首页 > 最新文献

Micro and Nano Systems Letters最新文献

英文 中文
Hydrophobic surface for direct PEGDA micro-pattern fabrication 用于直接PEGDA微图案制作的疏水表面
IF 3.6 Q1 Engineering Pub Date : 2023-06-07 DOI: 10.1186/s40486-023-00169-8
Anna Danielak, Juhee Ko, Aminul Islam, David Bue Pedersen, Jungchul Lee

Photopolymerization of hydrogels films has gained interest in many biomedical and industrial fields. Hydrogel micro-patterns fabricated directly on a device are used as filtering barriers, however, due to weak mechanical properties, these parts require a stable support but deposition of hydrogel in non-polymerized state brings a risk of sinking inside the structure. These limitations can be overcome by applying a hydrophobic surface. This paper presents a novel two-step method, in which a hydrophobic surface was designed and manufactured using mask-projection vat photopolymerization additive manufacturing (VPP). Afterwards, PEGDA-based hydrogel photopolymers were deposited on the surface and a micro-scale patterns were cured. The parts were subjected to water immersion and heating in order to evaluate the swelling and shrinking behaviour of hydrogel. The parts remained stable on the substrate and maintained the properties and the results revealed the shape retention over 97%. This work shows that VPP can be applied in the manufacturing of hydrophobic surfaces for hydrogel photopolymer deposition and curing without sacrificing critical properties.

Graphical Abstract

水凝胶膜的光聚合已在许多生物医学和工业领域引起了人们的兴趣。直接在器件上制备的水凝胶微图案被用作过滤屏障,但由于其力学性能较弱,这些部件需要稳定的支撑,而非聚合状态下的水凝胶沉积会带来在结构内部下沉的风险。这些限制可以通过应用疏水表面来克服。本文提出了一种新的两步法,利用掩模投影缸光聚合增材制造技术(VPP)设计和制造疏水表面。然后,在表面沉积聚乙二醇基水凝胶光聚合物并固化微尺度图案。为了评估水凝胶的膨胀和收缩行为,对零件进行了水浸泡和加热。零件在基体上保持稳定,保持了性能,形状保持率达97%以上。这项工作表明,VPP可以应用于水凝胶光聚合物沉积和固化的疏水表面的制造,而不牺牲关键性能。图形抽象
{"title":"Hydrophobic surface for direct PEGDA micro-pattern fabrication","authors":"Anna Danielak,&nbsp;Juhee Ko,&nbsp;Aminul Islam,&nbsp;David Bue Pedersen,&nbsp;Jungchul Lee","doi":"10.1186/s40486-023-00169-8","DOIUrl":"10.1186/s40486-023-00169-8","url":null,"abstract":"<div><p>Photopolymerization of hydrogels films has gained interest in many biomedical and industrial fields. Hydrogel micro-patterns fabricated directly on a device are used as filtering barriers, however, due to weak mechanical properties, these parts require a stable support but deposition of hydrogel in non-polymerized state brings a risk of sinking inside the structure. These limitations can be overcome by applying a hydrophobic surface. This paper presents a novel two-step method, in which a hydrophobic surface was designed and manufactured using mask-projection vat photopolymerization additive manufacturing (VPP). Afterwards, PEGDA-based hydrogel photopolymers were deposited on the surface and a micro-scale patterns were cured. The parts were subjected to water immersion and heating in order to evaluate the swelling and shrinking behaviour of hydrogel. The parts remained stable on the substrate and maintained the properties and the results revealed the shape retention over 97%. This work shows that VPP can be applied in the manufacturing of hydrophobic surfaces for hydrogel photopolymer deposition and curing without sacrificing critical properties.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00169-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4305878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in visible-light-driven double perovskite nanoparticles for photodegradation 光降解用可见光驱动双钙钛矿纳米颗粒的研究进展
IF 3.6 Q1 Engineering Pub Date : 2023-05-22 DOI: 10.1186/s40486-023-00168-9
Runia Jana, P. Mary Rajaitha, Sugato Hajra, Hoe Joon Kim

Perovskites are of significant interest in the field of photocatalysis. To date, many perovskite nanostructures have been developed, and their applications in photocatalysis have been studied. There has been considerable improvement in the research on metal doping in the perovskite structure to improve their optical and structural properties. This mini-review examines the recent progress in the synthesis of lead-free double perovskite nanoparticles and their application in visible-light photocatalysis. Lead-free perovskites are emerging as an eco-friendly solution in energy, electrochemistry, and sensing. Double perovskites are known for their flexible structural, optical, and morphological properties due to their lattice framework having a general form AAʹBBʹO6. They are more useful for hydrogen evolution due to their higher conduction band potential than simple perovskites. Here, we summarize the current progress and provide insights for the future development of double perovskites toward efficient photodegradation.

钙钛矿在光催化领域具有重要的研究价值。迄今为止,已经开发了许多钙钛矿纳米结构,并对其在光催化中的应用进行了研究。在钙钛矿结构中掺杂金属以改善其光学和结构性能的研究已经取得了长足的进步。本文综述了近年来无铅双钙钛矿纳米颗粒的合成及其在可见光催化中的应用。无铅钙钛矿正在成为能源、电化学和传感领域的环保解决方案。双钙钛矿以其灵活的结构,光学和形态特性而闻名,因为它们的晶格框架具有一般形式AA ' BB ' O6。由于它们比简单的钙钛矿具有更高的导带电位,因此对析氢更有用。在此,我们总结了目前的研究进展,并对双钙钛矿在高效光降解方面的未来发展提出了见解。
{"title":"Advancements in visible-light-driven double perovskite nanoparticles for photodegradation","authors":"Runia Jana,&nbsp;P. Mary Rajaitha,&nbsp;Sugato Hajra,&nbsp;Hoe Joon Kim","doi":"10.1186/s40486-023-00168-9","DOIUrl":"10.1186/s40486-023-00168-9","url":null,"abstract":"<div><p>Perovskites are of significant interest in the field of photocatalysis. To date, many perovskite nanostructures have been developed, and their applications in photocatalysis have been studied. There has been considerable improvement in the research on metal doping in the perovskite structure to improve their optical and structural properties. This mini-review examines the recent progress in the synthesis of lead-free double perovskite nanoparticles and their application in visible-light photocatalysis. Lead-free perovskites are emerging as an eco-friendly solution in energy, electrochemistry, and sensing. Double perovskites are known for their flexible structural, optical, and morphological properties due to their lattice framework having a general form AAʹBBʹO<sub>6</sub>. They are more useful for hydrogen evolution due to their higher conduction band potential than simple perovskites. Here, we summarize the current progress and provide insights for the future development of double perovskites toward efficient photodegradation.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00168-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4875128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimuli-responsive polymer-based bioinspired soft robots 刺激反应聚合物仿生软机器人
IF 3.6 Q1 Engineering Pub Date : 2023-05-08 DOI: 10.1186/s40486-023-00167-w
Swati Panda, Sugato Hajra, P. Mary Rajaitha, Hoe Joon Kim

Soft robotics enables various applications in certain environments where conventional rigid robotics cannot deliver the same performance due to their form factor and stiffness. Animals use their soft external organs to carry out activities in response to challenging natural environments efficiently. The objective of soft robots is to provide biologically inspired abilities and enable adaptable and flexible interactions with complex objects and surroundings. Recent advances in stimuli-responsive soft robot technology have heavily used polymer-based multifunctional materials. Soft robots with incredibly sophisticated multi-mechanical, electrical, or optical capabilities have demonstrated the ability to modify their shape intelligently in response to external stimuli, such as light, electricity, thermal gradient, and magnetic fields. This short review covers recent advances in scientific techniques for incorporating multifunctional polymeric materials into stimuli-responsive bioinspired soft robots and their applications. We also discuss how biological inspiration and environmental effects can provide a viable viewpoint for bioinspired design in the innovative field of soft robotics. Lastly, we highlight the future outlooks and prospects for soft, stimuli-responsive, bio-inspired robots.

软机器人能够在某些环境中实现各种应用,在这些环境中,传统的刚性机器人由于其形状因素和刚度而无法提供相同的性能。动物利用柔软的外部器官进行活动,有效地应对具有挑战性的自然环境。软体机器人的目标是提供生物学启发的能力,并使其能够与复杂的物体和环境进行适应性和灵活的交互。近年来,基于聚合物的多功能材料在刺激响应软机器人技术中的应用越来越广泛。具有令人难以置信的复杂的多机械、电气或光学功能的软机器人已经证明了能够根据外部刺激(如光、电、热梯度和磁场)智能地改变其形状的能力。这篇简短的综述涵盖了将多功能聚合物材料结合到刺激响应型生物仿生软机器人及其应用的科学技术的最新进展。我们还讨论了生物灵感和环境效应如何为软机器人创新领域的生物灵感设计提供可行的观点。最后,我们强调了软的、刺激响应的、仿生机器人的未来展望和前景。
{"title":"Stimuli-responsive polymer-based bioinspired soft robots","authors":"Swati Panda,&nbsp;Sugato Hajra,&nbsp;P. Mary Rajaitha,&nbsp;Hoe Joon Kim","doi":"10.1186/s40486-023-00167-w","DOIUrl":"10.1186/s40486-023-00167-w","url":null,"abstract":"<div><p>Soft robotics enables various applications in certain environments where conventional rigid robotics cannot deliver the same performance due to their form factor and stiffness. Animals use their soft external organs to carry out activities in response to challenging natural environments efficiently. The objective of soft robots is to provide biologically inspired abilities and enable adaptable and flexible interactions with complex objects and surroundings. Recent advances in stimuli-responsive soft robot technology have heavily used polymer-based multifunctional materials. Soft robots with incredibly sophisticated multi-mechanical, electrical, or optical capabilities have demonstrated the ability to modify their shape intelligently in response to external stimuli, such as light, electricity, thermal gradient, and magnetic fields. This short review covers recent advances in scientific techniques for incorporating multifunctional polymeric materials into stimuli-responsive bioinspired soft robots and their applications. We also discuss how biological inspiration and environmental effects can provide a viable viewpoint for bioinspired design in the innovative field of soft robotics. Lastly, we highlight the future outlooks and prospects for soft, stimuli-responsive, bio-inspired robots.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00167-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4352672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
3D printing fabrication process for fine control of microneedle shape 3D打印制造工艺对微针形状进行精细控制
IF 3.6 Q1 Engineering Pub Date : 2023-01-02 DOI: 10.1186/s40486-022-00165-4
Jinwoong Jeong, Jaeu Park, Sanghoon Lee

Microneedle electrode (ME) is used to monitor bioelectrical signals by penetrating via the skin, and it compensates for a limitation of surface electrodes. However, existing fabrication of ME have limited in controlling the shape of microneedles, which is directly relevant to the performance and durability of microneedles as an electrode. In this study, a novel method using 3D printing is developed to control needle bevel angles. By controlling the angle of printing direction, needle bevel angles are changed. Various angles of printing direction (0–90°) are investigated to fabricate moldings, and those moldings are used for microneedle fabrications using biocompatible polyimide (PI). The height implementation rate and aspect ratio are also investigated to optimize PI microneedles. The penetration test of the fabricated microneedles is conducted in porcine skin. The PI microneedle of 1000 μm fabricated by the printing angle of 40° showed the bevel angle of 54.5°, which can penetrate the porcine skin. The result demonstrates that this suggested fabrication can be applied using various polymeric materials to optimize microneedle shape.

微针电极(ME)通过穿透皮肤来监测生物电信号,它弥补了表面电极的局限性。然而,现有的微电极制造技术在控制微针的形状方面存在局限性,这直接关系到微针作为电极的性能和耐久性。在本研究中,开发了一种利用3D打印技术控制针头斜角的新方法。通过控制印刷方向的角度,可以改变针的斜角。研究了不同角度的打印方向(0-90°)来制造模具,这些模具用于使用生物相容性聚酰亚胺(PI)制造微针。为了优化PI微针,还研究了其高度实现率和纵横比。在猪皮中进行了微针的刺入试验。以40°的打印角度制备的1000 μm PI微针的斜角为54.5°,可以穿透猪皮。结果表明,这种方法可以应用于各种聚合物材料来优化微针的形状。
{"title":"3D printing fabrication process for fine control of microneedle shape","authors":"Jinwoong Jeong,&nbsp;Jaeu Park,&nbsp;Sanghoon Lee","doi":"10.1186/s40486-022-00165-4","DOIUrl":"10.1186/s40486-022-00165-4","url":null,"abstract":"<div><p>Microneedle electrode (ME) is used to monitor bioelectrical signals by penetrating via the skin, and it compensates for a limitation of surface electrodes. However, existing fabrication of ME have limited in controlling the shape of microneedles, which is directly relevant to the performance and durability of microneedles as an electrode. In this study, a novel method using 3D printing is developed to control needle bevel angles. By controlling the angle of printing direction, needle bevel angles are changed. Various angles of printing direction (0–90°) are investigated to fabricate moldings, and those moldings are used for microneedle fabrications using biocompatible polyimide (PI). The height implementation rate and aspect ratio are also investigated to optimize PI microneedles. The penetration test of the fabricated microneedles is conducted in porcine skin. The PI microneedle of 1000 μm fabricated by the printing angle of 40° showed the bevel angle of 54.5°, which can penetrate the porcine skin. The result demonstrates that this suggested fabrication can be applied using various polymeric materials to optimize microneedle shape.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00165-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4082055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantitative image analysis of thrombus formation in microfluidic in-vitro models 微流体体外模型中血栓形成的定量图像分析
IF 3.6 Q1 Engineering Pub Date : 2022-12-20 DOI: 10.1186/s40486-022-00166-3
Ji-Seob Choi, Dong-Hwi Ham, Jung-Hyun Kim, Helem Betsua Flores Marcial, Pyeong-Ho Jeong, Jin-Ho Choi, Woo-Tae Park

In this study, we present a method to quantitatively analyze the thrombus formation process through image analysis in an in vitro thrombus model with a circular cross section. The thrombus model used was designed based on the mechanism between the physical principle of wall shear rate (WSR) and thrombus formation. Image analysis was used to help visualize the thrombus formation process and calculate the thrombus area. Through this method, the thrombus formation and growth from the channel wall was demonstrated without the use of fluorescence. In addition, by dividing the image into sub-sections, the accuracy of the thrombus growth pattern was improved. The departing blood clots which are called embolus, were observed being separated from the thrombus.

在本研究中,我们提出了一种通过圆形截面体外血栓模型的图像分析来定量分析血栓形成过程的方法。所采用的血栓模型是基于壁面剪切速率(wall shear rate, WSR)物理原理与血栓形成之间的机理设计的。使用图像分析来帮助可视化血栓形成过程并计算血栓面积。通过这种方法,可以在不使用荧光的情况下显示通道壁上血栓的形成和生长。此外,通过将图像分割成小块,提高了血栓生长模式的准确性。离开的血凝块被称为栓子,被观察到与血栓分离。
{"title":"Quantitative image analysis of thrombus formation in microfluidic in-vitro models","authors":"Ji-Seob Choi,&nbsp;Dong-Hwi Ham,&nbsp;Jung-Hyun Kim,&nbsp;Helem Betsua Flores Marcial,&nbsp;Pyeong-Ho Jeong,&nbsp;Jin-Ho Choi,&nbsp;Woo-Tae Park","doi":"10.1186/s40486-022-00166-3","DOIUrl":"10.1186/s40486-022-00166-3","url":null,"abstract":"<div><p>In this study, we present a method to quantitatively analyze the thrombus formation process through image analysis in an in vitro thrombus model with a circular cross section. The thrombus model used was designed based on the mechanism between the physical principle of wall shear rate (WSR) and thrombus formation. Image analysis was used to help visualize the thrombus formation process and calculate the thrombus area. Through this method, the thrombus formation and growth from the channel wall was demonstrated without the use of fluorescence. In addition, by dividing the image into sub-sections, the accuracy of the thrombus growth pattern was improved. The departing blood clots which are called embolus, were observed being separated from the thrombus.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00166-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47572210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Simulation of Germanium-on-Nothing cavity’s morphological transformation using deep learning 基于深度学习的锗空腔形态变换模拟
IF 3.6 Q1 Engineering Pub Date : 2022-12-08 DOI: 10.1186/s40486-022-00164-5
Jaewoo Jeong, Taeyeong Kim, Jungchul Lee

Unique self-assembled germanium structures known as Germanium-on-Nothing (GON), which are fabricated via annealing, have buried multiscale cavities with different morphologies. Due to their unique sub-surface morphologies, GON structures are utilized in various applications including optoelectronics, micro-/nanoelectronics, and precision sensors. Each application requires different cavity shapes, and a simulation tool is able to determine the required annealing duration for a given shape. However, a theoretical simulation inevitably requires simplifications which limit its accuracy. Herein, to resolve such dependence on simplification, we introduce a deep learning-based method for simulating the transformation of sub-surface morhpology of GON over annealing. Namely, a deep learning model is trained to predict GON’s morphological transformation from 4 cross-sectional images acquired at different annealing times. Compared to conventional simulation schemes, our proposed deep learning-based simulation method is not only computationally efficient ((sim 10) min) but also physically accurate with its use of empirical data.

通过退火制备的独特的自组装锗结构,称为锗-on- nothing (GON),具有埋藏不同形态的多尺度空腔。由于其独特的亚表面形态,GON结构被用于各种应用,包括光电子学,微/纳米电子学和精密传感器。每个应用需要不同的空腔形状,模拟工具能够确定给定形状所需的退火持续时间。然而,理论模拟不可避免地需要简化,从而限制了其准确性。在此,为了解决这种对简化的依赖,我们引入了一种基于深度学习的方法来模拟退火过程中GON的次表面形态的转变。即,训练一个深度学习模型来预测在不同退火时间下获得的4个横截面图像的GON的形态变换。与传统的模拟方案相比,我们提出的基于深度学习的模拟方法不仅计算效率高((sim 10) min),而且由于使用经验数据而在物理上准确。
{"title":"Simulation of Germanium-on-Nothing cavity’s morphological transformation using deep learning","authors":"Jaewoo Jeong,&nbsp;Taeyeong Kim,&nbsp;Jungchul Lee","doi":"10.1186/s40486-022-00164-5","DOIUrl":"10.1186/s40486-022-00164-5","url":null,"abstract":"<div><p>Unique self-assembled germanium structures known as Germanium-on-Nothing (GON), which are fabricated via annealing, have buried multiscale cavities with different morphologies. Due to their unique sub-surface morphologies, GON structures are utilized in various applications including optoelectronics, micro-/nanoelectronics, and precision sensors. Each application requires different cavity shapes, and a simulation tool is able to determine the required annealing duration for a given shape. However, a theoretical simulation inevitably requires simplifications which limit its accuracy. Herein, to resolve such dependence on simplification, we introduce a deep learning-based method for simulating the transformation of sub-surface morhpology of GON over annealing. Namely, a deep learning model is trained to predict GON’s morphological transformation from 4 cross-sectional images acquired at different annealing times. Compared to conventional simulation schemes, our proposed deep learning-based simulation method is not only computationally efficient (<span>(sim 10)</span> min) but also physically accurate with its use of empirical data.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00164-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49211037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wet anisotropic etching characteristics of Si{111} in NaOH-based solution for silicon bulk micromachining 硅本体微加工用硅{111}在NaOH溶液中的湿各向异性刻蚀特性
IF 3.6 Q1 Engineering Pub Date : 2022-12-01 DOI: 10.1186/s40486-022-00162-7
S. Purohit, V. Swarnalatha, A. K. Pandey, P. Pal

Silicon bulk micromachining is extensively employed method in microelectromechanical systems (MEMS) for the formation of freestanding (e.g., cantilevers) and fixed (e.g., cavities) microstructures. Wet anisotropic etching is a popular technique to perform silicon micromachining as it is low-cost, scalable, and suitable for large scale batch processing, which are the major factors considered in the industry to reduce the cost of the product. In this work, we report the wet anisotropic etching characteristics of Si{111} in sodium hydroxide (NaOH) without and with addition of hydroxylamine (NH2OH). 10M NaOH and 12% NH2OH are used for this study. The effect of NH2OH is investigated on the etch rate, etched surface roughness and morphology, and the undercutting at mask edges aligned along < 112 > direction. These are the major etching characteristics, which should be studied in a wet anisotropic etchant. A 3D laser scanning microscope is utilized to measure the surface roughness, etch depth, and undercutting length, while the etched surface morphology is examined using a scanning electron microscope (SEM). The incorporation of NH2OH in NaOH significantly enhances the etch rate and the undercutting at the mask edges that do not consist of {111} planes. To fabricate freestanding structure (e.g., microcantilever) on Si{111} wafer, high undercutting at < 112 > mask edges is desirable to reduce the release time. Moreover, the effect of etchant age on the abovementioned etching characteristics are investigated. The etch rate and undercutting reduce significantly with the age of the modified NaOH. The present paper reports very interesting results for the applications in wet bulk micromachining of Si{111}.

硅体微加工被广泛应用于微机电系统(MEMS)中,用于形成独立(如悬臂)和固定(如空腔)的微结构。湿法各向异性刻蚀是硅微加工的一种流行技术,因为它具有低成本、可扩展性和适合大规模批量加工的特点,是降低产品成本的主要因素。在这项工作中,我们报道了Si{111}在氢氧化钠(NaOH)中不含羟胺(NH2OH)和添加羟胺(NH2OH)的湿各向异性刻蚀特性。本研究使用10M NaOH和12% NH2OH。研究了NH2OH对蚀刻速率、蚀刻表面粗糙度和形貌的影响,以及沿“< 112 >”方向排列的掩膜边缘的下切。这些是主要的蚀刻特性,应该在湿型各向异性蚀刻剂中进行研究。利用三维激光扫描显微镜测量表面粗糙度、蚀刻深度和下切长度,同时使用扫描电子显微镜(SEM)检查蚀刻表面的形貌。NaOH中NH2OH的掺入显著提高了不由{111}面组成的掩膜边缘的蚀刻速率和凹切。为了在硅{111}晶圆上制造独立结构(如微悬臂),需要在硅{111}晶圆的掩模边缘处进行高切槽,以减少释放时间。此外,还研究了蚀刻剂年龄对上述蚀刻特性的影响。随着改性NaOH的龄期延长,腐蚀速率和下切率显著降低。本文报道了在硅{111}湿体微加工中应用的非常有趣的结果。
{"title":"Wet anisotropic etching characteristics of Si{111} in NaOH-based solution for silicon bulk micromachining","authors":"S. Purohit,&nbsp;V. Swarnalatha,&nbsp;A. K. Pandey,&nbsp;P. Pal","doi":"10.1186/s40486-022-00162-7","DOIUrl":"10.1186/s40486-022-00162-7","url":null,"abstract":"<div><p>Silicon bulk micromachining is extensively employed method in microelectromechanical systems (MEMS) for the formation of freestanding (e.g., cantilevers) and fixed (e.g., cavities) microstructures. Wet anisotropic etching is a popular technique to perform silicon micromachining as it is low-cost, scalable, and suitable for large scale batch processing, which are the major factors considered in the industry to reduce the cost of the product. In this work, we report the wet anisotropic etching characteristics of Si{111} in sodium hydroxide (NaOH) without and with addition of hydroxylamine (NH<sub>2</sub>OH). 10M NaOH and 12% NH<sub>2</sub>OH are used for this study. The effect of NH<sub>2</sub>OH is investigated on the etch rate, etched surface roughness and morphology, and the undercutting at mask edges aligned along &lt; 112 &gt; direction. These are the major etching characteristics, which should be studied in a wet anisotropic etchant. A 3D laser scanning microscope is utilized to measure the surface roughness, etch depth, and undercutting length, while the etched surface morphology is examined using a scanning electron microscope (SEM). The incorporation of NH<sub>2</sub>OH in NaOH significantly enhances the etch rate and the undercutting at the mask edges that do not consist of {111} planes. To fabricate freestanding structure (e.g., microcantilever) on Si{111} wafer, high undercutting at &lt; 112 &gt; mask edges is desirable to reduce the release time. Moreover, the effect of etchant age on the abovementioned etching characteristics are investigated. The etch rate and undercutting reduce significantly with the age of the modified NaOH. The present paper reports very interesting results for the applications in wet bulk micromachining of Si{111}.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00162-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47518224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of channel height on the critical particle diameter in a deterministic lateral device 确定性横向装置中通道高度对临界颗粒直径的影响
IF 3.6 Q1 Engineering Pub Date : 2022-11-30 DOI: 10.1186/s40486-022-00163-6
Jae Hyun Bae, Alexander Zhbanov, Sung Yang

The separation of biological cells or microorganisms in a liquid based on their size by deterministic lateral displacement is widely used in laboratories. The analytical equation for the critical diameter is derived under the assumption that flow between two posts is better described by flow in a rectangular tube than between parallel plates. The height position of the particle is an additional parameter that affects the critical diameter. Preliminary experiments were carried out on the separation of particles in deep and shallow microchannels. This study shows that the critical diameter is not a constant value for a given design but is different on each plane parallel to the top and bottom of the channel. The theoretical model was used to analyze experimental data on the separation of particles larger than 4.2 µm from particles ranging in size from 2.5 to 7.9 µm.

基于生物细胞或微生物在液体中的大小,通过确定的横向位移分离生物细胞或微生物在实验室中被广泛使用。在假定用矩形管内流动比用平行板间流动更能描述两柱间流动的情况下,导出了临界直径的解析方程。粒子的高度位置是影响临界直径的附加参数。对深、浅微通道中颗粒的分离进行了初步实验。该研究表明,对于给定的设计,临界直径不是一个恒定值,而是在平行于通道顶部和底部的每个平面上是不同的。该理论模型用于分析4.2µm以上颗粒与2.5 ~ 7.9µm颗粒的分离实验数据。
{"title":"Effect of channel height on the critical particle diameter in a deterministic lateral device","authors":"Jae Hyun Bae,&nbsp;Alexander Zhbanov,&nbsp;Sung Yang","doi":"10.1186/s40486-022-00163-6","DOIUrl":"10.1186/s40486-022-00163-6","url":null,"abstract":"<div><p>The separation of biological cells or microorganisms in a liquid based on their size by deterministic lateral displacement is widely used in laboratories. The analytical equation for the critical diameter is derived under the assumption that flow between two posts is better described by flow in a rectangular tube than between parallel plates. The height position of the particle is an additional parameter that affects the critical diameter. Preliminary experiments were carried out on the separation of particles in deep and shallow microchannels. This study shows that the critical diameter is not a constant value for a given design but is different on each plane parallel to the top and bottom of the channel. The theoretical model was used to analyze experimental data on the separation of particles larger than 4.2 µm from particles ranging in size from 2.5 to 7.9 µm.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00163-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44907661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design and simulation of a neural interface based on a microfluidic flexible interconnection cable for chemical delivery 基于微流体柔性互连电缆的神经接口设计与仿真
IF 3.6 Q1 Engineering Pub Date : 2022-11-19 DOI: 10.1186/s40486-022-00161-8
Yoo Na Kang, Jun-Uk Chu, Kang-Ho Lee, Yongkoo Lee, Sohee Kim

Neural interfaces are fundamental tools for transmitting information from the nervous system. Research on the immune response of an invasive neural interface is a field that requires continuous effort. Various efforts have been made to overcome or minimize limitations through modifying the designs and materials of neural interfaces, modifying surface characteristics, and adding functions to them. In this study, we demonstrate microfluidic channels with crater-shaped structures fabricated using parylene-C membranes for fluid delivery from the perspective of theory, design, and simulation. The simulation results indicated that the fluid flow depended on the size of the outlet and the alignment of microstructures inside the fluidic channel. All the results can be used to support the design of microfluidic channels made by membranes for drug delivery.

神经接口是神经系统传递信息的基本工具。侵入性神经界面的免疫反应研究是一个需要持续努力的领域。通过修改神经接口的设计和材料,修改表面特征,并为其添加功能,已经做出了各种努力来克服或最小化限制。在本研究中,我们从理论、设计和模拟的角度展示了用聚苯乙烯- c膜制造的具有坑状结构的微流体通道用于流体输送。仿真结果表明,流体的流动取决于出口的大小和流体通道内微结构的排列。研究结果可为膜微流控通道的设计提供理论依据。
{"title":"Design and simulation of a neural interface based on a microfluidic flexible interconnection cable for chemical delivery","authors":"Yoo Na Kang,&nbsp;Jun-Uk Chu,&nbsp;Kang-Ho Lee,&nbsp;Yongkoo Lee,&nbsp;Sohee Kim","doi":"10.1186/s40486-022-00161-8","DOIUrl":"10.1186/s40486-022-00161-8","url":null,"abstract":"<div><p>Neural interfaces are fundamental tools for transmitting information from the nervous system. Research on the immune response of an invasive neural interface is a field that requires continuous effort. Various efforts have been made to overcome or minimize limitations through modifying the designs and materials of neural interfaces, modifying surface characteristics, and adding functions to them. In this study, we demonstrate microfluidic channels with crater-shaped structures fabricated using parylene-C membranes for fluid delivery from the perspective of theory, design, and simulation. The simulation results indicated that the fluid flow depended on the size of the outlet and the alignment of microstructures inside the fluidic channel. All the results can be used to support the design of microfluidic channels made by membranes for drug delivery.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00161-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49062386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of multiple stenoses on thrombosis formation: an in vitro study 多种狭窄对血栓形成的影响:一项体外研究
IF 3.6 Q1 Engineering Pub Date : 2022-11-19 DOI: 10.1186/s40486-022-00159-2
Helem B. Flores Marcial, Jiseob Choi, Donghwi Ham, Junghyun Kim, Pyeongho Jeong, Jinho Choi, Woo-Tae Park

Multiple lesions in the same vessel is one of the most common situations found in patients suffering from cardiovascular diseases, this complicates not only the assessment of the severity of each one but also their treatment. To date, the effect of multiple stenoses on different parameters has been simulated by numerical studies. Few others have implemented in vitro platforms for their investigation. However, visualization of thrombosis formation in this kind of lesion is still needed. This in vitro study monitors the formation of thrombus inside microchannels having one, two, and three stenoses. Whole blood was perfused through each channel at high shear rates (> 12,000 s−1), generating thrombosis. Flow changes across each lesion as well as the final percentage of aggregations were monitored. Thus, the location where total occlusion could be produced was found to be the first stenosis for all the cases. Less flow reaching the second and third stenoses was observed which demonstrates that aggregations were growing at the first one. This was verified by measuring the percentage of aggregations at the end of the test.

同一血管内多发病变是心血管疾病患者最常见的情况之一,这不仅使每个病变严重程度的评估复杂化,而且使其治疗复杂化。到目前为止,已经通过数值研究模拟了不同参数对多个狭窄的影响。很少有人为他们的研究实施了体外平台。然而,在这种病变中,血栓形成的可视化仍然是必要的。这项体外研究监测具有一个、两个和三个狭窄的微通道内血栓的形成。全血以高剪切速率(> 12,000 s−1)通过各通道灌注,形成血栓。监测每个病变的流量变化以及最终聚集的百分比。因此,在所有病例中,可以产生完全闭塞的位置都是第一狭窄。观察到到达第二和第三狭窄的流量较少,这表明在第一个狭窄处聚集物正在生长。这是通过在测试结束时测量聚合的百分比来验证的。
{"title":"Influence of multiple stenoses on thrombosis formation: an in vitro study","authors":"Helem B. Flores Marcial,&nbsp;Jiseob Choi,&nbsp;Donghwi Ham,&nbsp;Junghyun Kim,&nbsp;Pyeongho Jeong,&nbsp;Jinho Choi,&nbsp;Woo-Tae Park","doi":"10.1186/s40486-022-00159-2","DOIUrl":"10.1186/s40486-022-00159-2","url":null,"abstract":"<div><p>Multiple lesions in the same vessel is one of the most common situations found in patients suffering from cardiovascular diseases, this complicates not only the assessment of the severity of each one but also their treatment. To date, the effect of multiple stenoses on different parameters has been simulated by numerical studies. Few others have implemented in vitro platforms for their investigation. However, visualization of thrombosis formation in this kind of lesion is still needed. This in vitro study monitors the formation of thrombus inside microchannels having one, two, and three stenoses. Whole blood was perfused through each channel at high shear rates (&gt; 12,000 s<sup>−1</sup>), generating thrombosis. Flow changes across each lesion as well as the final percentage of aggregations were monitored. Thus, the location where total occlusion could be produced was found to be the first stenosis for all the cases. Less flow reaching the second and third stenoses was observed which demonstrates that aggregations were growing at the first one. This was verified by measuring the percentage of aggregations at the end of the test.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-022-00159-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47422387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Micro and Nano Systems Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1