Pub Date : 2024-04-23DOI: 10.1109/JRFID.2024.3392682
Chai Yang;Xiaoxuan Hu;Qingli Zhu;Qiang Tu;Hongyang Geng;Jing Xu;Zhenfeng Liu;Yanjun Wang;Jing Wang
Individual medical costs prediction refers to the process of estimating the expenses associated with a patient’s medical care. Effective medical costs prediction helps in budgeting, resource allocation, and financial planning in healthcare settings, making it a crucial tool for both healthcare providers and patients. This study introduces an advanced method for predicting medical consumables costs, leveraging clinical notes and diagnosis related groups (DRGs). The approach employs Bidirectional Encoder Representations from Transformers (BERT) for text vectorization to enhance disease diagnosis and surgical procedure prediction within DRGs using Light Gradient Boosting Machine (LightGBM), and Random Forest Regression for accurate medical costs prediction. It achieves over 91% accuracy in predicting disease diagnosis and surgical procedures, and a Mean Absolute Error (MAE) of 2281.20 and an R-squared value of 0.8557. These metrics indicate a high level of accuracy and reliability, showcasing the model’s efficacy in predicting medical costs in a healthcare setting. This method improves hospital resource management and costs estimation by integrating semantic information with machine learning algorithms.
{"title":"Individual Medical Costs Prediction Methods Based on Clinical Notes and DRGs","authors":"Chai Yang;Xiaoxuan Hu;Qingli Zhu;Qiang Tu;Hongyang Geng;Jing Xu;Zhenfeng Liu;Yanjun Wang;Jing Wang","doi":"10.1109/JRFID.2024.3392682","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3392682","url":null,"abstract":"Individual medical costs prediction refers to the process of estimating the expenses associated with a patient’s medical care. Effective medical costs prediction helps in budgeting, resource allocation, and financial planning in healthcare settings, making it a crucial tool for both healthcare providers and patients. This study introduces an advanced method for predicting medical consumables costs, leveraging clinical notes and diagnosis related groups (DRGs). The approach employs Bidirectional Encoder Representations from Transformers (BERT) for text vectorization to enhance disease diagnosis and surgical procedure prediction within DRGs using Light Gradient Boosting Machine (LightGBM), and Random Forest Regression for accurate medical costs prediction. It achieves over 91% accuracy in predicting disease diagnosis and surgical procedures, and a Mean Absolute Error (MAE) of 2281.20 and an R-squared value of 0.8557. These metrics indicate a high level of accuracy and reliability, showcasing the model’s efficacy in predicting medical costs in a healthcare setting. This method improves hospital resource management and costs estimation by integrating semantic information with machine learning algorithms.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"412-418"},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141068931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1109/JRFID.2024.3392152
Songlin Bai;Yunzhe Wang;Zhiyao Luo;Yonglin Tian
Diverse and large-high-quality data are essential to the deep learning algorithms for autonomous driving. However, manual data collection in intricate traffic scenarios is expensive, time-consuming, and hard to meet the requirements of quantity and quality. Though some generative methods have been used for traffic image synthesis and editing to tackle the problem of manual data collection, the impact of object relationships on data diversity is frequently disregarded in these approaches. In this paper, we focus on the occluded pedestrians within complex driving scenes and propose an occupancy-aided augmentation method for occluded humans in autonomous driving denoted as “Drive-CP“, built upon the foundation of parallel vision. Due to the flourishing development of AI Content Generation (AIGC) technologies, it is possible to automate the generation of diverse 2D and 3D assets. Based on AIGC technologies, we can construct our human library automatically, significantly enhancing the diversity of the training data. We experimentally demonstrate that Drive-CP can generate diversified occluded pedestrians in real complex traffic scenes and demonstrate its effectiveness in enriching the training set in object detection tasks.
{"title":"DriveCP: Occupancy-Assisted Scenario Augmentation for Occluded Pedestrian Perception Based on Parallel Vision","authors":"Songlin Bai;Yunzhe Wang;Zhiyao Luo;Yonglin Tian","doi":"10.1109/JRFID.2024.3392152","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3392152","url":null,"abstract":"Diverse and large-high-quality data are essential to the deep learning algorithms for autonomous driving. However, manual data collection in intricate traffic scenarios is expensive, time-consuming, and hard to meet the requirements of quantity and quality. Though some generative methods have been used for traffic image synthesis and editing to tackle the problem of manual data collection, the impact of object relationships on data diversity is frequently disregarded in these approaches. In this paper, we focus on the occluded pedestrians within complex driving scenes and propose an occupancy-aided augmentation method for occluded humans in autonomous driving denoted as “Drive-CP“, built upon the foundation of parallel vision. Due to the flourishing development of AI Content Generation (AIGC) technologies, it is possible to automate the generation of diverse 2D and 3D assets. Based on AIGC technologies, we can construct our human library automatically, significantly enhancing the diversity of the training data. We experimentally demonstrate that Drive-CP can generate diversified occluded pedestrians in real complex traffic scenes and demonstrate its effectiveness in enriching the training set in object detection tasks.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"235-240"},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel heading angle detection and compensation method is presented with the aim of addressing the navigation and localization accuracy challenges that unmanned robots encounter in their daily inspection jobs, thereby significantly raising the bar for smart port building and promoting the development of ports of superior quality. The Extended Kalman Filter (EKF) algorithm and a Global Navigation Satellite System (GNSS) Inertial Navigation System (INS)/Magnetometer combination navigation technology form the basis of this strategy. The suggested deviation detection and compensating method greatly enhances the navigation system’s performance when compared to the conventional EKF algorithm. Furthermore, we improved the navigation system’s ability to adapt to complex surroundings and sudden changes by adding the Particle Swarm Optimization (PSO) algorithm to the process. This allowed us to further optimize the system parameters based on the original innovation. This development is critical to enhancing unmanned robot navigation accuracy at smart ports and providing robust technical support for the growth of port automation and intelligence.
{"title":"Application Research of Parameter Uncertainty Optimization Method in Steering Detection and Correction System","authors":"Jiahao Yang;Ming Xu;Longhua Ma;Fangle Chang;Wenxiang Wu","doi":"10.1109/JRFID.2024.3392444","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3392444","url":null,"abstract":"A novel heading angle detection and compensation method is presented with the aim of addressing the navigation and localization accuracy challenges that unmanned robots encounter in their daily inspection jobs, thereby significantly raising the bar for smart port building and promoting the development of ports of superior quality. The Extended Kalman Filter (EKF) algorithm and a Global Navigation Satellite System (GNSS) Inertial Navigation System (INS)/Magnetometer combination navigation technology form the basis of this strategy. The suggested deviation detection and compensating method greatly enhances the navigation system’s performance when compared to the conventional EKF algorithm. Furthermore, we improved the navigation system’s ability to adapt to complex surroundings and sudden changes by adding the Particle Swarm Optimization (PSO) algorithm to the process. This allowed us to further optimize the system parameters based on the original innovation. This development is critical to enhancing unmanned robot navigation accuracy at smart ports and providing robust technical support for the growth of port automation and intelligence.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"665-670"},"PeriodicalIF":2.3,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Federated learning is a distributed machine learning approach that achieves collaborative training while protecting data privacy. However, in distributed scenarios, the operational data of industrial equipment is dynamic and non-independently identically distributed (non-IID). This situation leads to poor performance of federated learning algorithms in industrial anomaly detection tasks. Personalized federated learning is a viable solution to the non-IID data problem, but it is not effective in responding to dynamic environmental changes. Implementing directed updates to the model, thereby effectively maintaining its stability, is one of the solutions for addressing dynamic challenges. In addition, even though federated learning has the ability to protect data privacy, it still has the risk of privacy leakage due to differential privacy attacks. In this paper, we propose a personalized federated learning based on hypernetwork and credible directed update of models to generate stable personalized models for clients with non-IID data in a dynamic environment. Furthermore, we propose a parameter-varying differential privacy mechanism to mitigate compromised differential attacks. We evaluate the capability of the proposed method to perform the anomaly detection task using real air conditioning datasets from three distinct factories. The results demonstrate that our framework outperforms existing personalized federated learning methods with an average accuracy improvement of 11.32%. Additionally, experimental results demonstrate that the framework can withstand differential attacks while maintaining high accuracy.
{"title":"A Personalized and Differentially Private Federated Learning for Anomaly Detection of Industrial Equipment","authors":"Zhen Zhang;Weishan Zhang;Zhicheng Bao;Yifan Miao;Yuru Liu;Yikang Zhao;Rui Zhang;Wenyin Zhu","doi":"10.1109/JRFID.2024.3390142","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3390142","url":null,"abstract":"Federated learning is a distributed machine learning approach that achieves collaborative training while protecting data privacy. However, in distributed scenarios, the operational data of industrial equipment is dynamic and non-independently identically distributed (non-IID). This situation leads to poor performance of federated learning algorithms in industrial anomaly detection tasks. Personalized federated learning is a viable solution to the non-IID data problem, but it is not effective in responding to dynamic environmental changes. Implementing directed updates to the model, thereby effectively maintaining its stability, is one of the solutions for addressing dynamic challenges. In addition, even though federated learning has the ability to protect data privacy, it still has the risk of privacy leakage due to differential privacy attacks. In this paper, we propose a personalized federated learning based on hypernetwork and credible directed update of models to generate stable personalized models for clients with non-IID data in a dynamic environment. Furthermore, we propose a parameter-varying differential privacy mechanism to mitigate compromised differential attacks. We evaluate the capability of the proposed method to perform the anomaly detection task using real air conditioning datasets from three distinct factories. The results demonstrate that our framework outperforms existing personalized federated learning methods with an average accuracy improvement of 11.32%. Additionally, experimental results demonstrate that the framework can withstand differential attacks while maintaining high accuracy.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"468-475"},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1109/JRFID.2024.3390624
Francesco Lestini;Gaetano Marrocco;Cecilia Occhiuzzi
Modern wireless communication systems are becoming increasingly necessary, emphasizing the need for electromagnetic devices that can flexibly operate under different conditions, e.g., under power constraints or in hostile environments where scattering objects randomly modify coverage areas and communication links. Due to their ability to dynamically change operating frequency, radiation pattern, bandwidth characteristics, and polarization, reconfigurable objects (especially antennas and backscattering surfaces) have received significant attention in this context. Electromagnetic features can be electronically selected by controlling the bias voltage of tunable elements adequately integrated into the layout. Usually, this is done by employing external programmable controllers that need power sources and wired connections, leading to unusable configurations for several scenarios. Thus, exploring alternative electronic tuning mechanisms becomes essential. This paper proposes RFID-Based Reconfigurable Electromagnetic Devices as a wireless, cost-effective, and low-power solution. The system’s operating principle, potential architectures, and applicability in practical scenarios are presented. Theoretical and experimental analysis validate the proposed architecture, whose capabilities are finally demonstrated by prototyping and testing two reconfigurable antenna arrays.
现代无线通信系统变得越来越必要,这强调了对能够在不同条件下灵活运行的电磁设备的需求,例如,在功率受限或散射物体随机改变覆盖区域和通信链路的恶劣环境中。可重构物体(尤其是天线和后向散射表面)能够动态改变工作频率、辐射模式、带宽特性和极化,因此在这方面受到极大关注。通过控制已充分集成到布局中的可调元件的偏置电压,可对电磁特性进行电子选择。通常情况下,这是通过采用外部可编程控制器来实现的,而外部控制器需要电源和有线连接,从而导致在多种情况下无法使用配置。因此,探索其他电子调谐机制变得至关重要。本文提出了基于 RFID 的可重构电磁设备,作为一种无线、经济、低功耗的解决方案。本文介绍了该系统的工作原理、潜在架构以及在实际场景中的适用性。理论和实验分析验证了所提出的架构,并通过两个可重构天线阵列的原型设计和测试,最终证明了该架构的能力。
{"title":"RFID-Based Reconfigurable Electromagnetic Devices","authors":"Francesco Lestini;Gaetano Marrocco;Cecilia Occhiuzzi","doi":"10.1109/JRFID.2024.3390624","DOIUrl":"https://doi.org/10.1109/JRFID.2024.3390624","url":null,"abstract":"Modern wireless communication systems are becoming increasingly necessary, emphasizing the need for electromagnetic devices that can flexibly operate under different conditions, e.g., under power constraints or in hostile environments where scattering objects randomly modify coverage areas and communication links. Due to their ability to dynamically change operating frequency, radiation pattern, bandwidth characteristics, and polarization, reconfigurable objects (especially antennas and backscattering surfaces) have received significant attention in this context. Electromagnetic features can be electronically selected by controlling the bias voltage of tunable elements adequately integrated into the layout. Usually, this is done by employing external programmable controllers that need power sources and wired connections, leading to unusable configurations for several scenarios. Thus, exploring alternative electronic tuning mechanisms becomes essential. This paper proposes RFID-Based Reconfigurable Electromagnetic Devices as a wireless, cost-effective, and low-power solution. The system’s operating principle, potential architectures, and applicability in practical scenarios are presented. Theoretical and experimental analysis validate the proposed architecture, whose capabilities are finally demonstrated by prototyping and testing two reconfigurable antenna arrays.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"226-234"},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a 2.45/5.8 GHz circularly polarized RFID antenna backed with a dual-band artificial magnetic conductor (AMC) is presented for tagged-object detection in Internet of things (IoT) networks. RFID systems require a long-range reader to maintain energy-efficient communication with the tagged devices. An efficient reader antenna is presented to increase the interrogation distance of the reader, and decreasing the uncertainty of tagged-object detection. The proposed RFID antenna consists of two dipole pairs, are printed on both sides of the substrate to obtain 2.45 GHz and 5.8 GHz bands, connected by feed delay lines in a cross-dipole arrangement. To increase the range of the reader, the cross-dipole antenna is supported by a $5times5$