首页 > 最新文献

BMC biomedical engineering最新文献

英文 中文
A deep error correction network for compressed sensing MRI. 压缩感知MRI的深度误差校正网络。
Pub Date : 2020-02-27 eCollection Date: 2020-01-01 DOI: 10.1186/s42490-020-0037-5
Liyan Sun, Yawen Wu, Zhiwen Fan, Xinghao Ding, Yue Huang, John Paisley

Background: CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality.

Results: In this work, we propose a DECN (deep error correction network) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a CNN (convolutional neural network) to map the k-space data in a way that adjusts for the reconstruction error of the template image. We propose a deep error correction network. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.

Conclusions: In the proposed a deep error correction framework, any off-the-shelf CS-MRI algorithm can be used as template generation. Then a deep neural network is used to compensate reconstruction errors. The promising experimental results validate the effectiveness and utility of the proposed framework.

背景:CS-MRI(磁共振成像压缩感知)利用图像稀疏性从很少的傅里叶k空间测量中重建MRI。由于逆成像建模不完善,最先进的CS-MRI方法往往会留下结构重建误差。在重建过程中对这些误差进行补偿,有助于进一步提高重建质量。结果:在这项工作中,我们提出了一个用于CS-MRI的DECN(深度误差校正网络)。DECN模型由三个部分组成,我们将其称为模块:指南或模板、模块、错误校正模块和数据保真度模块。现有的CS-MRI算法可以作为指导重建的模板模块。以该模板为指导,误差校正模块学习CNN(卷积神经网络)以一种调整模板图像重建误差的方式映射k空间数据。我们提出了一种深度纠错网络。我们的实验结果表明,我们提出的DECN CS-MRI重构框架通过补充一个纠错CNN,可以大大改进现有的反演算法。结论:在提出的深度纠错框架中,任何现成的CS-MRI算法都可以作为模板生成。然后利用深度神经网络对重构误差进行补偿。实验结果验证了该框架的有效性和实用性。
{"title":"A deep error correction network for compressed sensing MRI.","authors":"Liyan Sun, Yawen Wu, Zhiwen Fan, Xinghao Ding, Yue Huang, John Paisley","doi":"10.1186/s42490-020-0037-5","DOIUrl":"10.1186/s42490-020-0037-5","url":null,"abstract":"<p><strong>Background: </strong>CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality.</p><p><strong>Results: </strong>In this work, we propose a DECN (deep error correction network) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a CNN (convolutional neural network) to map the k-space data in a way that adjusts for the reconstruction error of the template image. We propose a deep error correction network. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN.</p><p><strong>Conclusions: </strong>In the proposed a deep error correction framework, any off-the-shelf CS-MRI algorithm can be used as template generation. Then a deep neural network is used to compensate reconstruction errors. The promising experimental results validate the effectiveness and utility of the proposed framework.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-020-0037-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38359787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Exploring the role of transtibial prosthetic use in deep tissue injury development: a scoping review. 探讨经胫骨假体在深部组织损伤发展中的作用:范围综述。
Pub Date : 2020-01-29 eCollection Date: 2020-01-01 DOI: 10.1186/s42490-020-0036-6
Marisa Graser, Sarah Day, Arjan Buis

Background: The soft tissue of the residual limb in transtibial prosthetic users encounters unique biomechanical challenges. Although not intended to tolerate high loads and deformation, it becomes a weight-bearing structure within the residuum-prosthesis-complex. Consequently, deep soft tissue layers may be damaged, resulting in Deep Tissue Injury (DTI). Whilst considerable effort has gone into DTI research on immobilised individuals, only little is known about the aetiology and population-specific risk factors in amputees. This scoping review maps out and critically appraises existing research on DTI in lower-limb prosthetic users according to (1) the population-specific aetiology, (2) risk factors, and (3) methodologies to investigate both.

Results: A systematic search within the databases Pubmed, Ovid Excerpta Medica, and Scopus identified 16 English-language studies. The results indicate that prosthetic users may be at risk for DTI during various loading scenarios. This is influenced by individual surgical, morphological, and physiological determinants, as well as the choice of prosthetic componentry. However, methodological limitations, high inter-patient variability, and small sample sizes complicate the interpretation of outcome measures. Additionally, fundamental research on cell and tissue reactions to dynamic loading and on prosthesis-induced alterations of the vascular and lymphatic supply is missing.

Conclusion: We therefore recommend increased interdisciplinary research endeavours with a focus on prosthesis-related experimental design to widen our understanding of DTI. The results have the potential to initiate much-needed clinical advances in surgical and prosthetic practice and inform future pressure ulcer classifications and guidelines.

背景:经胫骨义肢使用者的残肢软组织面临着独特的生物力学挑战。虽然不打算承受高负荷和变形,但它成为残肢-假体-复合体中的承重结构。因此,深层软组织层可能受损,导致深层组织损伤(deep tissue Injury, DTI)。虽然对无法活动的个体进行DTI研究已经付出了相当大的努力,但对截肢者的病因和人群特定风险因素知之甚少。本综述根据(1)人群特异性病因学,(2)危险因素,(3)调查两者的方法,绘制并批判性地评估了下肢假肢使用者DTI的现有研究。结果:在Pubmed, Ovid摘录医学和Scopus数据库中进行系统搜索,确定了16篇英语研究。结果表明,在不同的加载情况下,假体使用者可能有DTI的风险。这受到个体手术、形态和生理决定因素以及假体部件选择的影响。然而,方法学的局限性、患者间的高度可变性和小样本量使结果测量的解释复杂化。此外,缺乏关于细胞和组织对动态负荷的反应以及假体诱导的血管和淋巴供应改变的基础研究。结论:因此,我们建议加强跨学科的研究工作,重点关注与假体相关的实验设计,以扩大我们对DTI的理解。该结果有可能启动外科和假肢实践中急需的临床进展,并为未来的压疮分类和指南提供信息。
{"title":"Exploring the role of transtibial prosthetic use in deep tissue injury development: a scoping review.","authors":"Marisa Graser, Sarah Day, Arjan Buis","doi":"10.1186/s42490-020-0036-6","DOIUrl":"10.1186/s42490-020-0036-6","url":null,"abstract":"<p><strong>Background: </strong>The soft tissue of the residual limb in transtibial prosthetic users encounters unique biomechanical challenges. Although not intended to tolerate high loads and deformation, it becomes a weight-bearing structure within the residuum-prosthesis-complex. Consequently, deep soft tissue layers may be damaged, resulting in Deep Tissue Injury (DTI). Whilst considerable effort has gone into DTI research on immobilised individuals, only little is known about the aetiology and population-specific risk factors in amputees. This scoping review maps out and critically appraises existing research on DTI in lower-limb prosthetic users according to (1) the population-specific aetiology, (2) risk factors, and (3) methodologies to investigate both.</p><p><strong>Results: </strong>A systematic search within the databases Pubmed, Ovid Excerpta Medica, and Scopus identified 16 English-language studies. The results indicate that prosthetic users may be at risk for DTI during various loading scenarios. This is influenced by individual surgical, morphological, and physiological determinants, as well as the choice of prosthetic componentry. However, methodological limitations, high inter-patient variability, and small sample sizes complicate the interpretation of outcome measures. Additionally, fundamental research on cell and tissue reactions to dynamic loading and on prosthesis-induced alterations of the vascular and lymphatic supply is missing.</p><p><strong>Conclusion: </strong>We therefore recommend increased interdisciplinary research endeavours with a focus on prosthesis-related experimental design to widen our understanding of DTI. The results have the potential to initiate much-needed clinical advances in surgical and prosthetic practice and inform future pressure ulcer classifications and guidelines.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38359778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterns of lower limb muscular activity and joint moments during directional efforts using a static dynamometer. 使用静态测功仪测量定向用力时下肢肌肉活动和关节力矩的模式。
Pub Date : 2020-01-08 eCollection Date: 2020-01-01 DOI: 10.1186/s42490-019-0035-7
Mathieu Lalumiere, Cloé Villeneuve, Cassandra Bellavance, Michel Goyette, Daniel Bourbonnais

Background: Strength and coordination of lower muscle groups typically identified in healthy subjects are two prerequisites to performing functional activities. These physical qualities can be impaired following a neurological insult. A static dynamometer apparatus that measures lower limb joint moments during directional efforts at the foot was developed to recruit different patterns of muscular activity. The objectives of the present study were to 1) validate joint moments estimated by the apparatus, and 2) to characterize lower limb joint moments and muscular activity patterns of healthy subjects during progressive static efforts. Subjects were seated in a semi-reclined position with one foot attached to a force platform interfaced with a laboratory computer. Forces and moments exerted under the foot were computed using inverse dynamics, allowing for the estimation of lower limb joint moments.To achieve the study's first objective, joint moments were validated by comparing moments of various magnitudes of force applied by turnbuckles on an instrumented leg equipped with strain gauges with those estimated by the apparatus. Concurrent validity and agreement were assessed using Pearson correlation coefficients and Bland and Altman analysis, respectively. For the second objective, joint moments and muscular activity were characterized for five healthy subjects while exerting progressive effort in eight sagittal directions. Lower limb joint moments were estimated during directional efforts using inverse dynamics. Muscular activity of eight muscles of the lower limb was recorded using surface electrodes and further analyzed using normalized root mean square data.

Results: The joint moments estimated with the instrumented leg were correlated (r > 0.999) with those measured by the dynamometer. Limits of agreement ranged between 8.5 and 19.2% of the average joint moment calculated by both devices. During progressive efforts on the apparatus, joint moments and patterns of muscular activity were specific to the direction of effort. Patterns of muscular activity in four directions were similar to activation patterns reported in the literature for specific portions of gait cycle.

Conclusion: This apparatus provides valid joint moments exerted at the lower limbs. It is suggested that this methodology be used to recruit muscular activity patterns impaired in neurological populations.

背景:通常在健康受试者中发现的下肌群的力量和协调是进行功能性活动的两个先决条件。这些身体素质会在神经损伤后受损。开发了一种静态测力计装置,用于测量足部定向努力时的下肢关节力矩,以招募不同模式的肌肉活动。本研究的目的是1)验证仪器估计的关节力矩,2)表征健康受试者在渐进静态努力过程中的下肢关节力矩和肌肉活动模式。受试者以半斜倚的姿势坐着,一只脚固定在与实验室计算机连接的受力平台上。使用逆动力学计算脚底施加的力和力矩,从而可以估计下肢关节力矩。为了实现研究的第一个目标,通过比较安装了应变片的仪器腿上旋转扣施加的不同大小的力的力矩与仪器估计的力矩来验证关节力矩。并发效度和一致性分别采用Pearson相关系数和Bland和Altman分析进行评估。对于第二个目标,研究了5名健康受试者在8个矢状方向上施加渐进式用力时的关节力矩和肌肉活动。利用逆动力学方法估计了定向努力过程中的下肢关节力矩。使用表面电极记录下肢8块肌肉的肌肉活动,并使用标准化均方根数据进一步分析。结果:测得的关节力矩与测功机测得的关节力矩呈显著相关(r > 0.999)。两种装置计算的平均关节力矩的一致限度在8.5到19.2%之间。在器械上的渐进式用力过程中,关节力矩和肌肉活动模式是特定于用力方向的。四个方向的肌肉活动模式与文献中报道的步态周期特定部分的激活模式相似。结论:该器械提供了有效的下肢关节力矩。建议将这种方法用于招募神经系统人群中受损的肌肉活动模式。
{"title":"Patterns of lower limb muscular activity and joint moments during directional efforts using a static dynamometer.","authors":"Mathieu Lalumiere,&nbsp;Cloé Villeneuve,&nbsp;Cassandra Bellavance,&nbsp;Michel Goyette,&nbsp;Daniel Bourbonnais","doi":"10.1186/s42490-019-0035-7","DOIUrl":"https://doi.org/10.1186/s42490-019-0035-7","url":null,"abstract":"<p><strong>Background: </strong>Strength and coordination of lower muscle groups typically identified in healthy subjects are two prerequisites to performing functional activities. These physical qualities can be impaired following a neurological insult. A static dynamometer apparatus that measures lower limb joint moments during directional efforts at the foot was developed to recruit different patterns of muscular activity. The objectives of the present study were to 1) validate joint moments estimated by the apparatus, and 2) to characterize lower limb joint moments and muscular activity patterns of healthy subjects during progressive static efforts. Subjects were seated in a semi-reclined position with one foot attached to a force platform interfaced with a laboratory computer. Forces and moments exerted under the foot were computed using inverse dynamics, allowing for the estimation of lower limb joint moments.To achieve the study's first objective, joint moments were validated by comparing moments of various magnitudes of force applied by turnbuckles on an instrumented leg equipped with strain gauges with those estimated by the apparatus. Concurrent validity and agreement were assessed using Pearson correlation coefficients and Bland and Altman analysis, respectively. For the second objective, joint moments and muscular activity were characterized for five healthy subjects while exerting progressive effort in eight sagittal directions. Lower limb joint moments were estimated during directional efforts using inverse dynamics. Muscular activity of eight muscles of the lower limb was recorded using surface electrodes and further analyzed using normalized root mean square data.</p><p><strong>Results: </strong>The joint moments estimated with the instrumented leg were correlated (r > 0.999) with those measured by the dynamometer. Limits of agreement ranged between 8.5 and 19.2% of the average joint moment calculated by both devices. During progressive efforts on the apparatus, joint moments and patterns of muscular activity were specific to the direction of effort. Patterns of muscular activity in four directions were similar to activation patterns reported in the literature for specific portions of gait cycle.</p><p><strong>Conclusion: </strong>This apparatus provides valid joint moments exerted at the lower limbs. It is suggested that this methodology be used to recruit muscular activity patterns impaired in neurological populations.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"2 ","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0035-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38454813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Developing preclinical models of neuroblastoma: driving therapeutic testing. 发展神经母细胞瘤的临床前模型:推动治疗试验。
Pub Date : 2019-12-20 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0034-8
Kimberly J Ornell, Jeannine M Coburn

Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40-50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.

尽管癌症治疗取得了进展,特别是在免疫肿瘤学领域,但神经母细胞瘤(NB)的成功治疗仍然是一个挑战。NB是1岁以下婴儿最常见的癌症,约占所有儿科癌症的10%。目前,高危NB患儿的存活率为40-50%。NB的异质性使得开发有效的治疗策略具有挑战性。许多临床前模型试图模拟肿瘤表型和肿瘤微环境。体内小鼠模型,以遗传、同基因和异种移植小鼠的形式,是有利的,因为它们复制了复杂的肿瘤-基质相互作用,代表了临床前治疗测试的金标准。传统的体外模型虽然具有高通量,但存在许多局限性。新的组织工程模型的出现有可能弥合体外和体内模型之间的差距,用于治疗试验。治疗方法继续从传统的细胞毒性化疗发展到生物靶向治疗。这些治疗方法既作用于肿瘤细胞,也作用于肿瘤微环境中的其他细胞,这使得开发准确反映肿瘤异质性的临床前模型比以往任何时候都更加重要。在这篇综述中,我们将讨论目前的体外和体内临床前测试模型,以及它们在治疗开发中的潜在应用。
{"title":"Developing preclinical models of neuroblastoma: driving therapeutic testing.","authors":"Kimberly J Ornell,&nbsp;Jeannine M Coburn","doi":"10.1186/s42490-019-0034-8","DOIUrl":"https://doi.org/10.1186/s42490-019-0034-8","url":null,"abstract":"<p><p>Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40-50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"33"},"PeriodicalIF":0.0,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0034-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Correction to: Osteogenic potential of heterogeneous and CD271-enriched mesenchymal stromal cells cultured on apatite-wollastonite 3D scaffolds. 更正:在磷灰石-硅灰石3D支架上培养的异质性和富含cd271的间充质间质细胞的成骨潜能。
Pub Date : 2019-12-11 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0033-9
Sylvia Müller, Lyndsey Nicholson, Naif Al Harbi, Elena Mancuso, Elena Jones, Anne Dickinson, Xiao Nong Wang, Kenneth Dalgarno

[This corrects the article DOI: 10.1186/s42490-019-0015-y.].

[更正文章DOI: 10.1186/s42490-019-0015-y.]。
{"title":"Correction to: Osteogenic potential of heterogeneous and CD271-enriched mesenchymal stromal cells cultured on apatite-wollastonite 3D scaffolds.","authors":"Sylvia Müller,&nbsp;Lyndsey Nicholson,&nbsp;Naif Al Harbi,&nbsp;Elena Mancuso,&nbsp;Elena Jones,&nbsp;Anne Dickinson,&nbsp;Xiao Nong Wang,&nbsp;Kenneth Dalgarno","doi":"10.1186/s42490-019-0033-9","DOIUrl":"https://doi.org/10.1186/s42490-019-0033-9","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1186/s42490-019-0015-y.].</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"34"},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0033-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Exploring physiological signals on people with Duchenne muscular dystrophy for an active trunk support: a case study. 探索杜氏肌萎缩症患者主动躯干支持的生理信号:一个案例研究。
Pub Date : 2019-12-09 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0032-x
Stergios Verros, Laura Peeters, Arjen Bergsma, Edsko E G Hekman, Gijsbertus J Verkerke, Bart F J M Koopman

Background: Arm support devices are available to support people with Duchenne muscular dystrophy (DMD), but active trunk support devices are lacking. An active trunk support device can potentially extend the reach of the arm and stabilize the unstable trunk of people with DMD. In a previous study, we showed that healthy people were able to control an active trunk support using four different control interfaces (based on joystick, force on feet, force on sternum and surface electromyography). All four control interfaces had different advantages and disadvantages. The aim of this study was to explore which of the four inputs is detectably used by people with DMD to control an active trunk support.

Results: The results were subject-dependent in both experiments. In the active experiment, the joystick was the most promising control interface. Regarding the static experiment, surface electromyography and force on feet worked for two out of the three subjects.

Conclusions: To our knowledge, this is the first time that people with DMD have engaged in a control task using signals other than those related to their arm muscles. According to our findings, the control interfaces have to be customised to every DMD subject.

背景:手臂支持装置可用于支持杜氏肌营养不良(DMD)患者,但缺乏主动躯干支持装置。主动躯干支撑装置可以潜在地延长手臂的伸展范围,稳定DMD患者不稳定的躯干。在之前的一项研究中,我们发现健康人能够使用四种不同的控制界面(基于操纵杆、脚上的力、胸骨上的力和表面肌电图)来控制主动的躯干支撑。所有四种控制接口都有不同的优缺点。本研究的目的是探索四种输入中的哪一种被DMD患者检测到用于控制活动主干支持。结果:两个实验的结果均与受试者相关。在主动实验中,操纵杆是最有前途的控制界面。在静态实验中,表面肌电图和脚上的力对三名受试者中的两名起作用。结论:据我们所知,这是DMD患者第一次使用与手臂肌肉无关的信号参与控制任务。根据我们的发现,控制界面必须针对每个DMD主题进行定制。
{"title":"Exploring physiological signals on people with Duchenne muscular dystrophy for an active trunk support: a case study.","authors":"Stergios Verros,&nbsp;Laura Peeters,&nbsp;Arjen Bergsma,&nbsp;Edsko E G Hekman,&nbsp;Gijsbertus J Verkerke,&nbsp;Bart F J M Koopman","doi":"10.1186/s42490-019-0032-x","DOIUrl":"https://doi.org/10.1186/s42490-019-0032-x","url":null,"abstract":"<p><strong>Background: </strong>Arm support devices are available to support people with Duchenne muscular dystrophy (DMD), but active trunk support devices are lacking. An active trunk support device can potentially extend the reach of the arm and stabilize the unstable trunk of people with DMD. In a previous study, we showed that healthy people were able to control an active trunk support using four different control interfaces (based on joystick, force on feet, force on sternum and surface electromyography). All four control interfaces had different advantages and disadvantages. The aim of this study was to explore which of the four inputs is detectably used by people with DMD to control an active trunk support.</p><p><strong>Results: </strong>The results were subject-dependent in both experiments. In the active experiment, the joystick was the most promising control interface. Regarding the static experiment, surface electromyography and force on feet worked for two out of the three subjects.</p><p><strong>Conclusions: </strong>To our knowledge, this is the first time that people with DMD have engaged in a control task using signals other than those related to their arm muscles. According to our findings, the control interfaces have to be customised to every DMD subject.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"31"},"PeriodicalIF":0.0,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0032-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38456101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The problem with skeletal muscle series elasticity. 骨骼肌系列弹性的问题。
Pub Date : 2019-12-03 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0031-y
Walter Herzog

Muscles contain contractile and (visco-) elastic passive components. At the latest since Hill's classic works in the 1930s, it has been known that these elastic components affect the length and rate of change in length of the contractile component, and thus the active force capability of dynamically working muscles. In an attempt to elucidate functional properties of these muscle elastic components, scientists have introduced the notion of "series" and "parallel" elasticity. Unfortunately, this has led to much confusion and erroneous interpretations of results when the mechanical definitions of parallel and series elasticity were violated. In this review, I will focus on muscle series elasticity, by first providing the mechanical definition for series elasticity, and then provide theoretical and experimental examples of the concept of series elasticity. Of particular importance is the treatment of aponeuroses. Aponeuroses are not in series with the tendon of a muscle nor the muscle's contractile elements. The implicit and explicit treatment of aponeuroses as series elastic elements in muscle has led to incorrect conclusions about aponeuroses stiffness and Young's modulus, and has contributed to vast overestimations of the storage and release of mechanical energy in cyclic muscle contractions. Series elasticity is a defined mechanical concept that needs to be treated carefully when applied to skeletal muscle mechanics. Measuring aponeuroses mechanical properties in a muscle, and its possible contribution to the storage and release of mechanical energy is not trivial, and to my best knowledge, has not been (correctly) done yet.

肌肉包含收缩和(粘)弹性被动成分。自希尔在 20 世纪 30 年代发表经典著作以来,人们已经知道这些弹性成分会影响收缩成分的长度和长度变化率,从而影响动态肌肉的主动发力能力。为了阐明这些肌肉弹性成分的功能特性,科学家们提出了 "串联 "和 "并联 "弹性的概念。遗憾的是,当违反平行和串联弹性的力学定义时,这导致了许多混乱和对结果的错误解释。在这篇综述中,我将重点讨论肌肉的串联弹性,首先提供串联弹性的力学定义,然后提供串联弹性概念的理论和实验实例。尤其重要的是对肌腱的处理。肌腱与肌肉的肌腱或肌肉的收缩元件不是串联的。将肌腱作为肌肉中的串联弹性元件进行含蓄或明确的处理,导致了关于肌腱刚度和杨氏模量的错误结论,并导致了对肌肉周期性收缩中机械能的储存和释放的严重高估。系列弹性是一个确定的力学概念,在应用于骨骼肌力学时需要谨慎对待。测量肌肉中的肌腱机械特性及其对机械能储存和释放的可能贡献并非易事,据我所知,目前还没有人(正确地)这样做。
{"title":"The problem with skeletal muscle series elasticity.","authors":"Walter Herzog","doi":"10.1186/s42490-019-0031-y","DOIUrl":"10.1186/s42490-019-0031-y","url":null,"abstract":"<p><p>Muscles contain contractile and (visco-) elastic passive components. At the latest since Hill's classic works in the 1930s, it has been known that these elastic components affect the length and rate of change in length of the contractile component, and thus the active force capability of dynamically working muscles. In an attempt to elucidate functional properties of these muscle elastic components, scientists have introduced the notion of \"series\" and \"parallel\" elasticity. Unfortunately, this has led to much confusion and erroneous interpretations of results when the mechanical definitions of parallel and series elasticity were violated. In this review, I will focus on muscle series elasticity, by first providing the mechanical definition for series elasticity, and then provide theoretical and experimental examples of the concept of series elasticity. Of particular importance is the treatment of aponeuroses. Aponeuroses are not in series with the tendon of a muscle nor the muscle's contractile elements. The implicit and explicit treatment of aponeuroses as series elastic elements in muscle has led to incorrect conclusions about aponeuroses stiffness and Young's modulus, and has contributed to vast overestimations of the storage and release of mechanical energy in cyclic muscle contractions. Series elasticity is a defined mechanical concept that needs to be treated carefully when applied to skeletal muscle mechanics. Measuring aponeuroses mechanical properties in a muscle, and its possible contribution to the storage and release of mechanical energy is not trivial, and to my best knowledge, has not been (correctly) done yet.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"28"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38357570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation. 一种用于fes诱导的中风康复中减少肌肉疲劳的便携式辅助上肢混合外骨骼。
Pub Date : 2019-11-19 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0028-6
Ashley Stewart, Christopher Pretty, Xiaoqi Chen

Background: Hybrid exoskeletons are a recent development which combine Functional Electrical Stimulation with actuators to improve both the mental and physical rehabilitation of stroke patients. Hybrid exoskeletons have been shown capable of reducing the weight of the actuator and improving movement precision compared to Functional Electrical Stimulation alone. However little attention has been given towards the ability of hybrid exoskeletons to reduce and manage Functional Electrical Stimulation induced fatigue or towards adapting to user ability. This work details the construction and testing of a novel assist-as-need upper-extremity hybrid exoskeleton which uses model-based Functional Electrical Stimulation control to delay Functional Electrical Stimulation induced muscle fatigue. The hybrid control is compared with Functional Electrical Stimulation only control on a healthy subject.

Results: The hybrid system produced 24° less average angle error and 13.2° less Root Mean Square Error, than Functional Electrical Stimulation on its own and showed a reduction in Functional Electrical Stimulation induced fatigue.

Conclusion: As far as the authors are aware, this is the study which provides evidence of the advantages of hybrid exoskeletons compared to use of Functional Electrical Stimulation on its own with regards to the delay of Functional Electrical Stimulation induced muscle fatigue.

背景:混合外骨骼是最近发展起来的一种结合功能性电刺激和执行器的外骨骼,以改善中风患者的精神和身体康复。与单独的功能性电刺激相比,混合外骨骼已被证明能够减轻致动器的重量并提高运动精度。然而,很少有人关注混合外骨骼减少和管理功能性电刺激引起的疲劳或适应用户能力的能力。这项工作详细介绍了一种新型的按需辅助上肢混合外骨骼的构建和测试,该外骨骼使用基于模型的功能性电刺激控制来延迟功能性电刺激引起的肌肉疲劳。将混合控制与仅对健康受试者进行功能电刺激的控制进行比较。结果:与单独的功能电刺激相比,混合系统产生的平均角度误差减少了24°,均方根误差减少了13.2°,并且减少了功能电刺激引起的疲劳。结论:就作者所知,这项研究提供了证据,证明在延迟功能性电刺激引起的肌肉疲劳方面,与单独使用功能性电刺激相比,混合外骨骼具有优势。
{"title":"A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation.","authors":"Ashley Stewart,&nbsp;Christopher Pretty,&nbsp;Xiaoqi Chen","doi":"10.1186/s42490-019-0028-6","DOIUrl":"https://doi.org/10.1186/s42490-019-0028-6","url":null,"abstract":"<p><strong>Background: </strong>Hybrid exoskeletons are a recent development which combine Functional Electrical Stimulation with actuators to improve both the mental and physical rehabilitation of stroke patients. Hybrid exoskeletons have been shown capable of reducing the weight of the actuator and improving movement precision compared to Functional Electrical Stimulation alone. However little attention has been given towards the ability of hybrid exoskeletons to reduce and manage Functional Electrical Stimulation induced fatigue or towards adapting to user ability. This work details the construction and testing of a novel assist-as-need upper-extremity hybrid exoskeleton which uses model-based Functional Electrical Stimulation control to delay Functional Electrical Stimulation induced muscle fatigue. The hybrid control is compared with Functional Electrical Stimulation only control on a healthy subject.</p><p><strong>Results: </strong>The hybrid system produced 24° less average angle error and 13.2° less Root Mean Square Error, than Functional Electrical Stimulation on its own and showed a reduction in Functional Electrical Stimulation induced fatigue.</p><p><strong>Conclusion: </strong>As far as the authors are aware, this is the study which provides evidence of the advantages of hybrid exoskeletons compared to use of Functional Electrical Stimulation on its own with regards to the delay of Functional Electrical Stimulation induced muscle fatigue.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"30"},"PeriodicalIF":0.0,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0028-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38454812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Determination of physiological parameters for endogenous glucose production in individuals using diurnal data. 利用日数据测定个体内源性葡萄糖产生的生理参数。
Pub Date : 2019-11-15 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0030-z
Mariël F van Stee, Shaji Krishnan, Albert K Groen, Albert A de Graaf

Background: Triple tracer meal experiments used to investigate organ glucose-insulin dynamics, such as endogenous glucose production (EGP) of the liver are labor intensive and expensive. A procedure was developed to obtain individual liver related parameters to describe EGP dynamics without the need for tracers.

Results: The development used an existing formula describing the EGP dynamics comprising 4 parameters defined from glucose, insulin and C-peptide dynamics arising from triple meal studies. The method employs a set of partial differential equations in order to estimate the parameters for EGP dynamics. Tracer-derived and simulated data sets were used to develop and test the procedure. The predicted EGP dynamics showed an overall mean R 2 of 0.91.

Conclusions: In summary, a method was developed for predicting the hepatic EGP dynamics for healthy, pre-diabetic, and type 2 diabetic individuals without applying tracer experiments.

背景:三重示踪膳食实验用于研究器官葡萄糖-胰岛素动力学,如肝脏的内源性葡萄糖生成(EGP)是劳动密集型和昂贵的。开发了一种程序,以获得个体肝脏相关参数来描述EGP动力学,而不需要示踪剂。结果:该开发使用了一个现有的公式来描述EGP动力学,其中包括从三餐研究中产生的葡萄糖,胰岛素和c肽动力学定义的4个参数。该方法采用一组偏微分方程来估计EGP动力学参数。示踪衍生和模拟数据集用于开发和测试该程序。预测的EGP动力学总体平均r2为0.91。结论:总之,我们开发了一种无需使用示踪剂实验即可预测健康、糖尿病前期和2型糖尿病患者肝脏EGP动态的方法。
{"title":"Determination of physiological parameters for endogenous glucose production in individuals using diurnal data.","authors":"Mariël F van Stee,&nbsp;Shaji Krishnan,&nbsp;Albert K Groen,&nbsp;Albert A de Graaf","doi":"10.1186/s42490-019-0030-z","DOIUrl":"https://doi.org/10.1186/s42490-019-0030-z","url":null,"abstract":"<p><strong>Background: </strong>Triple tracer meal experiments used to investigate organ glucose-insulin dynamics, such as endogenous glucose production (EGP) of the liver are labor intensive and expensive. A procedure was developed to obtain individual liver related parameters to describe EGP dynamics without the need for tracers.</p><p><strong>Results: </strong>The development used an existing formula describing the EGP dynamics comprising 4 parameters defined from glucose, insulin and C-peptide dynamics arising from triple meal studies. The method employs a set of partial differential equations in order to estimate the parameters for EGP dynamics. Tracer-derived and simulated data sets were used to develop and test the procedure. The predicted EGP dynamics showed an overall mean <i>R</i> <sup>2</sup> of 0.91.</p><p><strong>Conclusions: </strong>In summary, a method was developed for predicting the hepatic EGP dynamics for healthy, pre-diabetic, and type 2 diabetic individuals without applying tracer experiments.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"29"},"PeriodicalIF":0.0,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42490-019-0030-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38359786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images. 基于深度卷积神经网络的组织病理学图像自动细胞核分割方法。
Pub Date : 2019-10-17 eCollection Date: 2019-01-01 DOI: 10.1186/s42490-019-0026-8
Hwejin Jung, Bilal Lodhi, Jaewoo Kang

Background: Since nuclei segmentation in histopathology images can provide key information for identifying the presence or stage of a disease, the images need to be assessed carefully. However, color variation in histopathology images, and various structures of nuclei are two major obstacles in accurately segmenting and analyzing histopathology images. Several machine learning methods heavily rely on hand-crafted features which have limitations due to manual thresholding.

Results: To obtain robust results, deep learning based methods have been proposed. Deep convolutional neural networks (DCNN) used for automatically extracting features from raw image data have been proven to achieve great performance. Inspired by such achievements, we propose a nuclei segmentation method based on DCNNs. To normalize the color of histopathology images, we use a deep convolutional Gaussian mixture color normalization model which is able to cluster pixels while considering the structures of nuclei. To segment nuclei, we use Mask R-CNN which achieves state-of-the-art object segmentation performance in the field of computer vision. In addition, we perform multiple inference as a post-processing step to boost segmentation performance. We evaluate our segmentation method on two different datasets. The first dataset consists of histopathology images of various organ while the other consists histopathology images of the same organ. Performance of our segmentation method is measured in various experimental setups at the object-level and the pixel-level. In addition, we compare the performance of our method with that of existing state-of-the-art methods. The experimental results show that our nuclei segmentation method outperforms the existing methods.

Conclusions: We propose a nuclei segmentation method based on DCNNs for histopathology images. The proposed method which uses Mask R-CNN with color normalization and multiple inference post-processing provides robust nuclei segmentation results. Our method also can facilitate downstream nuclei morphological analyses as it provides high-quality features extracted from histopathology images.

背景:由于组织病理学图像中的细胞核分割可为确定疾病的存在或分期提供关键信息,因此需要对图像进行仔细评估。然而,组织病理学图像中的颜色变化和细胞核的各种结构是准确分割和分析组织病理学图像的两大障碍。几种机器学习方法严重依赖于手工创建的特征,而手工阈值处理又导致了这些方法的局限性:为了获得稳健的结果,人们提出了基于深度学习的方法。用于从原始图像数据中自动提取特征的深度卷积神经网络(DCNN)已被证明取得了卓越的性能。受这些成就的启发,我们提出了一种基于 DCNN 的细胞核分割方法。为了对组织病理学图像的颜色进行归一化处理,我们使用了深度卷积高斯混合颜色归一化模型,该模型能够对像素进行聚类,同时考虑到细胞核的结构。为了分割细胞核,我们使用了 Mask R-CNN,它在计算机视觉领域实现了最先进的物体分割性能。此外,我们还在后处理步骤中执行多重推理,以提高分割性能。我们在两个不同的数据集上评估了我们的分割方法。第一个数据集由不同器官的组织病理学图像组成,另一个数据集由同一器官的组织病理学图像组成。在不同的实验设置中,我们分别在对象级和像素级测量了我们的分割方法的性能。此外,我们还比较了我们的方法与现有先进方法的性能。实验结果表明,我们的细胞核分割方法优于现有方法:我们提出了一种基于 DCNN 的组织病理学图像细胞核分割方法。所提出的方法使用了带有颜色归一化和多重推理后处理的掩膜 R-CNN 技术,可提供稳健的核仁分割结果。我们的方法还能提供从组织病理学图像中提取的高质量特征,因此有助于下游的细胞核形态学分析。
{"title":"An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images.","authors":"Hwejin Jung, Bilal Lodhi, Jaewoo Kang","doi":"10.1186/s42490-019-0026-8","DOIUrl":"10.1186/s42490-019-0026-8","url":null,"abstract":"<p><strong>Background: </strong>Since nuclei segmentation in histopathology images can provide key information for identifying the presence or stage of a disease, the images need to be assessed carefully. However, color variation in histopathology images, and various structures of nuclei are two major obstacles in accurately segmenting and analyzing histopathology images. Several machine learning methods heavily rely on hand-crafted features which have limitations due to manual thresholding.</p><p><strong>Results: </strong>To obtain robust results, deep learning based methods have been proposed. Deep convolutional neural networks (DCNN) used for automatically extracting features from raw image data have been proven to achieve great performance. Inspired by such achievements, we propose a nuclei segmentation method based on DCNNs. To normalize the color of histopathology images, we use a deep convolutional Gaussian mixture color normalization model which is able to cluster pixels while considering the structures of nuclei. To segment nuclei, we use Mask R-CNN which achieves state-of-the-art object segmentation performance in the field of computer vision. In addition, we perform multiple inference as a post-processing step to boost segmentation performance. We evaluate our segmentation method on two different datasets. The first dataset consists of histopathology images of various organ while the other consists histopathology images of the same organ. Performance of our segmentation method is measured in various experimental setups at the object-level and the pixel-level. In addition, we compare the performance of our method with that of existing state-of-the-art methods. The experimental results show that our nuclei segmentation method outperforms the existing methods.</p><p><strong>Conclusions: </strong>We propose a nuclei segmentation method based on DCNNs for histopathology images. The proposed method which uses Mask R-CNN with color normalization and multiple inference post-processing provides robust nuclei segmentation results. Our method also can facilitate downstream nuclei morphological analyses as it provides high-quality features extracted from histopathology images.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"1 ","pages":"24"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38358006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC biomedical engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1