conditions can be a surrogate for the PAV-aged E&R binder. It can be claimed that any intensity of blending conditions between intense and moderate lead to binder specimen that is almost identical to E&R binder with respect to rutting potential and characterization.

在沥青混合料中使用较多的再生沥青路面(RAP)需要进行有效的再生处理。可以通过研究再生剂、新旧粘结剂混合料来评估再生效率。混合料必须代表沥青混合料内部的粘结剂混合料,以反映实际情况。提取和回收含有 RAP 的再生沥青混合料中的粘结剂是获得沥青混合料内部粘结剂混合情况的最佳做法。然而,提取和回收并不是研究再生效率的常用方法,因为提取和回收既耗时又耗力,还会接触有害化学物质。相反,将再生剂、新粘结剂和从 RAP 中提取并回收(E&R)的粘结剂混合在一起,可将提取和回收限制在 RAP 中,从而最大限度地减少研究再生效率的工作量。本研究的目的是找出在何种混合条件下,再生剂、新胶结料和 RAP 胶结料的混合能代表沥青混合料中的 E&R 胶结料的流变性能和行为特性。我们将在高掺量、中掺量和低掺量条件下制备的三种胶结料混合物的流变特性与 E&R 胶结料的流变特性进行了比较。性能等级(PG)、车辙可能性(多应力蠕变和恢复试验)、抗疲劳性(线性振幅扫描试验)和行为特性(线性和复模量试验)是本研究的流变特性。研究发现,就 PG 和 PG+ 名称而言,强混合和中等混合条件是 E&R 粘结剂的良好代表。此外,强烈、适度和低度掺混条件可作为 PAV 老化 E&R 粘结剂的替代物。可以说,任何强度介于强烈和适度之间的掺合条件都会导致粘合剂试样在车辙潜力和特征方面与 E&R 粘合剂几乎完全相同。
{"title":"Rheological analysis of blended vs. recovered asphalt binders in rejuvenated mixtures with high reclaimed asphalt pavement","authors":"Reza Imaninasab,&nbsp;Luis Loria-Salazar,&nbsp;Alan Carter","doi":"10.1007/s11043-024-09711-6","DOIUrl":"10.1007/s11043-024-09711-6","url":null,"abstract":"<div><p>Higher reclaimed asphalt pavement (RAP) in asphalt mixtures requires efficient rejuvenation. The efficiency of the rejuvenation can be evaluated by studying the rejuvenator, new and old binder blend. The blend must represent the binder blend inside the asphalt mixture to reflect reality. Extracting and recovering the binder of the rejuvenated asphalt mixtures containing RAP is the best practice to obtain the binder blend inside the asphalt mixture. However, extraction and recovery is not a common practice to study rejuvenation efficiency since it is time-consuming and energy-demanding with exposure to hazardous chemicals. Instead, blending rejuvenator, new binder and the extracted and recovered (E&amp;R) binder from RAP limits the extraction and recovery to the RAP and minimizes efforts for studying rejuvenation efficiency. This study aims to find the blending conditions under which the blend of the rejuvenator, new and RAP binder represents the E&amp;R binder from asphalt mixture concerning rheological performance and behavior properties. The rheological properties of three binder blends prepared under intense, moderate, and low blending conditions were compared with those of the E&amp;R binder. Performance grade (PG), rutting potential (multiple stress creep and recovery test), fatigue resistance (linear amplitude sweep test) and behavioral characteristics (linearity and complex modulus tests) are the rheological properties of this study. It was found that intense and moderate blending conditions are good representatives of the E&amp;R binder with regard to PG and PG+ designation. In addition, intense, moderate, and low blending conditions can be a surrogate for the PAV-aged E&amp;R binder. It can be claimed that any intensity of blending conditions between intense and moderate lead to binder specimen that is almost identical to E&amp;R binder with respect to rutting potential and characterization.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"3049 - 3068"},"PeriodicalIF":2.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculation of residual stress in ultrasonic vibration assisted grinding considering thermal-mechanical coupling: a numerical-analytical hybrid prediction approach 考虑热机械耦合的超声波振动辅助磨削残余应力计算:数值-分析混合预测方法
IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-05-31 DOI: 10.1007/s11043-024-09707-2
Shijie Ye, Jun Wen, Jinyuan Tang, Weihua Zhou, Yuansheng Zhou

Ultrasonic vibration-assisted grinding (UVAG) enhances surface integrity in machined parts, especially in achieving greater compressive residual stress. Typically, the calculation of residual stresses in UVAG relies on generic finite element software that is not optimized for this purpose, suffering from cumbersome modeling and inefficient calculations. This paper introduces a numerical-analytical hybrid model tailored to predict residual stresses in UVAG. The model independently calculates mechanical and thermal stress fields using contact mechanics and finite difference methods. It employs Hertz’s contact theory and Timoshenko’s thermoelastic theory to establish a correlation between mechanical and thermal loads and the internal stresses in the workpiece. The residual stress field is then determined by considering the thermal-mechanical coupling effects inherent in UVAG. Experiments conducted on 12Cr2Ni4A alloy steel validate the model, with a maximum deviation of 10.5% between predicted and measured residual stresses. Further analysis shows that the presented method has a significant computational efficiency advantage over the simulation method that uses generic finite element software. The work confirms the accuracy and efficiency of the proposed model, offering a novel approach for predicting residual stress in UVAG.

超声波振动辅助磨削(UVAG)可提高机加工零件的表面完整性,尤其是在获得更大的压缩残余应力方面。通常情况下,UVAG 中残余应力的计算依赖于通用有限元软件,而该软件并未针对此目的进行优化,因此存在建模繁琐、计算效率低下等问题。本文介绍了一种专门用于预测 UVAG 中残余应力的数值-分析混合模型。该模型使用接触力学和有限差分法独立计算机械应力场和热应力场。它采用赫兹接触理论和季莫申科热弹性理论,建立了机械和热负荷与工件内应力之间的相关性。然后通过考虑 UVAG 固有的热机械耦合效应来确定残余应力场。在 12Cr2Ni4A 合金钢上进行的实验验证了该模型,预测残余应力与测量残余应力之间的最大偏差为 10.5%。进一步的分析表明,与使用通用有限元软件的模拟方法相比,所提出的方法具有显著的计算效率优势。这项工作证实了所提模型的准确性和效率,为预测 UVAG 中的残余应力提供了一种新方法。
{"title":"Calculation of residual stress in ultrasonic vibration assisted grinding considering thermal-mechanical coupling: a numerical-analytical hybrid prediction approach","authors":"Shijie Ye,&nbsp;Jun Wen,&nbsp;Jinyuan Tang,&nbsp;Weihua Zhou,&nbsp;Yuansheng Zhou","doi":"10.1007/s11043-024-09707-2","DOIUrl":"10.1007/s11043-024-09707-2","url":null,"abstract":"<div><p>Ultrasonic vibration-assisted grinding (UVAG) enhances surface integrity in machined parts, especially in achieving greater compressive residual stress. Typically, the calculation of residual stresses in UVAG relies on generic finite element software that is not optimized for this purpose, suffering from cumbersome modeling and inefficient calculations. This paper introduces a numerical-analytical hybrid model tailored to predict residual stresses in UVAG. The model independently calculates mechanical and thermal stress fields using contact mechanics and finite difference methods. It employs Hertz’s contact theory and Timoshenko’s thermoelastic theory to establish a correlation between mechanical and thermal loads and the internal stresses in the workpiece. The residual stress field is then determined by considering the thermal-mechanical coupling effects inherent in UVAG. Experiments conducted on 12Cr2Ni4A alloy steel validate the model, with a maximum deviation of 10.5% between predicted and measured residual stresses. Further analysis shows that the presented method has a significant computational efficiency advantage over the simulation method that uses generic finite element software. The work confirms the accuracy and efficiency of the proposed model, offering a novel approach for predicting residual stress in UVAG.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2981 - 3003"},"PeriodicalIF":2.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermo-mechanical interaction in two-temperature time-differential dual-phase-lagging materials under gravitational field influence 引力场影响下双温时差双相滞后材料中的热机械相互作用
IF 2.5 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-05-31 DOI: 10.1007/s11043-024-09712-5
Nantu Sarkar

This study investigates the thermo-mechanical behavior of generalized thermoelastic mediums under the influence of gravitational fields, incorporating two-temperature effects through the Lord–Shulman and dual-phase-lag models. Focusing on a plane surface subjected to an arbitrary normal force and maintained at isothermal conditions, analytical expressions for conductive temperature, thermodynamic temperature, displacement components, and force stresses are derived using normal mode analysis. Numerical results, presented graphically, consider the application of thermal force. Comparative analyses between the dual-phase-lag and Lord-Shulman models are conducted, examining the impact of gravity and the two-temperature effect. Engineering applications of these findings can enhance the understanding of thermal management in materials subjected to varying gravitational environments, such as aerospace structures and thermal barrier coatings.

本研究探讨了广义热弹性介质在重力场影响下的热机械行为,通过 Lord-Shulman 模型和双相滞后模型纳入了双温效应。以受到任意法向力作用并保持等温条件的平面为重点,利用法向模式分析推导出了传导温度、热力学温度、位移分量和力应力的分析表达式。在考虑热力应用的情况下,以图表形式展示了数值结果。对双相滞后模型和 Lord-Shulman 模型进行了比较分析,研究了重力和双温效应的影响。这些研究成果在工程上的应用可以加深人们对在不同重力环境下材料热管理的理解,如航空航天结构和隔热涂层。
{"title":"Thermo-mechanical interaction in two-temperature time-differential dual-phase-lagging materials under gravitational field influence","authors":"Nantu Sarkar","doi":"10.1007/s11043-024-09712-5","DOIUrl":"https://doi.org/10.1007/s11043-024-09712-5","url":null,"abstract":"<p>This study investigates the thermo-mechanical behavior of generalized thermoelastic mediums under the influence of gravitational fields, incorporating two-temperature effects through the Lord–Shulman and dual-phase-lag models. Focusing on a plane surface subjected to an arbitrary normal force and maintained at isothermal conditions, analytical expressions for conductive temperature, thermodynamic temperature, displacement components, and force stresses are derived using normal mode analysis. Numerical results, presented graphically, consider the application of thermal force. Comparative analyses between the dual-phase-lag and Lord-Shulman models are conducted, examining the impact of gravity and the two-temperature effect. Engineering applications of these findings can enhance the understanding of thermal management in materials subjected to varying gravitational environments, such as aerospace structures and thermal barrier coatings.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress-induced diffusion in viscoelastic electrode particles of Li-ion batteries: a comparative analysis using chemo-viscoelastic finite element models 锂离子电池粘弹性电极颗粒中的应力诱导扩散:使用化学-粘弹性有限元模型进行比较分析
IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-05-30 DOI: 10.1007/s11043-024-09706-3
Sanjana Talukdar, Narasimhan Swaminathan, Parag Ravindran

The role of stress-induced diffusion (SID) in influencing the mechanical response and diffusion of Li in viscoelastic electrode particles of Lithium-ion batteries is studied. A two-way coupled chemo-viscoelastic model is developed for this purpose, and the governing equations are solved via the finite element method using deal. ii, an open source C++ library. Comparative studies between one-way and two-way coupled chemo-viscoelastic models reveal that concentration and stress are initially larger for the two-way coupled model, but later they reduce in magnitude compared to the one-way coupled model. The level of filling at which the switch is observed decreases with increase in particle size. The switch occurs due to change in the sign of gradient of hydrostatic stress for a viscoelastic material from negative to positive and its concurrent effect on diffusive flux as a result of two-way coupling between stress and diffusion. Further, from comparative studies between two-way coupled elastic and viscoelastic models, it is observed that speed of filling is greater for an elastic particle in comparison to a viscoelastic particle, and the gap increases when the particle size is smaller. In addition, lower values of stresses are observed for viscoelastic electrode particles, and the difference between maximum stress generated increases with increase in particle size. Thus, the time scales associated with viscoelastic constitutive response and diffusion process alters the SID effects and could be tuned while designing electrodes to mitigate slowing down of diffusion and fracture.

研究了应力诱导扩散(SID)对锂离子电池粘弹性电极颗粒中锂离子的机械响应和扩散的影响。为此开发了一个双向耦合化学粘弹性模型,并通过有限元法使用开源 C++ 库 deal.单向耦合和双向耦合化学-粘弹性模型的比较研究表明,双向耦合模型的浓度和应力最初较大,但后来与单向耦合模型相比,浓度和应力的幅度有所减小。随着粒径的增大,观察到切换的填充水平降低。切换发生的原因是粘弹性材料的流体静力学应力梯度符号由负变正,同时应力和扩散之间的双向耦合对扩散通量产生了影响。此外,通过对双向耦合弹性模型和粘弹性模型的比较研究发现,弹性颗粒的填充速度大于粘弹性颗粒,而且当颗粒尺寸较小时,差距会增大。此外,粘弹性电极颗粒的应力值较低,随着颗粒尺寸的增大,产生的最大应力之间的差距也会增大。因此,与粘弹性结构响应和扩散过程相关的时间尺度会改变 SID 效应,可在设计电极时进行调整,以减缓扩散和断裂的速度。
{"title":"Stress-induced diffusion in viscoelastic electrode particles of Li-ion batteries: a comparative analysis using chemo-viscoelastic finite element models","authors":"Sanjana Talukdar,&nbsp;Narasimhan Swaminathan,&nbsp;Parag Ravindran","doi":"10.1007/s11043-024-09706-3","DOIUrl":"10.1007/s11043-024-09706-3","url":null,"abstract":"<div><p>The role of stress-induced diffusion (SID) in influencing the mechanical response and diffusion of Li in viscoelastic electrode particles of Lithium-ion batteries is studied. A two-way coupled chemo-viscoelastic model is developed for this purpose, and the governing equations are solved via the finite element method using deal. ii, an open source C++ library. Comparative studies between one-way and two-way coupled chemo-viscoelastic models reveal that concentration and stress are initially larger for the two-way coupled model, but later they reduce in magnitude compared to the one-way coupled model. The level of filling at which the switch is observed decreases with increase in particle size. The switch occurs due to change in the sign of gradient of hydrostatic stress for a viscoelastic material from negative to positive and its concurrent effect on diffusive flux as a result of two-way coupling between stress and diffusion. Further, from comparative studies between two-way coupled elastic and viscoelastic models, it is observed that speed of filling is greater for an elastic particle in comparison to a viscoelastic particle, and the gap increases when the particle size is smaller. In addition, lower values of stresses are observed for viscoelastic electrode particles, and the difference between maximum stress generated increases with increase in particle size. Thus, the time scales associated with viscoelastic constitutive response and diffusion process alters the SID effects and could be tuned while designing electrodes to mitigate slowing down of diffusion and fracture.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1133 - 1164"},"PeriodicalIF":2.1,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional modeling of cyclic loading behavior of polymeric materials 聚合物材料循环加载行为的分数模型
IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-05-28 DOI: 10.1007/s11043-024-09705-4
Wei Cai, Yongqi Zhang, Ping Wang, Zhouquan Wang

This paper introduces a fractional-order model integrated with a damage variable to effectively characterize the stress or strain responses under strain- or stress-controlled cyclic loading. We derive a relationship among mean stress, ratcheting strain, and cyclic number from the established fractional constitutive relationship. Experimental validation with polymeric data demonstrates the validity of our model, indicating how fractional order captures the effects of various loading conditions—including mean stress, temperature, and loading rate—on ratcheting strain responses. Additionally, our model offers a simpler mathematical framework than the existing models, without compromising accuracy.

本文介绍了一种集成了损伤变量的分数阶模型,以有效描述应变或应力控制循环加载下的应力或应变响应。我们从已建立的分数构成关系中推导出平均应力、棘轮应变和循环次数之间的关系。利用聚合物数据进行的实验验证证明了我们模型的有效性,表明分数阶如何捕捉各种加载条件(包括平均应力、温度和加载速率)对棘轮应变响应的影响。此外,与现有模型相比,我们的模型提供了一个更简单的数学框架,同时不影响精度。
{"title":"Fractional modeling of cyclic loading behavior of polymeric materials","authors":"Wei Cai,&nbsp;Yongqi Zhang,&nbsp;Ping Wang,&nbsp;Zhouquan Wang","doi":"10.1007/s11043-024-09705-4","DOIUrl":"10.1007/s11043-024-09705-4","url":null,"abstract":"<div><p>This paper introduces a fractional-order model integrated with a damage variable to effectively characterize the stress or strain responses under strain- or stress-controlled cyclic loading. We derive a relationship among mean stress, ratcheting strain, and cyclic number from the established fractional constitutive relationship. Experimental validation with polymeric data demonstrates the validity of our model, indicating how fractional order captures the effects of various loading conditions—including mean stress, temperature, and loading rate—on ratcheting strain responses. Additionally, our model offers a simpler mathematical framework than the existing models, without compromising accuracy.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1743 - 1759"},"PeriodicalIF":2.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling peristaltic nanofluid flow with microorganisms for thermal therapy: a CFD and entropy analysis 热疗用微生物蠕动纳米流体流动建模:CFD 和熵分析
IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Pub Date : 2024-05-22 DOI: 10.1007/s11043-024-09702-7
Arshad Riaz, Muhammad Dil Nawaz, Muhammad Naeem Aslam, Sami Ullah Khan, Shafiq ur Rehman

This research investigates the effects of multi-slip conditions and entropy production on the flow of viscoelastic (Jeffrey) nanofluids in asymmetric channels, to determine the implications for healthcare applications such as cryopreservation and therapeutic thermal devices. By employing numerical simulations via the Shooting method and NDSolve tool, we examine the influence of motile microorganisms on the fluid’s thermal and entropic characteristics. Our findings, illustrated through graphical analysis, demonstrate that optimizing thermal slip and minimizing viscous slip can significantly reduce entropy generation. Additionally, we observe that the thermal profiles are affected by the Brinkman number-diminishing in size, yet expanding due to the Jeffrey fluid’s properties. This investigation not only advances our understanding of microbe motion in physiological fluids but also opens directions for developing precise therapeutic and diagnostic tools for microbial infections and related disorders.

本研究探讨了多滑动条件和熵产生对非对称通道中粘弹性(杰弗里)纳米流体流动的影响,以确定其对低温保存和治疗热设备等医疗应用的影响。通过 Shooting 方法和 NDSolve 工具进行数值模拟,我们研究了运动微生物对流体热和熵特性的影响。通过图形分析,我们的研究结果表明,优化热滑移和最小化粘性滑移可以显著减少熵的产生。此外,我们还观察到,热曲线受布林克曼数的影响--尺寸减小,但由于杰弗里流体的特性而扩大。这项研究不仅加深了我们对微生物在生理流体中运动的理解,还为开发针对微生物感染和相关疾病的精确治疗和诊断工具开辟了方向。
{"title":"Modeling peristaltic nanofluid flow with microorganisms for thermal therapy: a CFD and entropy analysis","authors":"Arshad Riaz,&nbsp;Muhammad Dil Nawaz,&nbsp;Muhammad Naeem Aslam,&nbsp;Sami Ullah Khan,&nbsp;Shafiq ur Rehman","doi":"10.1007/s11043-024-09702-7","DOIUrl":"10.1007/s11043-024-09702-7","url":null,"abstract":"<div><p>This research investigates the effects of multi-slip conditions and entropy production on the flow of viscoelastic (Jeffrey) nanofluids in asymmetric channels, to determine the implications for healthcare applications such as cryopreservation and therapeutic thermal devices. By employing numerical simulations via the Shooting method and NDSolve tool, we examine the influence of motile microorganisms on the fluid’s thermal and entropic characteristics. Our findings, illustrated through graphical analysis, demonstrate that optimizing thermal slip and minimizing viscous slip can significantly reduce entropy generation. Additionally, we observe that the thermal profiles are affected by the Brinkman number-diminishing in size, yet expanding due to the Jeffrey fluid’s properties. This investigation not only advances our understanding of microbe motion in physiological fluids but also opens directions for developing precise therapeutic and diagnostic tools for microbial infections and related disorders.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1245 - 1270"},"PeriodicalIF":2.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mechanics of Time-Dependent Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1