Dr. Joscha Kruse, Dr. Maria Sanromán-Iglesias, Aimar Marauri, Dr. Ivan Rivilla, Dr. Marek Grzelczak
Stimuli-responsive, optically-active colloidal systems are convenient signal transducers capable of monitoring environmental changes at the nanoscale. We report on the coupling of chemo-thermal cycloaddition reaction with temperature-sensitive, DNA-coated gold nanoparticles. We found that the concentration of chemical fuel, dictating the temperature of the mixture, is a primary ingredient in controlling the extent of the reversible clustering of gold nanoparticles. Our results show that rational coupling of chemical and colloidal systems can open up new possibilities in tracking the change of local temperature using aggregation/redispersion of nanoparticles.
{"title":"Coupling Reversible Clustering of DNA-Coated Gold Nanoparticles with Chemothermal Cycloaddition Reaction","authors":"Dr. Joscha Kruse, Dr. Maria Sanromán-Iglesias, Aimar Marauri, Dr. Ivan Rivilla, Dr. Marek Grzelczak","doi":"10.1002/syst.202200031","DOIUrl":"10.1002/syst.202200031","url":null,"abstract":"<p>Stimuli-responsive, optically-active colloidal systems are convenient signal transducers capable of monitoring environmental changes at the nanoscale. We report on the coupling of chemo-thermal cycloaddition reaction with temperature-sensitive, DNA-coated gold nanoparticles. We found that the concentration of chemical fuel, dictating the temperature of the mixture, is a primary ingredient in controlling the extent of the reversible clustering of gold nanoparticles. Our results show that rational coupling of chemical and colloidal systems can open up new possibilities in tracking the change of local temperature using aggregation/redispersion of nanoparticles.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47849422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brigitte A. K. Kriebisch, Christine M. E. Kriebisch, Alexander M. Bergmann, Dr. Caren Wanzke, Dr. Marta Tena-Solsona, Prof. Dr. Job Boekhoven
The front cover artwork is provided by BoekhovenLab at TU Munich. The image shows an energy landscape of kinetically trapped chemically fueled supramolecular fibers, which reminds of a mountain landscape. Read the full text of the Research Article at 10.1002/syst.202200035.
{"title":"Tuning the Kinetic Trapping in Chemically Fueled Self-Assembly","authors":"Brigitte A. K. Kriebisch, Christine M. E. Kriebisch, Alexander M. Bergmann, Dr. Caren Wanzke, Dr. Marta Tena-Solsona, Prof. Dr. Job Boekhoven","doi":"10.1002/syst.202200046","DOIUrl":"https://doi.org/10.1002/syst.202200046","url":null,"abstract":"<p>The front cover artwork is provided by BoekhovenLab at TU Munich. The image shows an energy landscape of kinetically trapped chemically fueled supramolecular fibers, which reminds of a mountain landscape. Read the full text of the Research Article at 10.1002/syst.202200035.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50150953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brigitte A. K. Kriebisch, Christine M. E. Kriebisch, Alexander M. Bergmann, Dr. Caren Wanzke, Dr. Marta Tena-Solsona, Prof. Dr. Job Boekhoven
The Front Cover represents an energy landscape of kinetically trapped chemical-fueled fibers, which reminds of a mountain landscape. Our work unravels how tuning the kinetic trapping in chemical-fueled self-assemblies can recover dynamic instabilities, such as microtubule-like growth and shrinkage. This opens the door to the creation of new adaptive nanotechnologies. More information can be found in the Research Article by Job Boekhoven and co-workers.