Pub Date : 2024-02-07DOI: 10.1109/JRFID.2024.3363643
Spyros Megalou;Konstantinos Tsiakoumis;Aristidis Raptopoulos Chatzistefanou;Stavroula Siachalou;Traianos V. Yioultsis;Antonis G. Dimitriou
In this paper, we investigate the possibility of using RFID technology for navigation and guidance within lanes. The lanes consist of RFID tags, placed on the floor. The tags represent unique spatial identifiers. By processing phase-measurements from such tags, a user, carrying an RFID reader, can be ${i}$ ) kept within the lane, ii) guided to the desired destination and iii) tracked in real time. Two properties are exploited for lane-keeping: the measured Rate-Of-Change (ROC) of the phase measurements per tag and the number of readings per tag within given time-periods. Thanks to these properties, an indicator function estimates the pose of the agent within the lane and gives auditory and visual feedback when one approaches the boundaries of the lane. Localization and tracking is accomplished separately by feeding phase-ROC measurements in a particle filter. Robustness of the proposed method is verified by measurements presented herein.
在本文中,我们研究了在车道内使用 RFID 技术进行导航和引导的可能性。车道由放置在地面上的 RFID 标签组成。标签代表唯一的空间标识符。通过处理来自这些标签的相位测量值,携带 RFID 阅读器的用户可以 ${i}$ ) 保持在车道内,ii) 被引导至所需目的地,iii) 被实时跟踪。车道保持利用了两个特性:每个标签相位测量的测量变化率(ROC)和每个标签在给定时间段内的读数数量。得益于这些特性,一个指示函数可以估算出车道内驾驶员的姿态,并在驾驶员接近车道边界时提供听觉和视觉反馈。通过在粒子滤波器中输入相位-ROC 测量值,可分别完成定位和跟踪。本文介绍的测量结果验证了所建议方法的鲁棒性。
{"title":"Lane Keeping and Tracking Through RFID Technology","authors":"Spyros Megalou;Konstantinos Tsiakoumis;Aristidis Raptopoulos Chatzistefanou;Stavroula Siachalou;Traianos V. Yioultsis;Antonis G. Dimitriou","doi":"10.1109/JRFID.2024.3363643","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3363643","url":null,"abstract":"In this paper, we investigate the possibility of using RFID technology for navigation and guidance within lanes. The lanes consist of RFID tags, placed on the floor. The tags represent unique spatial identifiers. By processing phase-measurements from such tags, a user, carrying an RFID reader, can be \u0000<inline-formula> <tex-math>${i}$ </tex-math></inline-formula>\u0000) kept within the lane, ii) guided to the desired destination and iii) tracked in real time. Two properties are exploited for lane-keeping: the measured Rate-Of-Change (ROC) of the phase measurements per tag and the number of readings per tag within given time-periods. Thanks to these properties, an indicator function estimates the pose of the agent within the lane and gives auditory and visual feedback when one approaches the boundaries of the lane. Localization and tracking is accomplished separately by feeding phase-ROC measurements in a particle filter. Robustness of the proposed method is verified by measurements presented herein.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"114-124"},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Internet of Things (IoT) framework has transformed sensor data utilization, ushering in a new era of sensors integrated into various aspects of modern environment. A pressing concern in the realm of wearable technology is efficient power management, encompassing low power consumption and reducing battery recharging times. This study introduces an electronic device equipped with a Bluetooth 5.1 Low Energy (BLE) module, capable of detecting, collecting, aggregating and transmitting the Root Sum of Squares Method (RSS) of acceleration readings at consistent time intervals. This multi-frequency wireless controller functions at both sub-1 and 2.4 GHz bandwidths, endorsing the Bluetooth® 5.1 low energy standard and diverse wireless modalities via a Dynamic MultiProtocol Manager (DMM) interface. For demonstration purposes, the BMI160 is has been programmed to internally manage acceleration analyses across three axes, reducing data transmission, and minimizing connection times. This device, integrated with other physiological parameter monitoring systems of an individual/patient, can help correlate any variation in these parameters with the amount of motion. The integration of additional sensors can refine the precision of physiological metric evaluation, broadening the potential applications of such systems in sectors like healthcare and well-being.
{"title":"Circuit Design, Realization, and Test of a Bluetooth Low Energy Wireless Sensor With On-Board Computation for Remote Healthcare Monitoring","authors":"Petar Šolic;Riccardo Colella;Giuseppe Grassi;Toni Perković;Carlo Giacomo Leo;Ana Čulić;Vladimir Pleština;Saverio Sabina;Luca Catarinucci","doi":"10.1109/JRFID.2024.3363074","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3363074","url":null,"abstract":"The Internet of Things (IoT) framework has transformed sensor data utilization, ushering in a new era of sensors integrated into various aspects of modern environment. A pressing concern in the realm of wearable technology is efficient power management, encompassing low power consumption and reducing battery recharging times. This study introduces an electronic device equipped with a Bluetooth 5.1 Low Energy (BLE) module, capable of detecting, collecting, aggregating and transmitting the Root Sum of Squares Method (RSS) of acceleration readings at consistent time intervals. This multi-frequency wireless controller functions at both sub-1 and 2.4 GHz bandwidths, endorsing the Bluetooth® 5.1 low energy standard and diverse wireless modalities via a Dynamic MultiProtocol Manager (DMM) interface. For demonstration purposes, the BMI160 is has been programmed to internally manage acceleration analyses across three axes, reducing data transmission, and minimizing connection times. This device, integrated with other physiological parameter monitoring systems of an individual/patient, can help correlate any variation in these parameters with the amount of motion. The integration of additional sensors can refine the precision of physiological metric evaluation, broadening the potential applications of such systems in sectors like healthcare and well-being.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"105-113"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30DOI: 10.1109/JRFID.2023.3339074
{"title":"IEEE Council on RFID","authors":"","doi":"10.1109/JRFID.2023.3339074","DOIUrl":"https://doi.org/10.1109/JRFID.2023.3339074","url":null,"abstract":"","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"C3-C3"},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10416936","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30DOI: 10.1109/JRFID.2023.3339072
{"title":"IEEE Journal of Radio Frequency Identification Publication Information","authors":"","doi":"10.1109/JRFID.2023.3339072","DOIUrl":"https://doi.org/10.1109/JRFID.2023.3339072","url":null,"abstract":"","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10416937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-29DOI: 10.1109/JRFID.2024.3359705
V. R. Vijaykumar;S. Raja Sekar;R. Jothin;V. C. Diniesh;S. Elango;S. Ramakrishnan
Recently, a great deal of physical equipment has been linked to the Internet of Things (IoT) by use of the Radio Frequency Identification (RFID) technology. Moreover, security is the primary concern for RFID-enabled IoT devices. In order to prevent security risks, mutual authentication is a vital step. The majority of authentication protocols are resource-intensive and computationally expensive to implement. Hence, a low power and lightweight hardware implementable security protocol is well suited for RFID enabled resource constrained IoT devices. This paper designed a novel light weight mutual authentication protocol using multifunction digital logic based encoder architecture for RFID based IoT systems. The proposed multifunction logic circuit generates different logical outputs for every random selection of control inputs, which improves security drastically. The protocol is narrated in Verilog Hardware descriptive language and realized in Altera DE2 Cyclone II (EP2C35F672C6) FPGA board and synthesized in 180 nm and 90 nm technology ASIC platform. Experimental results are compared with the state-of-the-art protocols, which demonstrate that the proposed protocol is much more suitable for lightweight applications. In addition, the security of the protocol is also formally verified using the standard BAN logic algorithm. Finally, the proposed protocol is real-time implemented and verified in Jennic JN5168 Test Bed using Contiki OS for resource-constrained IoT applications.
最近,大量物理设备通过使用射频识别(RFID)技术与物联网(IoT)相连接。此外,安全也是 RFID 物联网设备的首要问题。为了防止安全风险,相互验证是至关重要的一步。大多数认证协议都是资源密集型的,实施起来计算成本高昂。因此,一种低功耗、轻量级、可通过硬件实现的安全协议非常适合支持 RFID 的资源有限的物联网设备。本文利用基于多功能数字逻辑的编码器架构,为基于 RFID 的物联网系统设计了一种新型轻量级相互验证协议。所提出的多功能逻辑电路为每一个随机选择的控制输入生成不同的逻辑输出,从而大大提高了安全性。该协议采用 Verilog 硬件描述语言编写,在 Altera DE2 Cyclone II (EP2C35F672C6) FPGA 板上实现,并在 180 纳米和 90 纳米技术 ASIC 平台上合成。实验结果与最先进的协议进行了比较,证明所提出的协议更适合轻量级应用。此外,还使用标准 BAN 逻辑算法正式验证了协议的安全性。最后,在 Jennic JN5168 测试平台上使用 Contiki 操作系统实时实现和验证了所提出的协议,以用于资源受限的物联网应用。
{"title":"Novel Light Weight Hardware Authentication Protocol for Resource Constrained IoT Based Devices","authors":"V. R. Vijaykumar;S. Raja Sekar;R. Jothin;V. C. Diniesh;S. Elango;S. Ramakrishnan","doi":"10.1109/JRFID.2024.3359705","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3359705","url":null,"abstract":"Recently, a great deal of physical equipment has been linked to the Internet of Things (IoT) by use of the Radio Frequency Identification (RFID) technology. Moreover, security is the primary concern for RFID-enabled IoT devices. In order to prevent security risks, mutual authentication is a vital step. The majority of authentication protocols are resource-intensive and computationally expensive to implement. Hence, a low power and lightweight hardware implementable security protocol is well suited for RFID enabled resource constrained IoT devices. This paper designed a novel light weight mutual authentication protocol using multifunction digital logic based encoder architecture for RFID based IoT systems. The proposed multifunction logic circuit generates different logical outputs for every random selection of control inputs, which improves security drastically. The protocol is narrated in Verilog Hardware descriptive language and realized in Altera DE2 Cyclone II (EP2C35F672C6) FPGA board and synthesized in 180 nm and 90 nm technology ASIC platform. Experimental results are compared with the state-of-the-art protocols, which demonstrate that the proposed protocol is much more suitable for lightweight applications. In addition, the security of the protocol is also formally verified using the standard BAN logic algorithm. Finally, the proposed protocol is real-time implemented and verified in Jennic JN5168 Test Bed using Contiki OS for resource-constrained IoT applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"31-42"},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1109/JRFID.2024.3358189
Francesca Maria Chiara Nanni;Gaetano Marrocco
The dense distribution of wireless sensors based on Ultra-High-Frequency (UHF) Radio-Frequency Identification (RFID) technology, in the food market or drug cold chains, raises issues regarding the effects of mutual electromagnetic coupling on sensing. In the case of stacked items, in fact, inter-antenna coupling can cause disturbance to sensor measurements, thus affecting the specificity and reliability of the collected data. This paper experimentally investigates the effects of coupling for some configurations of antenna size and alignments by exploiting capacitive sensing based on the emerging auto-tuning integrated circuit (IC) architectures. The results revealed that electromagnetic coupling typically induces cross-sensitivity and instability so that the variation of any sensor’s output will also be indirectly captured by adjacent devices. However, this disturbing effect vanishes after a threshold decoupling distance of the order of 4 mm for a small-footprint loop (15mm$ times 15$ mm), and 15 mm in the case of a card-like footprint (C-dipole, 54mm$ times 16$ mm). Moreover, experiments revealed that the above distances can be halved by resorting to a 180° rotation of the adjacent items.
{"title":"Experimental Evaluation and Upper-Bounds of Cross-Sensitivity in Stacked RFID Sensors","authors":"Francesca Maria Chiara Nanni;Gaetano Marrocco","doi":"10.1109/JRFID.2024.3358189","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3358189","url":null,"abstract":"The dense distribution of wireless sensors based on Ultra-High-Frequency (UHF) Radio-Frequency Identification (RFID) technology, in the food market or drug cold chains, raises issues regarding the effects of mutual electromagnetic coupling on sensing. In the case of stacked items, in fact, inter-antenna coupling can cause disturbance to sensor measurements, thus affecting the specificity and reliability of the collected data. This paper experimentally investigates the effects of coupling for some configurations of antenna size and alignments by exploiting capacitive sensing based on the emerging auto-tuning integrated circuit (IC) architectures. The results revealed that electromagnetic coupling typically induces cross-sensitivity and instability so that the variation of any sensor’s output will also be indirectly captured by adjacent devices. However, this disturbing effect vanishes after a threshold decoupling distance of the order of 4 mm for a small-footprint loop (15mm\u0000<inline-formula> <tex-math>$ times 15$ </tex-math></inline-formula>\u0000mm), and 15 mm in the case of a card-like footprint (C-dipole, 54mm\u0000<inline-formula> <tex-math>$ times 16$ </tex-math></inline-formula>\u0000mm). Moreover, experiments revealed that the above distances can be halved by resorting to a 180° rotation of the adjacent items.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"98-104"},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1109/JRFID.2024.3358012
Carlo Caini;Lorenzo Persampieri
Challenged networks, including space networks, require the Delay-/ Disruption-Tolerant Networking architecture (DTN), which is based on the introduction of a new layer and a new associate protocol, the Bundle Protocol (BP). The recent release of RFC 9171, which standardizes version 7 (BPv7), has led the University of Bologna to develop its own implementation, Unibo-BP. The aim of this paper is to provide the reader with a comprehensive description of its design principles and innovative features. Unibo-BP is written in C+, is fully compliant with RFC 9171, is research-driven, and space-oriented, thus matching the main research interests of the authors. Unibo-BP is not a stand-alone application, but the core of a wide ecosystem that includes DTNsuite applications, LTP and TCPCLv3 convergence layers, and CGR/SABR routing. Unibo-BP interfaces to these additional components are thoroughly analyzed in the paper, as they present a number of advanced features. Unibo-BP supports one or multiple nodes on the same machine and a few template scripts to facilitate the user are described here. The paper also provides a section devoted to interoperability tests and first research applications An appendix, with an overview of Unibo-BP commands, completes this work. Unibo-BP is released as Open Source Software under GPLv3 license.
{"title":"Design and Features of Unibo-BP, the Unibo Implementation of the DTN Bundle Protocol","authors":"Carlo Caini;Lorenzo Persampieri","doi":"10.1109/JRFID.2024.3358012","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3358012","url":null,"abstract":"Challenged networks, including space networks, require the Delay-/ Disruption-Tolerant Networking architecture (DTN), which is based on the introduction of a new layer and a new associate protocol, the Bundle Protocol (BP). The recent release of RFC 9171, which standardizes version 7 (BPv7), has led the University of Bologna to develop its own implementation, Unibo-BP. The aim of this paper is to provide the reader with a comprehensive description of its design principles and innovative features. Unibo-BP is written in C+, is fully compliant with RFC 9171, is research-driven, and space-oriented, thus matching the main research interests of the authors. Unibo-BP is not a stand-alone application, but the core of a wide ecosystem that includes DTNsuite applications, LTP and TCPCLv3 convergence layers, and CGR/SABR routing. Unibo-BP interfaces to these additional components are thoroughly analyzed in the paper, as they present a number of advanced features. Unibo-BP supports one or multiple nodes on the same machine and a few template scripts to facilitate the user are described here. The paper also provides a section devoted to interoperability tests and first research applications An appendix, with an overview of Unibo-BP commands, completes this work. Unibo-BP is released as Open Source Software under GPLv3 license.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"458-467"},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10413494","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1109/JRFID.2024.3356194
Zhiyang Chen;Hongwei Jiang;Jiapeng You;Xin Wang;Poly Z. H. Sun
With the deepening exploration of Industry 4.0, smart factories are gradually replacing traditional factories with rapid momentum. In smart factories, a large number of digitally networked devices are deployed in a less-populated or even unmanned environment. Data security and fast access have become particularly important due to the automation and intelligence of production. As the environment of smart factories becomes increasingly complex, meeting the requirements for rapid authentication has become increasingly difficult for traditional authentication systems. In this study, a lightweight blockchain-based radio-frequency identification (RFID) identity authentication mechanism is proposed for smart factories represented by the medical device manufacturing industry by integrating blockchain and RFID technologies. Through bitwise operations, cyclic shift operation, and hash arithmetic, the proposed mechanism cannot only guarantee security between the RFID reader and the electronic tag but also requires less communication and storage to complete authentication. Thus, this mechanism is suitable for the environment of medical device manufacturing factories with a high-load operation of equipment. It helps further research on the data security of smart factories.
随着工业 4.0 探索的不断深入,智能工厂正以迅猛的势头逐步取代传统工厂。在智能工厂中,大量数字化联网设备被部署在人迹罕至甚至无人的环境中。由于生产的自动化和智能化,数据安全和快速访问变得尤为重要。随着智能工厂的环境变得越来越复杂,传统的身份验证系统越来越难以满足快速身份验证的要求。本研究通过整合区块链和射频识别(RFID)技术,为以医疗器械制造业为代表的智能工厂提出了一种基于区块链的轻量级射频识别(RFID)身份认证机制。通过比特运算、循环移位运算和哈希运算,所提出的机制不仅能保证 RFID 阅读器和电子标签之间的安全性,而且只需较少的通信和存储就能完成身份验证。因此,该机制适用于医疗器械制造工厂设备高负荷运行的环境。它有助于进一步研究智能工厂的数据安全问题。
{"title":"RFID Lightweight Authentication Mechanism for Smart Factories Based on Blockchain","authors":"Zhiyang Chen;Hongwei Jiang;Jiapeng You;Xin Wang;Poly Z. H. Sun","doi":"10.1109/JRFID.2024.3356194","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3356194","url":null,"abstract":"With the deepening exploration of Industry 4.0, smart factories are gradually replacing traditional factories with rapid momentum. In smart factories, a large number of digitally networked devices are deployed in a less-populated or even unmanned environment. Data security and fast access have become particularly important due to the automation and intelligence of production. As the environment of smart factories becomes increasingly complex, meeting the requirements for rapid authentication has become increasingly difficult for traditional authentication systems. In this study, a lightweight blockchain-based radio-frequency identification (RFID) identity authentication mechanism is proposed for smart factories represented by the medical device manufacturing industry by integrating blockchain and RFID technologies. Through bitwise operations, cyclic shift operation, and hash arithmetic, the proposed mechanism cannot only guarantee security between the RFID reader and the electronic tag but also requires less communication and storage to complete authentication. Thus, this mechanism is suitable for the environment of medical device manufacturing factories with a high-load operation of equipment. It helps further research on the data security of smart factories.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"19-30"},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139732021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17DOI: 10.1109/JRFID.2024.3355214
Ruhua Zhao;Junjie Yang;Xue Li;Hong Mo
The inaccuracy of modeling information and external disturbance bring great challenges to the control of robot manipulators. In the paper, an adaptive control strategy of robot manipulators with model uncertainty is presented by synthesizing variable universe fuzzy control (VUFC) and the sliding-mode control (SMC). The strong robustness of SMC overcomes the interference of uncertainty to the system,but brings the problem of chattering. In order to effectively alleviate chattering which is easy to occur in traditional SMC, the VUFC technology is adopted to improve the switching control and designs a dynamic variable switching control portion, which suppress the chattering significantly. Then, a suitable adaptive law is given, and the stability of the system is analyzed by utilizing Lyapunov theorem, which ensure that the system error can converge to near zero. Finally, the comparison results show that this control strategy possesses a better performance than SMC and the fuzzy SMC, which can continuously and stably achieve tracking control.
{"title":"Adaptive Variable Universe Fuzzy Sliding-Mode Control for Robot Manipulators With Model Uncertainty","authors":"Ruhua Zhao;Junjie Yang;Xue Li;Hong Mo","doi":"10.1109/JRFID.2024.3355214","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3355214","url":null,"abstract":"The inaccuracy of modeling information and external disturbance bring great challenges to the control of robot manipulators. In the paper, an adaptive control strategy of robot manipulators with model uncertainty is presented by synthesizing variable universe fuzzy control (VUFC) and the sliding-mode control (SMC). The strong robustness of SMC overcomes the interference of uncertainty to the system,but brings the problem of chattering. In order to effectively alleviate chattering which is easy to occur in traditional SMC, the VUFC technology is adopted to improve the switching control and designs a dynamic variable switching control portion, which suppress the chattering significantly. Then, a suitable adaptive law is given, and the stability of the system is analyzed by utilizing Lyapunov theorem, which ensure that the system error can converge to near zero. Finally, the comparison results show that this control strategy possesses a better performance than SMC and the fuzzy SMC, which can continuously and stably achieve tracking control.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"658-664"},"PeriodicalIF":2.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17DOI: 10.1109/JRFID.2024.3355298
Yi Li;Conghui Hao;Yupei Xie;Shuangshuang Han
In the era of rapid development of vehicular ad hoc networks (VANETs), ensuring the reliability and security of vehicle-to-vehicle communication has become a top priority. This paper comprehensively analyzes the performance of various signal detection algorithms in different scenarios. To intelligently choose different signal detection algorithms in the context of VANETs, the study covers diverse scenarios such as urban environments, rural areas, highways, parking lots, and mountainous regions, aiming to capture subtle variations in the performance of different signal detection algorithms across these scenarios. The paper employs strict performance metrics, such as bit error rate and algorithmic complexity, to quantify and compare the performance of different signal detection algorithms. The focus is on the role of signal detection algorithms in achieving parallel intelligence in VANETs, including the simultaneous processing of signals from multiple vehicles to enhance overall network efficiency and reliability. This research holds significance by providing insights into the strengths and limitations of signal detection algorithms in VANETs, guiding their development for efficient and accurate performance, thereby contributing to academic understanding and informing decision-making in the automotive industry and intelligent transportation systems.
在车载 ad hoc 网络(VANET)飞速发展的时代,确保车对车通信的可靠性和安全性已成为当务之急。本文全面分析了各种信号检测算法在不同场景下的性能。为了在 VANET 中智能地选择不同的信号检测算法,研究涵盖了城市环境、农村地区、高速公路、停车场和山区等不同场景,旨在捕捉不同信号检测算法在这些场景中性能的细微差别。论文采用严格的性能指标,如误码率和算法复杂度,来量化和比较不同信号检测算法的性能。重点是信号检测算法在实现 VANET 并行智能方面的作用,包括同时处理来自多辆车的信号,以提高整体网络效率和可靠性。这项研究的重要意义在于深入探讨了 VANET 中信号检测算法的优势和局限性,为开发高效、准确的信号检测算法提供了指导,从而有助于汽车行业和智能交通系统的学术理解和决策参考。
{"title":"Computational Experiments and Comparative Analysis of Signal Detection Algorithms in Vehicular Ad Hoc Networks","authors":"Yi Li;Conghui Hao;Yupei Xie;Shuangshuang Han","doi":"10.1109/JRFID.2024.3355298","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3355298","url":null,"abstract":"In the era of rapid development of vehicular ad hoc networks (VANETs), ensuring the reliability and security of vehicle-to-vehicle communication has become a top priority. This paper comprehensively analyzes the performance of various signal detection algorithms in different scenarios. To intelligently choose different signal detection algorithms in the context of VANETs, the study covers diverse scenarios such as urban environments, rural areas, highways, parking lots, and mountainous regions, aiming to capture subtle variations in the performance of different signal detection algorithms across these scenarios. The paper employs strict performance metrics, such as bit error rate and algorithmic complexity, to quantify and compare the performance of different signal detection algorithms. The focus is on the role of signal detection algorithms in achieving parallel intelligence in VANETs, including the simultaneous processing of signals from multiple vehicles to enhance overall network efficiency and reliability. This research holds significance by providing insights into the strengths and limitations of signal detection algorithms in VANETs, guiding their development for efficient and accurate performance, thereby contributing to academic understanding and informing decision-making in the automotive industry and intelligent transportation systems.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"402-411"},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}