首页 > 最新文献

Nano-Micro Letters最新文献

英文 中文
Confining Li⁺ Solvation in Core–Shell Metal–Organic Frameworks for Stable Lithium Metal Batteries at 100 °C Li +在100°C稳定锂金属电池核壳金属有机框架中的溶剂化限制。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01988-7
Minh Hai Nguyen, Jeongmin Shin, Mee-Ree Kim, Quan Van Nguyen, JinHyeok Cha, Sangbaek Park

The practical deployment of lithium metal batteries remains severely constrained, especially under elevated temperatures. Although metal–organic frameworks (MOFs) improve the thermal stability of liquid electrolytes by capturing them in well-ordered sub-nanopores, interparticle voids between MOF particles readily absorb liquid electrolyte, obscuring our understanding of the intrinsic role of nanopores in directing Li⁺ transport. To address this challenge, we introduce a one-dimensional (1D) MOF model architecture that eliminates interparticle effects and enables direct observation of Li⁺ solvation and de-solvation dynamics. Comparative studies of 1D HKUST-1 and ZIF-8 uncover distinct transport behaviors, supported by both experimental measurements and neural network potential-based molecular dynamics simulations. Building on these insights, we construct a hierarchical core–shell MOF architecture by integrating ZIF-8 (core) and HKUST-1 (shell) onto a hybrid fiber scaffold. This design harnesses the complementary strengths of both MOFs to achieve continuous ion pathways, directional Li⁺ conduction, and improved thermal and electrochemical resilience.

锂金属电池的实际应用仍然受到严重限制,特别是在高温下。虽然金属有机框架(MOF)通过在有序的亚纳米孔中捕获液体电解质来提高液体电解质的热稳定性,但MOF颗粒之间的颗粒间空隙很容易吸收液体电解质,这模糊了我们对纳米孔在指导Li⁺传输中的内在作用的理解。为了解决这一挑战,我们引入了一维(1D) MOF模型架构,该架构消除了粒子间效应,并能够直接观察Li⁺的溶剂化和脱溶剂化动力学。在实验测量和基于神经网络电位的分子动力学模拟的支持下,1D HKUST-1和ZIF-8的比较研究揭示了不同的传输行为。基于这些见解,我们通过将ZIF-8(核心)和HKUST-1(外壳)集成到混合纤维支架上,构建了分层核-壳MOF架构。该设计利用了两种mof的互补优势,实现了连续的离子路径、Li +的定向传导,以及改进的热弹性和电化学弹性。
{"title":"Confining Li⁺ Solvation in Core–Shell Metal–Organic Frameworks for Stable Lithium Metal Batteries at 100 °C","authors":"Minh Hai Nguyen,&nbsp;Jeongmin Shin,&nbsp;Mee-Ree Kim,&nbsp;Quan Van Nguyen,&nbsp;JinHyeok Cha,&nbsp;Sangbaek Park","doi":"10.1007/s40820-025-01988-7","DOIUrl":"10.1007/s40820-025-01988-7","url":null,"abstract":"<div><p>The practical deployment of lithium metal batteries remains severely constrained, especially under elevated temperatures. Although metal–organic frameworks (MOFs) improve the thermal stability of liquid electrolytes by capturing them in well-ordered sub-nanopores, interparticle voids between MOF particles readily absorb liquid electrolyte, obscuring our understanding of the intrinsic role of nanopores in directing Li⁺ transport. To address this challenge, we introduce a one-dimensional (1D) MOF model architecture that eliminates interparticle effects and enables direct observation of Li⁺ solvation and de-solvation dynamics. Comparative studies of 1D HKUST-1 and ZIF-8 uncover distinct transport behaviors, supported by both experimental measurements and neural network potential-based molecular dynamics simulations. Building on these insights, we construct a hierarchical core–shell MOF architecture by integrating ZIF-8 (core) and HKUST-1 (shell) onto a hybrid fiber scaffold. This design harnesses the complementary strengths of both MOFs to achieve continuous ion pathways, directional Li⁺ conduction, and improved thermal and electrochemical resilience.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01988-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogel Electrolytes for Zinc-Ion Batteries: Materials Design, Functional Strategies, and Future Perspectives 锌离子电池的水凝胶电解质:材料设计、功能策略和未来展望。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01993-w
Zhengchu Zhang, Yongbiao Mu, Lijuan Xiao, Hengyuan Hu, Tao Xue, Limin Zang, Eiichi Sakai, Meisheng Han, Chao Yang, Lin Zeng, Jianhui Qiu

With the escalating demand for safe, sustainable, and high-performance energy storage systems, hydrogel electrolytes have emerged as promising alternatives to conventional liquid electrolytes in zinc-ion batteries. By integrating the high ionic conductivity of liquid electrolytes with the mechanical robustness of solid frameworks, hydrogel electrolytes offer distinct advantages in suppressing zinc dendrite formation, enhancing interfacial stability, and enabling reliable operation under extreme environmental conditions. This review systematically summarizes the fundamental characteristics and design criteria of hydrogel electrolytes, including mechanical flexibility, ionic transport capabilities, and environmental adaptability. It further explores various compositional design strategies involving natural polymers, synthetic polymers, and composite systems, as well as the incorporation of electrolyte salts and functional additives. In addition, recent advances in functional optimization, such as anti-freezing properties, self-healing abilities, thermal responsiveness, and biocompatibility, are comprehensively discussed. Finally, the review outlines the current challenges and proposes potential directions for future research.

随着对安全、可持续和高性能储能系统的需求不断增加,水凝胶电解质已成为锌离子电池中传统液体电解质的有希望的替代品。通过将液体电解质的高离子电导率与固体框架的机械坚固性相结合,水凝胶电解质在抑制锌枝晶形成、增强界面稳定性以及在极端环境条件下可靠运行方面具有明显的优势。本文系统地总结了水凝胶电解质的基本特性和设计标准,包括机械柔韧性、离子传输能力和环境适应性。它进一步探讨了各种组合设计策略,包括天然聚合物,合成聚合物和复合系统,以及电解质盐和功能添加剂的掺入。此外,还全面讨论了功能优化方面的最新进展,如抗冻性能、自愈能力、热响应性和生物相容性。最后,综述概述了当前面临的挑战,并提出了未来研究的潜在方向。
{"title":"Hydrogel Electrolytes for Zinc-Ion Batteries: Materials Design, Functional Strategies, and Future Perspectives","authors":"Zhengchu Zhang,&nbsp;Yongbiao Mu,&nbsp;Lijuan Xiao,&nbsp;Hengyuan Hu,&nbsp;Tao Xue,&nbsp;Limin Zang,&nbsp;Eiichi Sakai,&nbsp;Meisheng Han,&nbsp;Chao Yang,&nbsp;Lin Zeng,&nbsp;Jianhui Qiu","doi":"10.1007/s40820-025-01993-w","DOIUrl":"10.1007/s40820-025-01993-w","url":null,"abstract":"<div><p>With the escalating demand for safe, sustainable, and high-performance energy storage systems, hydrogel electrolytes have emerged as promising alternatives to conventional liquid electrolytes in zinc-ion batteries. By integrating the high ionic conductivity of liquid electrolytes with the mechanical robustness of solid frameworks, hydrogel electrolytes offer distinct advantages in suppressing zinc dendrite formation, enhancing interfacial stability, and enabling reliable operation under extreme environmental conditions. This review systematically summarizes the fundamental characteristics and design criteria of hydrogel electrolytes, including mechanical flexibility, ionic transport capabilities, and environmental adaptability. It further explores various compositional design strategies involving natural polymers, synthetic polymers, and composite systems, as well as the incorporation of electrolyte salts and functional additives. In addition, recent advances in functional optimization, such as anti-freezing properties, self-healing abilities, thermal responsiveness, and biocompatibility, are comprehensively discussed. Finally, the review outlines the current challenges and proposes potential directions for future research. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01993-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic–Dielectric Synergy in One-Dimensional Metal Heterostructures for Enhanced Low-Frequency Microwave Absorption 一维金属异质结构中的磁-介电协同作用增强低频微波吸收。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01995-8
Feiyue Hu, Peigen Zhang, Pei Ding, Shuo Zhang, Bingbing Fan, Ali Saffar Shamshirgar, Wei Zheng, Wenwen Sun, Longzhu Cai, Haijiao Xie, Qiyue Shao, Johanna Rosen, ZhengMing Sun
AbstractSection Highlights
  • The hierarchical structure of CoNi nanosheets wrapped on one-dimensional Sn whiskers enhances magnetic anisotropy and dielectric losses, enabling strong magnetic–dielectric synergy.

  • The CoNi@SnO2@Sn (CNS) filler achieves − 62.29 dB reflection loss and 2.2 GHz bandwidth, fully covering the C-band with > 70% absorption, outperforming most low-frequency absorbers.

  • A flexible CNS/TPU film exhibits superior low-frequency microwave absorption and thermal conductivity, expanding its potential applications in communication electronics.

微波吸收材料在低频范围内的阻抗匹配与衰减之间的协同作用往往较差。通过磁-介电协同平衡介电常数和磁导率是解决这一问题的一个很有前途的策略。为了实现协同作用,本文将带有原位氧化层的Sn晶须作为磁损耗活性CoNi纳米片生长的衬底,形成层次化CoNi@SnO2@Sn (CNS)异质结构。CNS吸收器的最小反射损耗(RLmin)值为- 62.29 dB,有效吸收带宽(EAB)为2.2 GHz,在厚度仅为2.61 mm的情况下,以70%的吸收率覆盖整个c波段。CoNi的纳米片设计增强了磁各向异性,促进了自然共振,而导电的Sn核和丰富的Sn/SnO2和CoNi/SnO2异质界面则促进了传导损耗和介电极化。当复合到热塑性聚氨酯(TPU)基体中时,得到的CNS/TPU-2薄膜(20% CNS)的RLmin值为-61.04 dB, EAB为2.5 GHz。其面内和透面导热系数分别达到2.41和0.51 W m-1 K-1,分别是纯TPU薄膜的4.1和2.6倍,有利于被保护器件的散热。这项工作为一维金属基材料低频MA的磁介质协同作用提供了有价值的见解,为5G通信和柔性电子产品提供了广阔的潜力。
{"title":"Magnetic–Dielectric Synergy in One-Dimensional Metal Heterostructures for Enhanced Low-Frequency Microwave Absorption","authors":"Feiyue Hu,&nbsp;Peigen Zhang,&nbsp;Pei Ding,&nbsp;Shuo Zhang,&nbsp;Bingbing Fan,&nbsp;Ali Saffar Shamshirgar,&nbsp;Wei Zheng,&nbsp;Wenwen Sun,&nbsp;Longzhu Cai,&nbsp;Haijiao Xie,&nbsp;Qiyue Shao,&nbsp;Johanna Rosen,&nbsp;ZhengMing Sun","doi":"10.1007/s40820-025-01995-8","DOIUrl":"10.1007/s40820-025-01995-8","url":null,"abstract":"<div><div>\u0000 <span>AbstractSection</span>\u0000 Highlights\u0000 \u0000<ul>\u0000 <li>\u0000 <p>The hierarchical structure of CoNi nanosheets wrapped on one-dimensional Sn whiskers enhances magnetic anisotropy and dielectric losses, enabling strong magnetic–dielectric synergy.</p>\u0000 </li>\u0000 <li>\u0000 <p>The CoNi@SnO<sub>2</sub>@Sn (CNS) filler achieves − 62.29 dB reflection loss and 2.2 GHz bandwidth, fully covering the C-band with &gt; 70% absorption, outperforming most low-frequency absorbers.</p>\u0000 </li>\u0000 <li>\u0000 <p>A flexible CNS/TPU film exhibits superior low-frequency microwave absorption and thermal conductivity, expanding its potential applications in communication electronics.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01995-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
W/V Dual-Atom Doping MoS2-Mediated Phase Transition for Efficient Polysulfide Adsorption/Conversion Kinetics in Lithium–Sulfur Battery W/V双原子掺杂mos2介导的锂硫电池多硫化物高效吸附/转化动力学相变
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01957-0
Zhe Cui, Ping Feng, Gang Zhong, Qingdong Ou, Mingkai Liu

Highlights

  • W/V dual single-atom doping induces 2H−1T phase transition and boosts sulfur conversion kinetics.

  • Strong polysulfide adsorption effectively suppresses the shuttle effect.

  • CMWVS/S cathode delivers high specific discharge capacity (1481.7 mAh g−1 at 0.1 C) and excellent stability (816.3 mAh g−1 after 1000 cycles at 1.0 C), even under high sulfur loading.

可溶多硫化物和缓慢的Li2S转化动力学被认为是锂硫电池应用中的两个重大挑战。在此,我们引入了一种双掺杂策略来调制MoS2的电子结构,从而获得了一种多功能催化剂,可以作为高效的硫宿主。在碳纳米纤维(CMWVS)上生长的W/V双单原子掺杂MoS2对锂多硫化物具有较强的吸附能力,抑制了穿梭效应。此外,掺杂过程还导致了从2H-MoS2到1T-MoS2的相变,并产生了足够的边缘硫原子,促进了电荷/电子的转移,丰富了反应位点。这些优点使得锂硫电池具有优异的转化反应动力学,从而具有优异的性能。当与硫复合制成阴极时,CMWVS/S阴极在0.1 C (1 C = 1672 mAh g-1)下提供1481.7 mAh g-1的高容量,并在1.0 C下循环1000次后保持816.3 mAh g-1,显示出出色的循环稳定性。即使在高硫负载为7.9 mg cm-2和贫电解质条件下(E/S比为9.0 μL mg-1),阴极也能获得8.2 mAh cm-2的高面容量,在实际Li-S电池中应用前景广阔。通过调整过渡金属二硫族化合物的电子结构,拓宽了其掺杂策略的范围,为先进锂硫电池应用的高效电催化剂的合理开发提供了有见地的方向。
{"title":"W/V Dual-Atom Doping MoS2-Mediated Phase Transition for Efficient Polysulfide Adsorption/Conversion Kinetics in Lithium–Sulfur Battery","authors":"Zhe Cui,&nbsp;Ping Feng,&nbsp;Gang Zhong,&nbsp;Qingdong Ou,&nbsp;Mingkai Liu","doi":"10.1007/s40820-025-01957-0","DOIUrl":"10.1007/s40820-025-01957-0","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>W/V dual single-atom doping induces 2H−1T phase transition and boosts sulfur conversion kinetics.</p>\u0000 </li>\u0000 <li>\u0000 <p>Strong polysulfide adsorption effectively suppresses the shuttle effect.</p>\u0000 </li>\u0000 <li>\u0000 <p>CMWVS/S cathode delivers high specific discharge capacity (1481.7 mAh g<sup>−1</sup> at 0.1 C) and excellent stability (816.3 mAh g<sup>−1</sup> after 1000 cycles at 1.0 C), even under high sulfur loading.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01957-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing the Power from Ambient Moisture with Hygroscopic Materials 利用吸湿材料从环境水分中获取能量。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01983-y
Daozhi Shen, Fangzhou Li, Yanjie Su, Limin Zhu

Moisture electricity generation (MEG) has emerged as a sustainable and versatile energy-harvesting technology capable of converting ubiquitous environmental moisture into electrical energy, which holds great promise for renewable energy and constructing self-powered electronics. In this review, we begin by outlining the fundamental mechanisms—ion diffusion, electric double layer formation, and streaming potential—that govern charge transport for MEG in moist environments. A comprehensive survey of material innovations follows, highlighting breakthroughs in carbon-based materials, conductive polymers, hydrogels, and bio-inspired systems that enhance MEG performance, scalability, and biocompatibility. We then explore a range of device architectures, from planar and layered systems to flexible, miniaturized, and textile-integrated designs, engineered for both energy conversion and sensor integration. Key challenges are analyzed, along with strategies for overcoming them. We conclude with a forward-looking perspective on future directions, including hybrid energy systems, AI-assisted material design, and real-world deployment. This review presents a timely and comprehensive overview of MEG technologies and their trajectory toward practical and sustainable energy solutions.

湿气发电(MEG)已经成为一种可持续的、多功能的能量收集技术,能够将无处不在的环境水分转化为电能,这对可再生能源和构建自供电电子设备具有很大的前景。在这篇综述中,我们首先概述了在潮湿环境中控制MEG电荷传输的基本机制——离子扩散、双电层形成和流电位。随后对材料创新进行了全面调查,重点介绍了碳基材料、导电聚合物、水凝胶和生物启发系统方面的突破,这些突破提高了MEG的性能、可扩展性和生物相容性。然后,我们探索了一系列设备架构,从平面和分层系统到灵活、小型化和纺织集成设计,用于能量转换和传感器集成。分析了主要的挑战,以及克服这些挑战的策略。最后,我们对未来的发展方向进行了前瞻性的展望,包括混合能源系统、人工智能辅助材料设计和实际应用。这篇综述及时而全面地概述了MEG技术及其走向实用和可持续能源解决方案的轨迹。
{"title":"Harnessing the Power from Ambient Moisture with Hygroscopic Materials","authors":"Daozhi Shen,&nbsp;Fangzhou Li,&nbsp;Yanjie Su,&nbsp;Limin Zhu","doi":"10.1007/s40820-025-01983-y","DOIUrl":"10.1007/s40820-025-01983-y","url":null,"abstract":"<div><p>Moisture electricity generation (MEG) has emerged as a sustainable and versatile energy-harvesting technology capable of converting ubiquitous environmental moisture into electrical energy, which holds great promise for renewable energy and constructing self-powered electronics. In this review, we begin by outlining the fundamental mechanisms—ion diffusion, electric double layer formation, and streaming potential—that govern charge transport for MEG in moist environments. A comprehensive survey of material innovations follows, highlighting breakthroughs in carbon-based materials, conductive polymers, hydrogels, and bio-inspired systems that enhance MEG performance, scalability, and biocompatibility. We then explore a range of device architectures, from planar and layered systems to flexible, miniaturized, and textile-integrated designs, engineered for both energy conversion and sensor integration. Key challenges are analyzed, along with strategies for overcoming them. We conclude with a forward-looking perspective on future directions, including hybrid energy systems, AI-assisted material design, and real-world deployment. This review presents a timely and comprehensive overview of MEG technologies and their trajectory toward practical and sustainable energy solutions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01983-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating Li+ Transport and Interfacial Stability with Zwitterionic COF Protective Layer Towards High-Performance Lithium Metal Batteries 两性离子COF保护层对高性能锂金属电池中Li+输运及界面稳定性的调控。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-02017-3
Liya Rong, Yifeng Han, Chi Zhang, Hongling Yao, Zhaojun He, Xianbao Wang, Zaiping Guo, Tao Mei

The sluggish Li+ migration kinetics and unstable electrode/electrolyte interface severely hinder the commercial application of high-performance lithium metal batteries (LMBs). Herein, an artificial protective layer is constructed using zwitterionic covalent organic framework (Z-COF) simultaneously containing sulfonate and ethidium groups, aiming to facilitate rapid, uniform Li+ transport and stabilize anode interface. The sulfonate groups with high lithiophilicity provide abundant hopping sites for fast Li+ diffusion. The ethidium cations immobilize TFSI and solvent molecules by ion–dipole interactions, which accelerate the dissociation of LiTFSI and Li+ desolvation. Moreover, the monodispersed zwitterionic units coupling with ordered micropore structures in Z-COF create exclusive Li+ migration channels, modulate homogeneous space charge distribution, kinetically facilitating uniform Li+ deposition. Experiments and theoretical calculations indicate that C–F and S–N bonds of TFSI exhibit enhanced cleavage susceptibility driven by electrostatic attraction, realizing a LiF/Li3N-rich electrolyte/electrode interface. The designed Z-COF protection layer enables Li|Li symmetrical cells stable cycling over 6300 h at 2 mA cm−2/2 mAh cm−2. The Z-COF@Li|LiFePO4 (LFP) full cells deliver high-capacity retention of 85.2% after 1000 cycles at 8 C. The assembled Z-COF@Li|LFP pouch cells demonstrate a lifespan of more than 240 cycles. This work provides fresh insights into the practical application of zwitterionic COF in next-generation LMBs.

Li+迁移动力学迟缓和电极/电解质界面不稳定严重阻碍了高性能锂金属电池的商业化应用。本文采用同时含有磺酸基和乙二酸基的两性离子共价有机骨架(Z-COF)构建人工保护层,促进Li+快速均匀传输,稳定阳极界面。高亲锂性的磺酸基为Li+的快速扩散提供了丰富的跳位。乙醚离子通过离子偶极相互作用固定TFSI分子和溶剂分子,加速了LiTFSI的解离和Li+的解离。此外,单分散的两性离子单元与有序的微孔结构耦合在Z-COF中形成了专属的Li+迁移通道,调节了均匀的空间电荷分布,从动力学上促进了Li+的均匀沉积。实验和理论计算表明,TFSI-的C-F和S-N键在静电吸引作用下表现出增强的解理敏感性,实现了富LiF/ li3n的电解质/电极界面。设计的Z-COF保护层使Li|Li对称电池在2 mA cm-2/2 mAh cm-2下稳定循环超过6300小时。在8℃下1000次循环后,Z-COF@Li|LiFePO4 (LFP)全电池提供了85.2%的高容量保留率。组装的Z-COF@Li|LFP袋电池的寿命超过240次循环。这项工作为两性离子COF在下一代lmb中的实际应用提供了新的见解。
{"title":"Regulating Li+ Transport and Interfacial Stability with Zwitterionic COF Protective Layer Towards High-Performance Lithium Metal Batteries","authors":"Liya Rong,&nbsp;Yifeng Han,&nbsp;Chi Zhang,&nbsp;Hongling Yao,&nbsp;Zhaojun He,&nbsp;Xianbao Wang,&nbsp;Zaiping Guo,&nbsp;Tao Mei","doi":"10.1007/s40820-025-02017-3","DOIUrl":"10.1007/s40820-025-02017-3","url":null,"abstract":"<div><p>The sluggish Li<sup>+</sup> migration kinetics and unstable electrode/electrolyte interface severely hinder the commercial application of high-performance lithium metal batteries (LMBs). Herein, an artificial protective layer is constructed using zwitterionic covalent organic framework (Z-COF) simultaneously containing sulfonate and ethidium groups, aiming to facilitate rapid, uniform Li<sup>+</sup> transport and stabilize anode interface. The sulfonate groups with high lithiophilicity provide abundant hopping sites for fast Li<sup>+</sup> diffusion. The ethidium cations immobilize TFSI<sup>−</sup> and solvent molecules by ion–dipole interactions, which accelerate the dissociation of LiTFSI and Li<sup>+</sup> desolvation. Moreover, the monodispersed zwitterionic units coupling with ordered micropore structures in Z-COF create exclusive Li<sup>+</sup> migration channels, modulate homogeneous space charge distribution, kinetically facilitating uniform Li<sup>+</sup> deposition. Experiments and theoretical calculations indicate that C–F and S–N bonds of TFSI<sup>−</sup> exhibit enhanced cleavage susceptibility driven by electrostatic attraction, realizing a LiF/Li<sub>3</sub>N-rich electrolyte/electrode interface. The designed Z-COF protection layer enables Li|Li symmetrical cells stable cycling over 6300 h at 2 mA cm<sup>−2</sup>/2 mAh cm<sup>−2</sup>. The Z-COF@Li|LiFePO<sub>4</sub> (LFP) full cells deliver high-capacity retention of 85.2% after 1000 cycles at 8 C. The assembled Z-COF@Li|LFP pouch cells demonstrate a lifespan of more than 240 cycles. This work provides fresh insights into the practical application of zwitterionic COF in next-generation LMBs.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-02017-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tri-Band Regulation and Split-Type Smart Photovoltaic Windows for Thermal Modulation of Energy-Saving Buildings in All-Season. 三波段调节及分体式智能光伏窗在全季节节能建筑中的应用。
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-01985-w
Qian Wang,Zongxu Na,Jianfei Gao,Li Yu,Yuanwei Chen,Peng Gao,Yong Ding,Songyuan Dai,Mohammad Khaja Nazeeruddin,Huai Yang
Energy-saving buildings (ESBs) are an emerging green technology that can significantly reduce building-associated cooling and heating energy consumption, catering to the desire for carbon neutrality and sustainable development of society. Smart photovoltaic windows (SPWs) offer a promising platform for designing ESBs because they present the capability to regulate and harness solar energy. With frequent outbreaks of extreme weather all over the world, the achievement of exceptional energy-saving effect under different weather conditions is an inevitable trend for the development of ESBs but is hardly achieved via existing SPWs. Here, we substantially reduce the driving voltage of polymer-dispersed liquid crystals (PDLCs) by 28.1 % via molecular engineering while maintaining their high solar transmittance (Tsol = 83.8 %, transparent state) and solar modulating ability (ΔTsol = 80.5 %). By the assembly of perovskite solar cell and a broadband thermal-managing unit encompassing the electrical-responsive PDLCs, transparent high-emissivity SiO2 passive radiation-cooling, and Ag low-emissivity layers possesses, we present a tri-band regulation and split-type SPW possessing superb energy-saving effect in all-season. The perovskite solar cell can produce the electric power to stimulate the electrical-responsive behavior of the PDLCs, endowing the SPWs zero-energy input solar energy regulating characteristic, and compensate the daily energy consumption needed for ESBs. Moreover, the scalable manufacturing technology holds a great potential for the real-world applications.
节能建筑(ESBs)是一种新兴的绿色技术,可以显著降低与建筑相关的制冷和供暖能耗,满足社会对碳中和和可持续发展的需求。智能光伏窗(spw)为设计esb提供了一个很有前途的平台,因为它们具有调节和利用太阳能的能力。随着全球极端天气的频繁爆发,在不同天气条件下取得优异的节能效果是esb发展的必然趋势,而现有的spw很难实现。本研究通过分子工程技术将聚合物分散液晶(pdlc)的驱动电压大幅降低28.1%,同时保持其较高的太阳透射率(Tsol = 83.8%,透明状态)和太阳调制能力(ΔTsol = 80.5%)。通过将钙钛矿太阳能电池与包含电响应pdlc、透明高发射率SiO2被动辐射冷却和Ag低发射层的宽带热管理单元组装在一起,我们提出了一种三波段调节和分路式SPW,具有良好的全天候节能效果。钙钛矿太阳能电池可以产生电能来刺激pdlc的电响应行为,赋予spw零能量输入太阳能调节特性,并补偿esb所需的日常能量消耗。此外,可扩展制造技术在实际应用中具有很大的潜力。
{"title":"Tri-Band Regulation and Split-Type Smart Photovoltaic Windows for Thermal Modulation of Energy-Saving Buildings in All-Season.","authors":"Qian Wang,Zongxu Na,Jianfei Gao,Li Yu,Yuanwei Chen,Peng Gao,Yong Ding,Songyuan Dai,Mohammad Khaja Nazeeruddin,Huai Yang","doi":"10.1007/s40820-025-01985-w","DOIUrl":"https://doi.org/10.1007/s40820-025-01985-w","url":null,"abstract":"Energy-saving buildings (ESBs) are an emerging green technology that can significantly reduce building-associated cooling and heating energy consumption, catering to the desire for carbon neutrality and sustainable development of society. Smart photovoltaic windows (SPWs) offer a promising platform for designing ESBs because they present the capability to regulate and harness solar energy. With frequent outbreaks of extreme weather all over the world, the achievement of exceptional energy-saving effect under different weather conditions is an inevitable trend for the development of ESBs but is hardly achieved via existing SPWs. Here, we substantially reduce the driving voltage of polymer-dispersed liquid crystals (PDLCs) by 28.1 % via molecular engineering while maintaining their high solar transmittance (Tsol = 83.8 %, transparent state) and solar modulating ability (ΔTsol = 80.5 %). By the assembly of perovskite solar cell and a broadband thermal-managing unit encompassing the electrical-responsive PDLCs, transparent high-emissivity SiO2 passive radiation-cooling, and Ag low-emissivity layers possesses, we present a tri-band regulation and split-type SPW possessing superb energy-saving effect in all-season. The perovskite solar cell can produce the electric power to stimulate the electrical-responsive behavior of the PDLCs, endowing the SPWs zero-energy input solar energy regulating characteristic, and compensate the daily energy consumption needed for ESBs. Moreover, the scalable manufacturing technology holds a great potential for the real-world applications.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"21 1","pages":"132"},"PeriodicalIF":26.6,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale Design of Dual-Gradient Metamaterials Using Gel-Mediated 3D-Printed Graphene Aerogels for Broadband Electromagnetic Absorption 利用凝胶介导的3d打印石墨烯气凝胶设计双梯度超材料用于宽带电磁吸收。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-02005-7
Xiong Lv, Changfeng Li, Ge Wang, Diana Estevez, Junjie Yang, Qian Chen, Faxiang Qin

Highlights

  • The rGO/PAA aerogel achieves synergistic optimization for direct ink writing printing and construction of 0D/2D heterostructures in rGO sheets.

  • Optimal reflection loss of −39.86 dB and effective absorption bandwidth (EAB) of 8.36 GHz are obtained with low density of 4.8 mg cm−3.

  • Realization of an ultra-broadband metamaterial absorber of 14 GHz EAB at 7.8 mm thickness, across the C, X, and Ku bands.

三维(3D)打印石墨烯气凝胶由于其超低密度、优异的电磁耗散以及制造策略的灵活性和精度,在电磁波吸收(EWA)工程中具有广阔的应用前景。然而,它们的高导电性导致严重的阻抗失配,限制了EWA的性能。3D打印要求也限制了可打印石墨烯油墨的介电性能,阻碍了高性能吸收剂与先进制造的集成。本研究提出了一种聚丙烯酸(PAA)凝胶介导的三维多孔氧化石墨烯(GO)气凝胶多尺度调控策略。精确的凝胶含量控制可以实现GO/PAA复合材料的流变性(有利于直接墨水书写(DIW))和介电损耗(增强EWA)的双梯度调节,并降低气凝胶密度(从28.2 mg cm-3降至6.9 mg cm-3)。热还原将PAA分解成固定在还原氧化石墨烯(rGO)上的无定形碳纳米颗粒,通过协同的0D/2D界面极化和导电损失增强阻抗匹配和吸收。优化后的rGO/PAA气凝胶在2.5 mm处的最小反射损耗(RL)为-39.86 dB,在3.2 mm处的有效吸收带宽(EAB)为8.36 GHz (9.64-18 GHz)。结合DIW和这种气凝胶,我们设计了一种具有双重材料(介质损耗)和结构梯度的超材料吸收体(MA)。该MA具有14 GHz (4-18 GHz)的超宽EAB,总厚度为7.8 mm。这项工作建立了“组合-结构-性能”的耦合设计范式,为开发轻质宽带EWA材料提供了可工程的解决方案。
{"title":"Multiscale Design of Dual-Gradient Metamaterials Using Gel-Mediated 3D-Printed Graphene Aerogels for Broadband Electromagnetic Absorption","authors":"Xiong Lv,&nbsp;Changfeng Li,&nbsp;Ge Wang,&nbsp;Diana Estevez,&nbsp;Junjie Yang,&nbsp;Qian Chen,&nbsp;Faxiang Qin","doi":"10.1007/s40820-025-02005-7","DOIUrl":"10.1007/s40820-025-02005-7","url":null,"abstract":"<div><h2> Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>The rGO/PAA aerogel achieves synergistic optimization for direct ink writing printing and construction of 0D/2D heterostructures in rGO sheets.</p>\u0000 </li>\u0000 <li>\u0000 <p>Optimal reflection loss of −39.86 dB and effective absorption bandwidth (EAB) of 8.36 GHz are obtained with low density of 4.8 mg cm<sup>−3</sup>.</p>\u0000 </li>\u0000 <li>\u0000 <p>Realization of an ultra-broadband metamaterial absorber of 14 GHz EAB at 7.8 mm thickness, across the C, X, and Ku bands.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-02005-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vapor Deposition Engineering for Thin-Film Microbatteries: From Nanoscale Ionics to Interface-Integrated Architectures 薄膜微电池的气相沉积工程:从纳米级离子到接口集成架构。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-02002-w
Mingming Zheng, Xinrui Xu, Xiaofei Wang, Haibin Lin, Changmin Hou, Mustafa Khan, Jinlong Zhu, Songbai Han

Highlights

  • Tailored crystallinity and defect engineering in ultrathin solid-state electrolytes enable enhanced nanoscale ion transport.

  • Chemically stable and conformal interfaces mitigate interfacial failure and space charge effects in microbattery architectures.

  • Spatial atomic layer deposition and scalable vapor-phase strategies enable 3D integration and monolithic interfacing of thin-film microbatteries with internet of things device platforms.

微电子技术的快速发展,加上物联网(IoT)时代的到来,对小型化、可集成和可靠的片上储能系统产生了迫切的需求。全固态薄膜微电池(tfmb)以其固有的安全性、紧凑的设计和与微制造技术的兼容性而著称,已成为下一代物联网设备供电的有希望的候选者。然而,与传统锂离子电池的成熟发展相比,tfmb的发展仍处于早期阶段,在材料创新、界面优化和可扩展制造方面面临着持续的挑战。本文综述了磁控溅射、脉冲激光沉积、热/电子束蒸发、化学气相沉积和原子层沉积等气相沉积技术在tfmb的制备和性能调制中的关键作用。我们系统地总结了薄膜电极和固态电解质的最新进展,特别强调了沉积参数如何决定功能层的结晶度、晶格取向和离子传输。此外,我们强调了固-固界面工程、三维结构设计和多功能集成的策略,以提高容量保留、循环稳定性和界面兼容性。展望未来,tfmb有望向多功能平台发展,具有机械灵活性、光学透明性和混合能量收集兼容性,从而满足未来物联网生态系统的异构能量需求。总的来说,本综述提供了气相TFMB技术的全面视角,为高性能微尺度电源的可扩展实现提供了理论见解和技术指导。
{"title":"Vapor Deposition Engineering for Thin-Film Microbatteries: From Nanoscale Ionics to Interface-Integrated Architectures","authors":"Mingming Zheng,&nbsp;Xinrui Xu,&nbsp;Xiaofei Wang,&nbsp;Haibin Lin,&nbsp;Changmin Hou,&nbsp;Mustafa Khan,&nbsp;Jinlong Zhu,&nbsp;Songbai Han","doi":"10.1007/s40820-025-02002-w","DOIUrl":"10.1007/s40820-025-02002-w","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>Tailored crystallinity and defect engineering in ultrathin solid-state electrolytes enable enhanced nanoscale ion transport.</p>\u0000 </li>\u0000 <li>\u0000 <p>Chemically stable and conformal interfaces mitigate interfacial failure and space charge effects in microbattery architectures.</p>\u0000 </li>\u0000 <li>\u0000 <p>Spatial atomic layer deposition and scalable vapor-phase strategies enable 3D integration and monolithic interfacing of thin-film microbatteries with internet of things device platforms.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-02002-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong yet Flexible TiC-SiC Fibrous Membrane with Long-Time Ultrahigh Temperature Resistance for Sensing in Extreme Environment 坚固而灵活的TiC-SiC纤维膜,长时间耐超高温,适用于极端环境下的传感。
IF 36.3 1区 材料科学 Q1 Engineering Pub Date : 2026-01-05 DOI: 10.1007/s40820-025-02019-1
Tianyue Yang, Yan Shen, Yangzhong Zhao, Zhongqian Zhao, Xue Zhou, Qianji Chen, Xujing Wang, Yanzi Gou

Highlights

  • TiC-SiC fibrous membrane exhibits exceptional high–temperature  resistance (2000 °C) and long–term thermal stability (1800 °C for 5 h) in an inert atmosphere.

  • TiC-SiC fibrous membrane demonstrates stable resistivity up to 900 °C and shows sensing stability under butane flame (~1300 °C).

能够在航空航天飞行器、航空发动机、消防等领域的极端环境中工作的传感器的需求正在迅速增加。然而,开发结合高温稳定性和强大机械性能的柔性陶瓷纤维压力传感器仍然是一个重大挑战。通过精确的多尺度工艺控制,成功制备了高强度(2.1 MPa) TiC-SiC柔性纤维膜。该膜在惰性气氛中表现出优异的耐热性(2000°C)和长期热稳定性(1800°C 5小时)。同时,TiC-SiC纤维膜表现出优异的抗氧化性能,在空气中1200℃氧化1h后仍可达到1.8 MPa的强度。值得注意的是,TiC-SiC纤维膜可以承受大约1400倍于自身重量的载荷,并且可以承受丁烷火焰(~ 1300°C)烧蚀至少1小时而不会破裂。值得注意的是,在1800°C氩气中热处理5小时后,TiC-SiC纤维膜甚至可以维持高达300次循环的压敏性能。该膜在900℃下具有稳定的电阻率,在丁烷火焰下具有传感稳定性。本文的研究结果为填补柔性纤维传感器在极端环境下的研究空白提供了一种有效可行的解决方案。
{"title":"Strong yet Flexible TiC-SiC Fibrous Membrane with Long-Time Ultrahigh Temperature Resistance for Sensing in Extreme Environment","authors":"Tianyue Yang,&nbsp;Yan Shen,&nbsp;Yangzhong Zhao,&nbsp;Zhongqian Zhao,&nbsp;Xue Zhou,&nbsp;Qianji Chen,&nbsp;Xujing Wang,&nbsp;Yanzi Gou","doi":"10.1007/s40820-025-02019-1","DOIUrl":"10.1007/s40820-025-02019-1","url":null,"abstract":"<div><h2> Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>TiC-SiC fibrous membrane exhibits exceptional high–temperature  resistance (2000 °C) and long–term thermal stability (1800 °C for 5 h) in an inert atmosphere. </p>\u0000 </li>\u0000 <li>\u0000 <p>TiC-SiC fibrous membrane demonstrates stable resistivity up to 900 °C and shows sensing stability under butane flame (~1300 °C). </p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-02019-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano-Micro Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1