首页 > 最新文献

Advanced Intelligent Systems最新文献

英文 中文
Ex Situ Transfer of Bayesian Neural Networks to Resistive Memory‐Based Inference Hardware 贝叶斯神经网络在基于电阻记忆的推理硬件上的非原位转移
Pub Date : 2021-05-20 DOI: 10.1002/aisy.202000103
T. Dalgaty, E. Esmanhotto, N. Castellani, D. Querlioz, E. Vianello
Neural networks cannot typically be trained locally in edge‐computing systems due to severe energy constraints. It has, therefore, become commonplace to train them “ex situ” and transfer the resulting model to a dedicated inference hardware. Resistive memory arrays are of particular interest for realizing such inference hardware, because they offer an extremely low‐power implementation of the dot‐product operation. However, the transfer of high‐precision software parameters to the imprecise and random conductance states of resistive memories poses significant challenges. Here, it is proposed that Bayesian neural networks can be more suitable for model transfer, because, such as device conductance states, their parameters are described by random variables. The ex situ training of a Bayesian neural network is performed, and then, the resulting software model is transferred in a single programming step to an array of 16 384 resistive memory devices. On an illustrative classification task, it is observed that the transferred decision boundaries and the prediction uncertainties of the software model are well preserved. This work demonstrates that resistive memory‐based Bayesian neural networks are a promising direction in the development of resistive memory compatible edge inference hardware.
由于严重的能量限制,神经网络通常不能在边缘计算系统中进行局部训练。因此,对它们进行“非原位”训练并将结果模型转移到专用的推理硬件上已经变得司空见惯。电阻式存储阵列对于实现这种推理硬件是特别有意义的,因为它们提供了极低功耗的点积运算实现。然而,将高精度软件参数转移到电阻存储器的不精确和随机电导状态提出了重大挑战。本文提出贝叶斯神经网络更适合模型传递,因为器件电导状态等参数是由随机变量描述的。首先对贝叶斯神经网络进行非原位训练,然后将得到的软件模型通过单个编程步骤传输到由16384个电阻存储器组成的阵列中。在一个说明性分类任务中,观察到软件模型的迁移决策边界和预测不确定性得到了很好的保留。这项工作表明,基于电阻性记忆的贝叶斯神经网络是开发电阻性记忆兼容边缘推理硬件的一个有前途的方向。
{"title":"Ex Situ Transfer of Bayesian Neural Networks to Resistive Memory‐Based Inference Hardware","authors":"T. Dalgaty, E. Esmanhotto, N. Castellani, D. Querlioz, E. Vianello","doi":"10.1002/aisy.202000103","DOIUrl":"https://doi.org/10.1002/aisy.202000103","url":null,"abstract":"Neural networks cannot typically be trained locally in edge‐computing systems due to severe energy constraints. It has, therefore, become commonplace to train them “ex situ” and transfer the resulting model to a dedicated inference hardware. Resistive memory arrays are of particular interest for realizing such inference hardware, because they offer an extremely low‐power implementation of the dot‐product operation. However, the transfer of high‐precision software parameters to the imprecise and random conductance states of resistive memories poses significant challenges. Here, it is proposed that Bayesian neural networks can be more suitable for model transfer, because, such as device conductance states, their parameters are described by random variables. The ex situ training of a Bayesian neural network is performed, and then, the resulting software model is transferred in a single programming step to an array of 16 384 resistive memory devices. On an illustrative classification task, it is observed that the transferred decision boundaries and the prediction uncertainties of the software model are well preserved. This work demonstrates that resistive memory‐based Bayesian neural networks are a promising direction in the development of resistive memory compatible edge inference hardware.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80465352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Neural Functional Connectivity Reconstruction with Second‐Order Memristor Network 基于二阶忆阻网络的神经功能连接重建
Pub Date : 2021-05-20 DOI: 10.1002/aisy.202000276
Yuting Wu, John Moon, Xiaojian Zhu, W. Lu
The advances of neural recording techniques have fostered rapid growth of the number of simultaneously recorded neurons, opening up new possibilities to investigate the interactions and dynamics inside neural circuitry. The high recording channel counts, however, pose significant challenges for data analysis because the required time and computational resources grow superlinearly with the data volume. Herein, the feasibility of real‐time reconstruction of neural functional connectivity using a second‐order memristor network is analyzed. Spike‐timing‐dependent plasticity, natively implemented by the internal dynamics of the memristor device, leads to the successful discovery of temporal correlations between pre‐ and postsynaptic spikes of the simulated neural circuits in an unsupervised fashion. The proposed system demonstrates high classification accuracy under a wide range of parameter settings considering indirect connections, synaptic weights, transmission delays, connection density, and so on, and enables the capturing of dynamic connectivity evolutions. The influence of device nonideal factors on detection accuracy is systematically evaluated, and the system shows robustness to initial weight randomness, and cycle‐to‐cycle and device‐to‐device variations. The proposed method allows direct mapping of neural connectivity onto the artificial memristor network and can lead to efficient front‐end data analysis of high‐density neural recording systems and potentially directly coupled bioartificial networks.
神经记录技术的进步促进了同时记录神经元数量的快速增长,为研究神经回路内部的相互作用和动力学开辟了新的可能性。然而,高记录通道计数对数据分析提出了重大挑战,因为所需的时间和计算资源随着数据量超线性增长。本文分析了利用二阶忆阻网络实时重建神经功能连通性的可行性。由忆阻器内部动力学固有实现的峰值时间依赖的可塑性,导致以无监督的方式成功发现模拟神经回路突触前和突触后峰值之间的时间相关性。该系统在考虑间接连接、突触权重、传输延迟、连接密度等多种参数的情况下,具有较高的分类精度,并能够捕获动态连接演化。系统地评估了设备非理想因素对检测精度的影响,系统对初始权重随机性、周期对周期和设备对设备变化具有鲁棒性。所提出的方法允许将神经连通性直接映射到人工忆阻器网络上,并且可以导致高密度神经记录系统和潜在的直接耦合生物人工网络的高效前端数据分析。
{"title":"Neural Functional Connectivity Reconstruction with Second‐Order Memristor Network","authors":"Yuting Wu, John Moon, Xiaojian Zhu, W. Lu","doi":"10.1002/aisy.202000276","DOIUrl":"https://doi.org/10.1002/aisy.202000276","url":null,"abstract":"The advances of neural recording techniques have fostered rapid growth of the number of simultaneously recorded neurons, opening up new possibilities to investigate the interactions and dynamics inside neural circuitry. The high recording channel counts, however, pose significant challenges for data analysis because the required time and computational resources grow superlinearly with the data volume. Herein, the feasibility of real‐time reconstruction of neural functional connectivity using a second‐order memristor network is analyzed. Spike‐timing‐dependent plasticity, natively implemented by the internal dynamics of the memristor device, leads to the successful discovery of temporal correlations between pre‐ and postsynaptic spikes of the simulated neural circuits in an unsupervised fashion. The proposed system demonstrates high classification accuracy under a wide range of parameter settings considering indirect connections, synaptic weights, transmission delays, connection density, and so on, and enables the capturing of dynamic connectivity evolutions. The influence of device nonideal factors on detection accuracy is systematically evaluated, and the system shows robustness to initial weight randomness, and cycle‐to‐cycle and device‐to‐device variations. The proposed method allows direct mapping of neural connectivity onto the artificial memristor network and can lead to efficient front‐end data analysis of high‐density neural recording systems and potentially directly coupled bioartificial networks.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84542996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Self‐Programming Synaptic Resistor Circuit for Intelligent Systems 智能系统的自编程突触电阻电路
Pub Date : 2021-05-18 DOI: 10.1002/aisy.202100016
Christopher M. Shaffer, Atharva Deo, Andrew Tudor, Rahul Shenoy, Cameron D. Danesh, Dhruva Nathan, Lawren L. Gamble, D. Inman, Yong Chen
Unlike artificial intelligent systems based on computers which have to be programmed for specific tasks, the human brain “self‐programs” in real time to create new tactics and adapt to arbitrary environments. Computers embedded in artificial intelligent systems execute arbitrary signal‐processing algorithms to outperform humans at specific tasks, but without the real‐time self‐programming functionality, they are preprogrammed by humans, fail in unpredictable environments beyond their preprogrammed domains, and lack general intelligence in arbitrary environments. Herein, a synaptic resistor circuit that self‐programs in arbitrary and unpredictable environments in real time is demonstrated. By integrating the synaptic signal processing, memory, and correlative learning functions in each synaptic resistor, the synaptic resistor circuit processes signals and self‐programs the circuit concurrently in real time with an energy efficiency about six orders higher than those of computers. In comparison with humans and a preprogrammed computer, the self‐programming synaptic resistor circuit dynamically modifies its algorithm to control a morphing wing in an unpredictable aerodynamic environment to improve its performance function with superior self‐programming speeds and accuracy. The synaptic resistor circuits potentially circumvent the fundamental limitations of computers, leading to a new intelligent platform with real‐time self‐programming functionality for artificial general intelligence.
与基于计算机的人工智能系统不同,人工智能系统必须为特定的任务编程,而人脑可以实时“自我编程”,以创造新的策略并适应任意的环境。嵌入人工智能系统的计算机执行任意信号处理算法,以在特定任务中超越人类,但没有实时自我编程功能,它们是由人类预编程的,在超出预编程域的不可预测环境中失败,并且在任意环境中缺乏通用智能。本文演示了一种在任意和不可预测的环境中实时自编程的突触电阻电路。通过在每个突触电阻器中集成突触信号处理、记忆和相关学习功能,突触电阻器电路实时处理信号并同时对电路进行自编程,其能量效率比计算机高约6个数量级。与人类和预编程计算机相比,自编程突触电阻电路动态修改其算法,以在不可预测的空气动力学环境中控制变形机翼,从而以优越的自编程速度和精度提高其性能功能。突触电阻电路有可能绕过计算机的基本限制,为人工通用智能提供一个具有实时自编程功能的新智能平台。
{"title":"Self‐Programming Synaptic Resistor Circuit for Intelligent Systems","authors":"Christopher M. Shaffer, Atharva Deo, Andrew Tudor, Rahul Shenoy, Cameron D. Danesh, Dhruva Nathan, Lawren L. Gamble, D. Inman, Yong Chen","doi":"10.1002/aisy.202100016","DOIUrl":"https://doi.org/10.1002/aisy.202100016","url":null,"abstract":"Unlike artificial intelligent systems based on computers which have to be programmed for specific tasks, the human brain “self‐programs” in real time to create new tactics and adapt to arbitrary environments. Computers embedded in artificial intelligent systems execute arbitrary signal‐processing algorithms to outperform humans at specific tasks, but without the real‐time self‐programming functionality, they are preprogrammed by humans, fail in unpredictable environments beyond their preprogrammed domains, and lack general intelligence in arbitrary environments. Herein, a synaptic resistor circuit that self‐programs in arbitrary and unpredictable environments in real time is demonstrated. By integrating the synaptic signal processing, memory, and correlative learning functions in each synaptic resistor, the synaptic resistor circuit processes signals and self‐programs the circuit concurrently in real time with an energy efficiency about six orders higher than those of computers. In comparison with humans and a preprogrammed computer, the self‐programming synaptic resistor circuit dynamically modifies its algorithm to control a morphing wing in an unpredictable aerodynamic environment to improve its performance function with superior self‐programming speeds and accuracy. The synaptic resistor circuits potentially circumvent the fundamental limitations of computers, leading to a new intelligent platform with real‐time self‐programming functionality for artificial general intelligence.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90378610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
High‐Density Force and Temperature Sensing Skin Using Micropillar Array with Image Sensor 使用带有图像传感器的微柱阵列的高密度力和温度传感皮肤
Pub Date : 2021-05-13 DOI: 10.1002/aisy.202000280
Xiaochen Shi, Yan Chen, Hong-Lan Jiang, Du-Li Yu, Xiaoliang Guo
Driving toward the goal of gaining a high level of intelligence and agility that mimics or surpasses that of humans, sensing systems have been widely investigated. As a complex network, tactile sense converts environmental stimuli into electrical impulses through various sensory receptors, which has been exploited in a large number of revolutionary applications, including robotics, prosthetics, and health‐monitoring devices. However, it remains significantly difficult to mimic all the functionalities of human skin. Herein, a machine tactile sensing system is proposed based on machine vision, which is commonly referred to as “electronic skin” or “e‐skin.” With a high density of 625 sensing points per square centimeter similar to that of human skin, the proposed sensing system can successfully measure 3D force and temperature distribution simultaneously. Based on this information, the shape, weight, texture, stiffness, and viscosity of objects can be obtained, comprehensively mimicking the human tactile system. Moreover, the experimental results show that the proposed e‐skin achieves excellent repeatability, reproducibility, and stability compared to those based on other principles such as the piezoresistive effect and capacitive effect.
为了获得模仿或超越人类的高水平智能和敏捷性,传感系统得到了广泛的研究。作为一个复杂的网络,触觉通过各种感觉受体将环境刺激转化为电脉冲,这已经在机器人、假肢和健康监测设备等大量革命性应用中得到了利用。然而,模仿人类皮肤的所有功能仍然非常困难。本文提出了一种基于机器视觉的机器触觉传感系统,通常被称为“电子皮肤”或“e - skin”。该传感系统具有与人体皮肤相似的每平方厘米625个传感点的高密度,可以成功地同时测量三维力和温度分布。基于这些信息,可以获得物体的形状、重量、纹理、刚度和粘度,全面模仿人类的触觉系统。此外,实验结果表明,与基于压阻效应和电容效应等其他原理的电子皮肤相比,所提出的电子皮肤具有优异的重复性、再现性和稳定性。
{"title":"High‐Density Force and Temperature Sensing Skin Using Micropillar Array with Image Sensor","authors":"Xiaochen Shi, Yan Chen, Hong-Lan Jiang, Du-Li Yu, Xiaoliang Guo","doi":"10.1002/aisy.202000280","DOIUrl":"https://doi.org/10.1002/aisy.202000280","url":null,"abstract":"Driving toward the goal of gaining a high level of intelligence and agility that mimics or surpasses that of humans, sensing systems have been widely investigated. As a complex network, tactile sense converts environmental stimuli into electrical impulses through various sensory receptors, which has been exploited in a large number of revolutionary applications, including robotics, prosthetics, and health‐monitoring devices. However, it remains significantly difficult to mimic all the functionalities of human skin. Herein, a machine tactile sensing system is proposed based on machine vision, which is commonly referred to as “electronic skin” or “e‐skin.” With a high density of 625 sensing points per square centimeter similar to that of human skin, the proposed sensing system can successfully measure 3D force and temperature distribution simultaneously. Based on this information, the shape, weight, texture, stiffness, and viscosity of objects can be obtained, comprehensively mimicking the human tactile system. Moreover, the experimental results show that the proposed e‐skin achieves excellent repeatability, reproducibility, and stability compared to those based on other principles such as the piezoresistive effect and capacitive effect.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86080596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Programmable Amplitude‐Coding Metasurface with Multifrequency Modulations 具有多频率调制的可编程幅度编码超表面
Pub Date : 2021-05-07 DOI: 10.1002/aisy.202000260
Q. Hong, Qian Ma, Xinxin Gao, Che Liu, Qiang Xiao, Shabab Iqbal, T. Cui
Recently, programmable metasurfaces have aroused great attention for various applications such as beam manipulation, wireless communication, and holograms by modulating the spatial phase or amplitude. However, programmable amplitude‐coding modulations have rarely been investigated due to the difficulty in realizing dynamic control of amplitude. Herein, a real‐time programmable amplitude‐coding metasurface with multifrequency modulation is proposed by integrating PIN diodes and chip attenuators to the metaelement. The element is encoded as “11,” “10,” and “00,” corresponding to the ON/OFF states of two diodes. By switching the two states of the PIN diode, the metaelement exhibits distinctly reflected amplitude responses in three frequencies (2.98, 4.11, and 5.73 GHz). For the whole metasurface, the magnitude of the reflected beam can be modulated with some specific coding patterns. To verify the performance, six coding patterns with 10 × 10 metaelements are designed, and four of them are measured. Experimental results are fundamentally consistent with theoretical designs and simulations. Further a wireless communication demonstration is designed and implemented to perform direct modulation of digital signals without using mixers required in the conventional wireless communication systems. It is envisioned that this work will find applications in new architecture encrypted communication and imaging systems.
近年来,可编程超表面在波束操纵、无线通信、空间相位或振幅调制全息图等方面的应用引起了人们的广泛关注。然而,由于难以实现幅度的动态控制,可编程的幅度编码调制很少被研究。本文通过将PIN二极管和芯片衰减器集成到元元件中,提出了一种实时可编程的多频调制幅度编码元元件。该元素被编码为“11”、“10”和“00”,对应于两个二极管的ON/OFF状态。通过切换PIN二极管的两种状态,元元件在三个频率(2.98、4.11和5.73 GHz)上表现出明显的反射幅度响应。对于整个超表面,反射光束的大小可以用一些特定的编码模式来调制。为了验证其性能,设计了6种10 × 10元元素的编码模式,并对其中的4种编码模式进行了测试。实验结果与理论设计和仿真基本一致。此外,设计并实现了一种无线通信演示,以在不使用常规无线通信系统中所需的混频器的情况下执行数字信号的直接调制。预计这项工作将在新架构加密通信和成像系统中找到应用。
{"title":"Programmable Amplitude‐Coding Metasurface with Multifrequency Modulations","authors":"Q. Hong, Qian Ma, Xinxin Gao, Che Liu, Qiang Xiao, Shabab Iqbal, T. Cui","doi":"10.1002/aisy.202000260","DOIUrl":"https://doi.org/10.1002/aisy.202000260","url":null,"abstract":"Recently, programmable metasurfaces have aroused great attention for various applications such as beam manipulation, wireless communication, and holograms by modulating the spatial phase or amplitude. However, programmable amplitude‐coding modulations have rarely been investigated due to the difficulty in realizing dynamic control of amplitude. Herein, a real‐time programmable amplitude‐coding metasurface with multifrequency modulation is proposed by integrating PIN diodes and chip attenuators to the metaelement. The element is encoded as “11,” “10,” and “00,” corresponding to the ON/OFF states of two diodes. By switching the two states of the PIN diode, the metaelement exhibits distinctly reflected amplitude responses in three frequencies (2.98, 4.11, and 5.73 GHz). For the whole metasurface, the magnitude of the reflected beam can be modulated with some specific coding patterns. To verify the performance, six coding patterns with 10 × 10 metaelements are designed, and four of them are measured. Experimental results are fundamentally consistent with theoretical designs and simulations. Further a wireless communication demonstration is designed and implemented to perform direct modulation of digital signals without using mixers required in the conventional wireless communication systems. It is envisioned that this work will find applications in new architecture encrypted communication and imaging systems.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77227771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Facile Manufacturing Route for Magneto‐Responsive Soft Actuators 磁响应式软执行器的简易制造路线
Pub Date : 2021-05-07 DOI: 10.1002/aisy.202000283
Julia A. Carpenter, T. Eberle, S. Schuerle, A. Rafsanjani, A. Studart
Magnetically driven soft actuators are unique because they are fast, remote‐controlled, conformal to rigid objects, and safe to interact with humans. Despite these multiple functionalities, a broader utilization of such actuators is hindered by the high cost and equipment‐intensive nature of currently available manufacturing processes. Herein, a simple fabrication route for magneto‐responsive soft actuators is described using cost‐effective and broadly available raw materials and equipment. The method utilizes castable silicone resins that are loaded with magnetic particles and subsequently magnetized under an external magnetic field. The experimental investigation of silicone‐based composites prepared with particles of distinct chemistries, sizes, and morphologies enables the identification of the raw materials and magnetization conditions required for the process. This leads to functional soft actuators with programmable magnetic patterns that are capable of performing pick‐and‐place, lifting, catching, and moving tasks under the remote action of an external magnetic field. By removing manufacturing hurdles associated with costly raw materials and equipment, the proposed approach is expected to facilitate the design, implementation, and exploitation of the unique functionalities of magneto‐controlled soft actuators in a wider number of applications.
磁驱动的软执行器是独一无二的,因为它们快速,远程控制,与刚性物体保形,并且与人类安全互动。尽管具有这些多种功能,但由于目前可用的制造工艺的高成本和设备密集性,阻碍了此类执行器的广泛应用。本文描述了一种简单的磁致响应软执行器的制造路线,使用具有成本效益和广泛可用的原材料和设备。该方法利用可浇注的硅树脂,其装载磁性颗粒并随后在外部磁场下磁化。用不同化学、尺寸和形态的颗粒制备的硅基复合材料的实验研究可以确定该工艺所需的原材料和磁化条件。这导致了具有可编程磁模式的功能性软执行器,能够在外部磁场的远程作用下执行拾取放置,提升,捕获和移动任务。通过消除与昂贵的原材料和设备相关的制造障碍,所提出的方法有望在更广泛的应用中促进磁控软执行器的独特功能的设计、实现和开发。
{"title":"Facile Manufacturing Route for Magneto‐Responsive Soft Actuators","authors":"Julia A. Carpenter, T. Eberle, S. Schuerle, A. Rafsanjani, A. Studart","doi":"10.1002/aisy.202000283","DOIUrl":"https://doi.org/10.1002/aisy.202000283","url":null,"abstract":"Magnetically driven soft actuators are unique because they are fast, remote‐controlled, conformal to rigid objects, and safe to interact with humans. Despite these multiple functionalities, a broader utilization of such actuators is hindered by the high cost and equipment‐intensive nature of currently available manufacturing processes. Herein, a simple fabrication route for magneto‐responsive soft actuators is described using cost‐effective and broadly available raw materials and equipment. The method utilizes castable silicone resins that are loaded with magnetic particles and subsequently magnetized under an external magnetic field. The experimental investigation of silicone‐based composites prepared with particles of distinct chemistries, sizes, and morphologies enables the identification of the raw materials and magnetization conditions required for the process. This leads to functional soft actuators with programmable magnetic patterns that are capable of performing pick‐and‐place, lifting, catching, and moving tasks under the remote action of an external magnetic field. By removing manufacturing hurdles associated with costly raw materials and equipment, the proposed approach is expected to facilitate the design, implementation, and exploitation of the unique functionalities of magneto‐controlled soft actuators in a wider number of applications.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87461121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Reprogrammable 3D Liquid‐Crystalline Actuators with Precisely Controllable Stepwise Actuation 可重新编程的3D液晶驱动器,具有精确可控的逐步驱动
Pub Date : 2021-05-06 DOI: 10.1002/aisy.202000249
Qiaomei Chen, Weiwei Li, Yen Wei, Yan Ji
Liquid‐crystalline elastomers (LCEs) are considered ideal soft actuator materials for a wide range of applications, especially the thriving soft robotics. However, 3D LCE actuators capable of precisely controllable stepwise actuation, which can enhance functionality and versatility of LCE robots for multifarious complicated applications, are still in urgent need for the reported LCE actuators mainly exploit the one‐step actuation upon the liquid‐crystallin (LC)‐isotropic phase transition temperature (Ti). Herein, a catalyst‐free LC‐vitrimer actuator with supercritical behavior is designed, which can perform precisely controllable stepwise actuation with extraordinary shape stability over a broad temperature range of about 70 °C. Moreover, supercritical behavior enables the actuator to be used in nematic phase, imparting the actuator with some extra advantages, such as higher mechanical strength and actuation stability, over the one used above Ti. Furthermore, the LCE can be reprogrammable into arbitrary 3D actuators, which can further be integrated into single‐material actuators with complex stepwise actuation, offering a generalized strategy of LCE actuators for sophisticated practical soft robots.
液晶弹性体(LCEs)被认为是广泛应用的理想软执行器材料,特别是蓬勃发展的软机器人。然而,目前所报道的LCE致动器主要是利用液晶(LC) -各向同性相变温度(Ti)的一步驱动,因此迫切需要能够精确控制逐步驱动的3D LCE致动器,以增强LCE机器人在各种复杂应用中的功能和通用性。本文设计了一种具有超临界行为的无催化剂LC - vitrimer致动器,该致动器可以在约70°C的宽温度范围内进行精确可控的逐步致动,并具有非凡的形状稳定性。此外,超临界性能使致动器能够在向列相中使用,赋予致动器一些额外的优势,例如更高的机械强度和致动稳定性,而不是在Ti上面使用的致动器。此外,LCE可以重新编程成任意的三维驱动器,进一步集成到具有复杂阶跃驱动的单材料驱动器中,为复杂的实用软机器人提供了LCE驱动器的通用策略。
{"title":"Reprogrammable 3D Liquid‐Crystalline Actuators with Precisely Controllable Stepwise Actuation","authors":"Qiaomei Chen, Weiwei Li, Yen Wei, Yan Ji","doi":"10.1002/aisy.202000249","DOIUrl":"https://doi.org/10.1002/aisy.202000249","url":null,"abstract":"Liquid‐crystalline elastomers (LCEs) are considered ideal soft actuator materials for a wide range of applications, especially the thriving soft robotics. However, 3D LCE actuators capable of precisely controllable stepwise actuation, which can enhance functionality and versatility of LCE robots for multifarious complicated applications, are still in urgent need for the reported LCE actuators mainly exploit the one‐step actuation upon the liquid‐crystallin (LC)‐isotropic phase transition temperature (Ti). Herein, a catalyst‐free LC‐vitrimer actuator with supercritical behavior is designed, which can perform precisely controllable stepwise actuation with extraordinary shape stability over a broad temperature range of about 70 °C. Moreover, supercritical behavior enables the actuator to be used in nematic phase, imparting the actuator with some extra advantages, such as higher mechanical strength and actuation stability, over the one used above Ti. Furthermore, the LCE can be reprogrammable into arbitrary 3D actuators, which can further be integrated into single‐material actuators with complex stepwise actuation, offering a generalized strategy of LCE actuators for sophisticated practical soft robots.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82668309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Piezoelectric‐Driven Self‐Sensing Leaf‐Mimic Actuator Enabled by Integration of a Self‐Healing Dielectric Elastomer and a Piezoelectric Composite 压电驱动的自传感叶片模拟驱动器由自愈合介电弹性体和压电复合材料集成而成
Pub Date : 2021-03-22 DOI: 10.1002/aisy.202000248
Min Pan, Chenggang Yuan, Tom Pickford, Jeff Tian, Christopher Ellingford, Ning Zhou, C. Bowen, C. Wan
Soft robots and devices exploit highly deformable materials that are capable of changes in shape to allow conformable physical contact for controlled manipulation. While soft robots are resilient to mechanical impact, they are susceptible to mechanical damage, such as tears and punctures. The development of self‐healing materials and actuators continues to attract increasing interest, in particular, with respect to integrating self‐healing polymers to create bioinspired soft self‐healing devices. Herein, a novel piezoelectric‐driven self‐healing leaf‐motion mimic actuator is designed by combining a thermoplastic methyl thioglycolate–modified styrene–butadiene–styrene (MGSBS) elastomer with a piezoelectric macrofiber composite (MFC) for self‐sensing applications. This article is the first demonstration of a self‐sensing and self‐healing actuator‐sensor system, which is driven by a piezoelectric actuator and can mimic leaf motion. The leaf‐motion actuator combines built‐in dynamic sensing and room‐temperature self‐healing capabilities to restore macroscale cutting damage with an intrinsically high bandwidth of up to 10 kHz. The feasibility and potential of the new actuator for use in complex soft autonomous systems are demonstrated. These new results help to address the emerging influence of self‐healing soft actuators and the challenges of sensing, actuation, and damage resistance in soft robotics.
软机器人和设备利用高度可变形的材料,这些材料能够改变形状,从而使控制操作的物理接触符合要求。虽然软体机器人对机械冲击有弹性,但它们很容易受到机械损伤,比如撕裂和穿刺。自修复材料和致动器的发展继续吸引越来越多的兴趣,特别是在集成自修复聚合物以创建仿生软自修复装置方面。本文设计了一种新型压电驱动的自修复叶片运动模拟驱动器,该驱动器将热塑性甲基巯基乙酸酯改性苯乙烯-丁二烯-苯乙烯(MGSBS)弹性体与用于自传感应用的压电超纤维复合材料(MFC)结合在一起。本文首次展示了一种自我感知和自我修复的致动器传感器系统,该系统由压电致动器驱动,可以模拟叶子的运动。叶片运动执行器结合了内置的动态传感和室温自修复能力,以恢复宏观尺度切割损伤,具有高达10 kHz的固有高带宽。验证了该驱动器应用于复杂软自主系统的可行性和潜力。这些新结果有助于解决自修复软致动器的新兴影响以及软机器人中传感、致动和抗损伤性的挑战。
{"title":"Piezoelectric‐Driven Self‐Sensing Leaf‐Mimic Actuator Enabled by Integration of a Self‐Healing Dielectric Elastomer and a Piezoelectric Composite","authors":"Min Pan, Chenggang Yuan, Tom Pickford, Jeff Tian, Christopher Ellingford, Ning Zhou, C. Bowen, C. Wan","doi":"10.1002/aisy.202000248","DOIUrl":"https://doi.org/10.1002/aisy.202000248","url":null,"abstract":"Soft robots and devices exploit highly deformable materials that are capable of changes in shape to allow conformable physical contact for controlled manipulation. While soft robots are resilient to mechanical impact, they are susceptible to mechanical damage, such as tears and punctures. The development of self‐healing materials and actuators continues to attract increasing interest, in particular, with respect to integrating self‐healing polymers to create bioinspired soft self‐healing devices. Herein, a novel piezoelectric‐driven self‐healing leaf‐motion mimic actuator is designed by combining a thermoplastic methyl thioglycolate–modified styrene–butadiene–styrene (MGSBS) elastomer with a piezoelectric macrofiber composite (MFC) for self‐sensing applications. This article is the first demonstration of a self‐sensing and self‐healing actuator‐sensor system, which is driven by a piezoelectric actuator and can mimic leaf motion. The leaf‐motion actuator combines built‐in dynamic sensing and room‐temperature self‐healing capabilities to restore macroscale cutting damage with an intrinsically high bandwidth of up to 10 kHz. The feasibility and potential of the new actuator for use in complex soft autonomous systems are demonstrated. These new results help to address the emerging influence of self‐healing soft actuators and the challenges of sensing, actuation, and damage resistance in soft robotics.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74021852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Interfacial Tension Modulation of Liquid Metal via Electrochemical Oxidation 电化学氧化对液态金属界面张力的调节
Pub Date : 2021-02-04 DOI: 10.1002/aisy.202100024
Minyung Song, K. Daniels, A. Kiani, Sahar Rashidnadimi, M. Dickey
Herein, this progress report summarizes recent studies of electrochemical oxidation to modulate the interfacial tension of gallium‐based alloys. These liquid alloys have the largest interfacial tension of any liquid at room temperature. The ability to modulate the tension offers the possibility to create forces that change the shape and position of small volumes of liquid metal. It has been known since the late 1800s that electrocapillarity—the use of potential to modulate the electric double layer on the surface of metals in electrolyte—lowers the interfacial tension of liquid metals. This phenomenon, however, can only achieve modest changes in interfacial tension since it is limited to potentials that avoid Faradaic reactions. A recent discovery suggests reactions driven by the electrochemical oxidation of gallium alloys cause the interfacial tension to decrease from ≈500 mN m−1 at 0 V to ≈0 mN m−1 at less than 1 V. This change in interfacial tension is reversible, controllable, and goes well‐beyond what is possible via conventional electrocapillarity or surfactants. This report aims to introduce beginners to this field and address misconceptions. The report discusses applications that utilize modulations in interfacial tension of liquid metal and concludes with remaining opportunities and challenges needing further investigation.
本文综述了电化学氧化调节镓基合金界面张力的最新研究进展。这些液态合金在室温下具有所有液体中最大的界面张力。调节张力的能力提供了产生改变小体积液态金属形状和位置的力的可能性。自19世纪晚期以来,人们就知道电毛细管作用——利用电位调节电解液中金属表面的双电层——降低了液态金属的界面张力。然而,这种现象只能实现界面张力的适度变化,因为它仅限于避免法拉第反应的电位。最近的一项发现表明,由镓合金的电化学氧化驱动的反应导致界面张力从0 V时的≈500 mN m−1降至低于1 V时的≈0 mN m−1。这种界面张力的变化是可逆的、可控的,并且远远超出了传统的电毛细作用或表面活性剂所能达到的效果。本报告旨在向初学者介绍这一领域,并解决误解。该报告讨论了利用液态金属界面张力调制的应用,并总结了需要进一步研究的机会和挑战。
{"title":"Interfacial Tension Modulation of Liquid Metal via Electrochemical Oxidation","authors":"Minyung Song, K. Daniels, A. Kiani, Sahar Rashidnadimi, M. Dickey","doi":"10.1002/aisy.202100024","DOIUrl":"https://doi.org/10.1002/aisy.202100024","url":null,"abstract":"Herein, this progress report summarizes recent studies of electrochemical oxidation to modulate the interfacial tension of gallium‐based alloys. These liquid alloys have the largest interfacial tension of any liquid at room temperature. The ability to modulate the tension offers the possibility to create forces that change the shape and position of small volumes of liquid metal. It has been known since the late 1800s that electrocapillarity—the use of potential to modulate the electric double layer on the surface of metals in electrolyte—lowers the interfacial tension of liquid metals. This phenomenon, however, can only achieve modest changes in interfacial tension since it is limited to potentials that avoid Faradaic reactions. A recent discovery suggests reactions driven by the electrochemical oxidation of gallium alloys cause the interfacial tension to decrease from ≈500 mN m−1 at 0 V to ≈0 mN m−1 at less than 1 V. This change in interfacial tension is reversible, controllable, and goes well‐beyond what is possible via conventional electrocapillarity or surfactants. This report aims to introduce beginners to this field and address misconceptions. The report discusses applications that utilize modulations in interfacial tension of liquid metal and concludes with remaining opportunities and challenges needing further investigation.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82513749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Soft Touch using Soft Pneumatic Actuator–Skin as a Wearable Haptic Feedback Device 使用软气动致动器-皮肤作为可穿戴触觉反馈装置的软触觉
Pub Date : 2021-01-25 DOI: 10.1002/aisy.202000168
H. Sonar, Jian-Lin Huang, J. Paik
Understanding the external environment depends heavily on vision, audition, and touch. Like vision and audition, the human sense of touch is complex. Tactile perception is composed of multiple fundamental and physical experiences felt as changes in stiffness, texture, shape, size, temperature, and weight by the skin. While researchers and industries have made continuous efforts to abstract and recreate these haptic experiences, haptic devices are still limited in invoking intricate and rich sensations. Herein, the design, model, and experimental validation of a wearable skin‐like interface, able to recreate the roughness, shape, and size of a perceived object is presented; a platform for an interactive “physical” experience. The cogency of immersion through tactile feedback on moldable clay by the user response from the active haptic feedback, is examined. For the experimental test, a soft pneumatic actuator (SPA)‐skin interface (90 Hz bandwidth) with a complex actuation pattern is prototyped. The SPA‐skin's performance using three sets of simulated textures (<300 μm) and for reconstructing simulated contours (of a rectangle, circle, or trapezoid) in the virtual reality (VR) platform is investigated. The experimental results demonstrated for the first time how artificially created tactile feedback can indeed simulate physical interaction, with 83% average accuracy for contour reconstruction.
理解外部环境在很大程度上依赖于视觉、听觉和触觉。像视觉和听觉一样,人类的触觉也是复杂的。触觉知觉是由皮肤感受到的硬度、质地、形状、大小、温度和重量等多种基本和物理体验组成的。虽然研究人员和工业界一直在努力抽象和重建这些触觉体验,但触觉设备在唤起复杂而丰富的感觉方面仍然受到限制。在此,设计,模型和实验验证的可穿戴皮肤样界面,能够重建的粗糙度,形状和感知对象的大小;一个互动“物理”体验的平台。通过主动触觉反馈的用户反应,对可塑粘土上的触觉反馈进行沉浸的可信性进行了检验。为了进行实验测试,制作了具有复杂驱动模式的软气动执行器(SPA) -皮肤接口(90 Hz带宽)的原型。研究了SPA‐skin在虚拟现实(VR)平台中使用三组模拟纹理(<300 μm)和重建模拟轮廓(矩形、圆形或梯形)的性能。实验结果首次证明,人工创造的触觉反馈确实可以模拟物理交互,轮廓重建的平均准确率为83%。
{"title":"Soft Touch using Soft Pneumatic Actuator–Skin as a Wearable Haptic Feedback Device","authors":"H. Sonar, Jian-Lin Huang, J. Paik","doi":"10.1002/aisy.202000168","DOIUrl":"https://doi.org/10.1002/aisy.202000168","url":null,"abstract":"Understanding the external environment depends heavily on vision, audition, and touch. Like vision and audition, the human sense of touch is complex. Tactile perception is composed of multiple fundamental and physical experiences felt as changes in stiffness, texture, shape, size, temperature, and weight by the skin. While researchers and industries have made continuous efforts to abstract and recreate these haptic experiences, haptic devices are still limited in invoking intricate and rich sensations. Herein, the design, model, and experimental validation of a wearable skin‐like interface, able to recreate the roughness, shape, and size of a perceived object is presented; a platform for an interactive “physical” experience. The cogency of immersion through tactile feedback on moldable clay by the user response from the active haptic feedback, is examined. For the experimental test, a soft pneumatic actuator (SPA)‐skin interface (90 Hz bandwidth) with a complex actuation pattern is prototyped. The SPA‐skin's performance using three sets of simulated textures (<300 μm) and for reconstructing simulated contours (of a rectangle, circle, or trapezoid) in the virtual reality (VR) platform is investigated. The experimental results demonstrated for the first time how artificially created tactile feedback can indeed simulate physical interaction, with 83% average accuracy for contour reconstruction.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83373854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
期刊
Advanced Intelligent Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1