首页 > 最新文献

Plasma Chemistry and Plasma Processing最新文献

英文 中文
Effect of Argon in Nitrogen Gliding Arc Plasma for Ammonium Ions Enrichment in Water 氮滑弧等离子体中的氩对水中铵离子富集的影响
IF 3.6 3区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-28 DOI: 10.1007/s11090-024-10473-9
Indumathy Balakrishnan, Ananthanarasimhan Jayanarasimhan, Lakshminarayana Rao, Suraj Kumar Sinha, Yugeswaran Subramaniam

This work investigates the effect of Ar addition on N2 gliding arc plasma to enhance ammonium ions concentration in water. The concentration of ammonium ion (left({text{N}text{H}}_{4}^{+}right)) increased by 50.2% when Ar gas was added upto 40% by volume to the N2 gliding arc plasma, thus indicating the significant contribution of Ar in ({text{N}text{H}}_{4}^{+}) synthesis. Adding 20% Ar in N2 resulted in a maximum ({ text{N}text{H}}_{4}^{+}) concentration of 16.5 ppm and a production rate of 1.31 mg hr-1. While adding 40% Ar into N2 plasma, the highest energy efficiency of 0.036 g-({text{N}text{H}}_{4}^{+})KWh−1was obtained with a specific energy input of 742.5 J/L. The mechanisms of ({ text{N}text{H}}_{4}^{+}) enrichment with Ar addition were investigated by studying the electrical properties, vibrational, rotational and electron temperature of the gliding arc plasma with respect to the addition of Ar concentration in N2 plasma. Results show that the addition of Ar raises the vibrational and electron temperatures, and decreases the rotational temperature of the gliding arc plasma. (As per the reviewer-2 suggestion, this line has been removed from the abstract). Particularly, the presence of 26.5% Ar by volume in N2 plasma results in a significant ion current, which generates high ionization of ({text{N}}_{2}^{+}).

这项工作研究了在 N2 滑翔弧等离子体中添加 Ar 以提高水中铵离子浓度的效果。当在 N2 滑翔电弧等离子体中加入高达 40% 体积的 Ar 气体时,铵离子的浓度增加了 50.2%,这表明了 Ar 在合成中的重要作用。在 N2 中添加 20% 的 Ar 会导致最大 ({{N}text{H}}_{4}^{+}) 浓度达到 16.5 ppm,生产率达到 1.31 mg hr-1。在 N2 等离子体中加入 40% 的 Ar 时,能量效率最高,为 0.036 g-({text{N}text{H}}_{4}^{+})KWh-1,比能量输入为 742.5 J/L。通过研究滑弧等离子体的电学特性、振动、旋转和电子温度与 N2 等离子体中添加 Ar 浓度的关系,研究了添加 Ar 后 ({text{N}text{H}}_{4}^{+}) 富集的机理。结果表明,添加 Ar 会提高滑行弧等离子体的振动温度和电子温度,降低旋转温度。(根据审稿人-2 的建议,这一行已从摘要中删除)。特别是,在 N2 等离子体中存在体积分数为 26.5% 的 Ar 时,会产生很大的离子电流,从而使 ({text{N}}_{2}^{+})高度电离。
{"title":"Effect of Argon in Nitrogen Gliding Arc Plasma for Ammonium Ions Enrichment in Water","authors":"Indumathy Balakrishnan, Ananthanarasimhan Jayanarasimhan, Lakshminarayana Rao, Suraj Kumar Sinha, Yugeswaran Subramaniam","doi":"10.1007/s11090-024-10473-9","DOIUrl":"https://doi.org/10.1007/s11090-024-10473-9","url":null,"abstract":"<p>This work investigates the effect of Ar addition on N<sub>2</sub> gliding arc plasma to enhance ammonium ions concentration in water. The concentration of ammonium ion <span>(left({text{N}text{H}}_{4}^{+}right))</span> increased by 50.2% when Ar gas was added upto 40% by volume to the N<sub>2</sub> gliding arc plasma, thus indicating the significant contribution of Ar in <span>({text{N}text{H}}_{4}^{+})</span> synthesis. Adding 20% Ar in N<sub>2</sub> resulted in a maximum <span>({ text{N}text{H}}_{4}^{+})</span> concentration of 16.5 ppm and a production rate of 1.31 mg hr<sup>-1</sup>. While adding 40% Ar into N<sub>2</sub> plasma, the highest energy efficiency of 0.036 g-<span>({text{N}text{H}}_{4}^{+})</span>KWh<sup>−1</sup>was obtained with a specific energy input of 742.5 J/L. The mechanisms of <span>({ text{N}text{H}}_{4}^{+})</span> enrichment with Ar addition were investigated by studying the electrical properties, vibrational, rotational and electron temperature of the gliding arc plasma with respect to the addition of Ar concentration in N<sub>2</sub> plasma. Results show that the addition of Ar raises the vibrational and electron temperatures, and decreases the rotational temperature of the gliding arc plasma. (As per the reviewer-2 suggestion, this line has been removed from the abstract). Particularly, the presence of 26.5% Ar by volume in N<sub>2</sub> plasma results in a significant ion current, which generates high ionization of <span>({text{N}}_{2}^{+})</span>.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metastable Helium Atom Creation Dynamics in High-Voltage Pulsed Discharge with Transverse Magnetic Field Effects 具有横向磁场效应的高压脉冲放电中氦原子的可迁移生成动力学
IF 3.6 3区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-28 DOI: 10.1007/s11090-024-10478-4
K. M. Rabadanov, N. A. Ashurbekov, K. O. Iminov, G. Sh. Shakhsinov, M. Z. Zakaryaeva, A. A. Murtazaeva

In this work, we investigate the effect of an external transverse weak magnetic field on the creation of metastable helium atoms and excited helium molecules in a high-voltage pulsed discharge in helium at medium pressure. A two-dimensional fluid model is used to describe a high-voltage pulsed discharge in helium in the external transverse weak magnetic field. The dynamics of discharge development in the high-voltage pulsed discharge in helium at a pressure of 30 Torr in the presence and absence of the magnetic field is studied. The effect of the external magnetic field on the behavior of the density of charged particles, metastable helium atoms, and excited helium molecules in the high-voltage pulsed helium discharge has been investigated. It is shown that in the discharge region, the density of metastable atoms decreases when a transverse magnetic field is applied, which is a consequence of an increase in the frequency of stepwise ionization.

在这项工作中,我们研究了外部横向弱磁场对中压氦气高压脉冲放电中析出的氦原子和激发的氦分子的影响。采用二维流体模型来描述外部横向弱磁场中氦气高压脉冲放电。研究了压力为 30 托的氦中高压脉冲放电在磁场存在和不存在的情况下的放电发展动力学。研究了外部磁场对高压脉冲氦放电中带电粒子、氦原子和受激氦分子密度行为的影响。研究表明,在放电区,当施加横向磁场时,可移动原子的密度会降低,这是阶跃电离频率增加的结果。
{"title":"Metastable Helium Atom Creation Dynamics in High-Voltage Pulsed Discharge with Transverse Magnetic Field Effects","authors":"K. M. Rabadanov, N. A. Ashurbekov, K. O. Iminov, G. Sh. Shakhsinov, M. Z. Zakaryaeva, A. A. Murtazaeva","doi":"10.1007/s11090-024-10478-4","DOIUrl":"https://doi.org/10.1007/s11090-024-10478-4","url":null,"abstract":"<p>In this work, we investigate the effect of an external transverse weak magnetic field on the creation of metastable helium atoms and excited helium molecules in a high-voltage pulsed discharge in helium at medium pressure. A two-dimensional fluid model is used to describe a high-voltage pulsed discharge in helium in the external transverse weak magnetic field. The dynamics of discharge development in the high-voltage pulsed discharge in helium at a pressure of 30 Torr in the presence and absence of the magnetic field is studied. The effect of the external magnetic field on the behavior of the density of charged particles, metastable helium atoms, and excited helium molecules in the high-voltage pulsed helium discharge has been investigated. It is shown that in the discharge region, the density of metastable atoms decreases when a transverse magnetic field is applied, which is a consequence of an increase in the frequency of stepwise ionization.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Gas Type on Reactive Species Formation, Antimicrobial Activity, and Cytotoxicity of Plasma-Activated Water Produced in a Coaxial DBD Reactor 气体类型对同轴 DBD 反应器中产生的等离子活化水的反应物形成、抗菌活性和细胞毒性的影响
IF 3.6 3区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-24 DOI: 10.1007/s11090-024-10475-7
F. S. Miranda, V. K. F. Tavares, D. M. Silva, N. V. M. Milhan, N. F. Azevedo Neto, M. P. Gomes, R. S. Pessoa, C. Y. Koga-Ito
{"title":"Influence of Gas Type on Reactive Species Formation, Antimicrobial Activity, and Cytotoxicity of Plasma-Activated Water Produced in a Coaxial DBD Reactor","authors":"F. S. Miranda, V. K. F. Tavares, D. M. Silva, N. V. M. Milhan, N. F. Azevedo Neto, M. P. Gomes, R. S. Pessoa, C. Y. Koga-Ito","doi":"10.1007/s11090-024-10475-7","DOIUrl":"https://doi.org/10.1007/s11090-024-10475-7","url":null,"abstract":"","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141100802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Transient Spark Discharge and Plasma Activated Water Treatments against Fusarium graminearum Infected Wheat Grains under Laboratory Conditions 实验室条件下瞬态火花放电和等离子体活化水处理对禾谷镰刀菌感染小麦谷粒的影响
IF 3.6 3区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-17 DOI: 10.1007/s11090-024-10479-3
Pratik Doshi, Vladimír Scholtz, Alexandra Oplíštilová, Josef Khun, Myron Klenivskyi, Jaroslav Julák, Michal Šerý, Božena Šerá
{"title":"Effect of Transient Spark Discharge and Plasma Activated Water Treatments against Fusarium graminearum Infected Wheat Grains under Laboratory Conditions","authors":"Pratik Doshi, Vladimír Scholtz, Alexandra Oplíštilová, Josef Khun, Myron Klenivskyi, Jaroslav Julák, Michal Šerý, Božena Šerá","doi":"10.1007/s11090-024-10479-3","DOIUrl":"https://doi.org/10.1007/s11090-024-10479-3","url":null,"abstract":"","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140965715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Synergy Between Plasma and Composite Industry Wastes in Catalyzing HC Removal in Diesel Exhaust 等离子体与复合材料工业废料在催化去除柴油机废气中 HC 方面的协同作用研究
IF 3.6 3区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-16 DOI: 10.1007/s11090-024-10477-5
Sakshi Vijay, B. S. Rajanikanth
{"title":"Study on Synergy Between Plasma and Composite Industry Wastes in Catalyzing HC Removal in Diesel Exhaust","authors":"Sakshi Vijay, B. S. Rajanikanth","doi":"10.1007/s11090-024-10477-5","DOIUrl":"https://doi.org/10.1007/s11090-024-10477-5","url":null,"abstract":"","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dielectric-Boosted Gliding Arc Discharge for N2 Fixation into NOx 用于将 N2 固定为氮氧化物的介质增压滑动电弧放电
IF 3.6 3区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-13 DOI: 10.1007/s11090-024-10474-8
Xiangyi Meng, Na Lu, Kefeng Shang, Nan Jiang

Plasma nitrogen fixation technology is of great significance in solving the problem of nitrogen fertilizer resource shortage, saving energy and reducing carbon emission, promoting sustainable development of agriculture and promoting resource recycling. To enhance the efficiency and treatment capacity of the two-dimensional, blade-type gliding arc nitrogen fixation reaction, a dielectric-boosted gliding arc discharge reactor with a 50-mm-diameter quartz dielectric (DBGADΦ50) was used to conduct N2 fixation into NOx. The impact of reactor parameters and gas parameters on the nitrogen fixation reaction was systematically investigated in this study. The findings revealed that the DBGADΦ50 significantly improved the nitrogen fixation effect. At a specific input energy of 2.7 kJ/L, the concentration of NOx generated by the dielectric-boosted gliding arc air discharge was 1.12 times that of the conventional gliding arc discharge (GAD). By utilizing the DBGADΦ50 reactor, the energy efficiency of 6.83 g/kW h was achieved at a gas flow rate of 5.6 L/min. Appropriately increasing O2 concentration favors the production of NOx. In the DBGADΦ50, the NOx concentration was 1.33 times higher than that in the air atmosphere when the added O2 volume fraction reached 30%. Performance can be further enhanced by adding TiO2 catalyst particles to the surface of the quartz dielectric to form a catalyst layer approximately 5 mm thick. At an O2 concentration of 30%, the DBGADΦ50 reactor loaded with TiO2 increased NOx concentration by 26% and energy efficiency by 49%, respectively, resulting in an efficiency of 14.9 g/kW h compared to the case without catalyst.

等离子体固氮技术对于解决氮肥资源短缺问题、节能减排、促进农业可持续发展和资源循环利用具有重要意义。为提高二维叶片式滑弧固氮反应的效率和处理能力,采用直径为 50 毫米的石英介质(DBGADΦ50)的介质增压滑弧放电反应器进行 N2 固氮为 NOx 的反应。本研究系统地考察了反应器参数和气体参数对固氮反应的影响。研究结果表明,DBGADΦ50 能显著提高固氮效果。在比输入能量为 2.7 kJ/L 时,电介质增压滑弧气放电产生的氮氧化物浓度是传统滑弧气放电(GAD)的 1.12 倍。利用 DBGADΦ50 反应器,在气体流量为 5.6 L/min 的情况下,能效达到 6.83 g/kW h。适当增加氧气浓度有利于氮氧化物的生成。在 DBGADΦ50 中,当添加的氧气体积分数达到 30% 时,氮氧化物浓度是空气中的 1.33 倍。在石英电介质表面添加 TiO2 催化剂颗粒,形成约 5 毫米厚的催化剂层,可进一步提高性能。在氧气浓度为 30% 的情况下,与不添加催化剂的情况相比,添加了 TiO2 的 DBGADΦ50 反应器的氮氧化物浓度提高了 26%,能效提高了 49%,效率达到 14.9 g/kW h。
{"title":"Dielectric-Boosted Gliding Arc Discharge for N2 Fixation into NOx","authors":"Xiangyi Meng, Na Lu, Kefeng Shang, Nan Jiang","doi":"10.1007/s11090-024-10474-8","DOIUrl":"https://doi.org/10.1007/s11090-024-10474-8","url":null,"abstract":"<p>Plasma nitrogen fixation technology is of great significance in solving the problem of nitrogen fertilizer resource shortage, saving energy and reducing carbon emission, promoting sustainable development of agriculture and promoting resource recycling. To enhance the efficiency and treatment capacity of the two-dimensional, blade-type gliding arc nitrogen fixation reaction, a dielectric-boosted gliding arc discharge reactor with a 50-mm-diameter quartz dielectric (DBGAD<sub><i>Φ</i>50</sub>) was used to conduct N<sub>2</sub> fixation into NO<sub><i>x</i></sub>. The impact of reactor parameters and gas parameters on the nitrogen fixation reaction was systematically investigated in this study. The findings revealed that the DBGAD<sub><i>Φ</i>50</sub> significantly improved the nitrogen fixation effect. At a specific input energy of 2.7 kJ/L, the concentration of NO<sub><i>x</i></sub> generated by the dielectric-boosted gliding arc air discharge was 1.12 times that of the conventional gliding arc discharge (GAD). By utilizing the DBGAD<sub><i>Φ</i>50</sub> reactor, the energy efficiency of 6.83 g/kW h was achieved at a gas flow rate of 5.6 L/min. Appropriately increasing O<sub>2</sub> concentration favors the production of NO<sub><i>x</i></sub>. In the DBGAD<sub><i>Φ</i>50</sub>, the NO<sub><i>x</i></sub> concentration was 1.33 times higher than that in the air atmosphere when the added O<sub>2</sub> volume fraction reached 30%. Performance can be further enhanced by adding TiO<sub>2</sub> catalyst particles to the surface of the quartz dielectric to form a catalyst layer approximately 5 mm thick. At an O<sub>2</sub> concentration of 30%, the DBGAD<sub><i>Φ</i>50</sub> reactor loaded with TiO<sub>2</sub> increased NO<sub><i>x</i></sub> concentration by 26% and energy efficiency by 49%, respectively, resulting in an efficiency of 14.9 g/kW h compared to the case without catalyst.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of Alkaline Plasma Activated Tap Water Using Different Plasma Forming Gas at Sub-Atmospheric Pressure 在亚大气压下使用不同的等离子体形成气体生产碱性等离子体活化自来水
IF 3.6 3区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-10 DOI: 10.1007/s11090-024-10464-w
Vikas Rathore, Karaket Watanasit, Suttirak Kaewpawong, Dhammanoon Srinoumm, Arlee Tamman, Dheerawan Boonyawan, Mudtorlep Nisoa

The present study demonstrates the successful production of alkaline plasma-activated tap water (PATW), effectively addressing the challenge of acidity in traditional PATW for a range of applications. Through precise control of plasma-forming gases (oxygen, air, argon) and process parameters, particularly by producing PATW under sub-atmospheric pressure conditions, it becomes possible to shift the pH of acidic PATW towards the alkaline range. This transformation enhances its suitability for applications like agriculture, aquaculture, sterilization, wound healing, disinfection, and food preservation, etc.

The investigation encompassed the characterization of plasma and the identification of various plasma species/radicals. The impact of different plasma-forming gases on the pH of PATW and the concentration of reactive species in PATW was thoroughly analyzed. Plasma generated using oxygen and argon resulted in the production of reducing or alkaline PATW, while the use of air and air-argon mixtures led to an acidic or oxidizing nature.

The study also discussed the stability of nitrate ions, nitrite ions, and hydrogen peroxide in PATW, shedding light on their behavior over varying plasma treatment times and plasma-forming gas. Finally, the investigation explored the effects of gas flow rates, gas pressures, water volume, and plasma discharge powers on the concentration of H2O2 in PATW, providing valuable insights into optimizing the production process.

本研究展示了碱性等离子活化自来水(PATW)的成功生产,有效地解决了传统等离子活化自来水在一系列应用中的酸性难题。通过精确控制等离子体形成气体(氧气、空气、氩气)和工艺参数,特别是在亚大气压条件下生产 PATW,可以将酸性 PATW 的 pH 值转变为碱性范围。这种转变提高了其在农业、水产养殖、杀菌、伤口愈合、消毒和食品保鲜等应用领域的适用性。研究还深入分析了不同等离子体形成气体对 PATW 酸碱度和 PATW 中活性物质浓度的影响。研究还讨论了硝酸根离子、亚硝酸根离子和过氧化氢在 PATW 中的稳定性,揭示了它们在不同的等离子处理时间和等离子形成气体中的行为。最后,研究还探讨了气体流速、气体压力、水量和等离子体放电功率对 PATW 中 H2O2 浓度的影响,为优化生产工艺提供了宝贵的见解。
{"title":"Production of Alkaline Plasma Activated Tap Water Using Different Plasma Forming Gas at Sub-Atmospheric Pressure","authors":"Vikas Rathore, Karaket Watanasit, Suttirak Kaewpawong, Dhammanoon Srinoumm, Arlee Tamman, Dheerawan Boonyawan, Mudtorlep Nisoa","doi":"10.1007/s11090-024-10464-w","DOIUrl":"https://doi.org/10.1007/s11090-024-10464-w","url":null,"abstract":"<p>The present study demonstrates the successful production of alkaline plasma-activated tap water (PATW), effectively addressing the challenge of acidity in traditional PATW for a range of applications. Through precise control of plasma-forming gases (oxygen, air, argon) and process parameters, particularly by producing PATW under sub-atmospheric pressure conditions, it becomes possible to shift the pH of acidic PATW towards the alkaline range. This transformation enhances its suitability for applications like agriculture, aquaculture, sterilization, wound healing, disinfection, and food preservation, etc.</p><p>The investigation encompassed the characterization of plasma and the identification of various plasma species/radicals. The impact of different plasma-forming gases on the pH of PATW and the concentration of reactive species in PATW was thoroughly analyzed. Plasma generated using oxygen and argon resulted in the production of reducing or alkaline PATW, while the use of air and air-argon mixtures led to an acidic or oxidizing nature.</p><p>The study also discussed the stability of nitrate ions, nitrite ions, and hydrogen peroxide in PATW, shedding light on their behavior over varying plasma treatment times and plasma-forming gas. Finally, the investigation explored the effects of gas flow rates, gas pressures, water volume, and plasma discharge powers on the concentration of H<sub>2</sub>O<sub>2</sub> in PATW, providing valuable insights into optimizing the production process.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Considerations in Power Measurements for the Precise Estimation of Energy Costs in Plasma NOx Synthesis 等离子氮氧化物合成中精确估算能源成本的功率测量关键考虑因素
IF 3.6 3区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-09 DOI: 10.1007/s11090-024-10472-w
Ayman A. Abdelaziz, Yoshiyuki Teramoto, Dae-Yeong Kim, Tomohiro Nozaki, Hyun-Ha Kim

The great advantage of plasma technology in harnessing abundant clean energy for electrifying and decentralizing the chemical industry holds the promise of attaining carbon neutrality. Therefore, recent research efforts have been dedicated to reducing the energy costs of plasma processes to facilitate the commercialization of this technology. However, it has been noted an inconsistency in reporting energy costs across the literature resulted from inaccurate estimation of power consumption within the system, leading to the misevaluation of the process, its underlying mechanism, and the significance of critical factors. This study comprehensively addresses these challenges by discussing and refining methods for estimating power consumption in a plasma system. Insights are drawn from our ongoing research in plasma NOx synthesis, specifically a thorough analysis of the discharge dynamics in a recently developed reactor “high-frequency spark discharge” using a high-speed camera, ICCD camera, and high-performance oscilloscope at various pulse widths of the applied voltage. The investigation revealed the importance of accounting for the post-spark period in the voltage cycle during power estimation, as it demonstrates an influence on NOx synthesis. Furthermore, the study highlighted and addressed critical errors in power measurement and energy cost estimation in the literature. It is found that a significant error, exceeding ± 70%, arises from overlooking signals delay in the setup and improper adjustment of oscilloscope functions, particularly channel impedance, data averaging, bandwidth, and sampling rate. This paper serves as a valuable guide towards establishing standardized measurements toward the precise estimation of energy costs in plasma processes.

等离子体技术在利用丰富的清洁能源实现化工行业电气化和分散化方面具有巨大优势,有望实现碳中和。因此,最近的研究工作致力于降低等离子工艺的能源成本,以促进该技术的商业化。然而,人们注意到,由于对系统内功耗的估算不准确,导致文献中对能源成本的报告不一致,从而对工艺、其基本机制和关键因素的重要性造成错误评估。本研究通过讨论和改进等离子体系统功耗的估算方法,全面应对了这些挑战。本研究从我们正在进行的等离子体氮氧化物合成研究中获得启发,特别是使用高速摄像机、ICCD 摄像机和高性能示波器,在不同的施加电压脉冲宽度下,对最近开发的 "高频火花放电 "反应器中的放电动态进行了全面分析。调查显示,在功率估算过程中,考虑电压周期中的后火花期非常重要,因为它对氮氧化物的合成有影响。此外,研究还强调并解决了文献中功率测量和能源成本估算的关键误差。研究发现,由于在设置过程中忽略了信号延迟,以及对示波器功能(尤其是通道阻抗、数据平均化、带宽和采样率)的不当调整,造成了超过 ± 70% 的重大误差。本文对建立标准化测量方法以精确估算等离子过程中的能源成本具有重要指导意义。
{"title":"Critical Considerations in Power Measurements for the Precise Estimation of Energy Costs in Plasma NOx Synthesis","authors":"Ayman A. Abdelaziz, Yoshiyuki Teramoto, Dae-Yeong Kim, Tomohiro Nozaki, Hyun-Ha Kim","doi":"10.1007/s11090-024-10472-w","DOIUrl":"https://doi.org/10.1007/s11090-024-10472-w","url":null,"abstract":"<p>The great advantage of plasma technology in harnessing abundant clean energy for electrifying and decentralizing the chemical industry holds the promise of attaining carbon neutrality. Therefore, recent research efforts have been dedicated to reducing the energy costs of plasma processes to facilitate the commercialization of this technology. However, it has been noted an inconsistency in reporting energy costs across the literature resulted from inaccurate estimation of power consumption within the system, leading to the misevaluation of the process, its underlying mechanism, and the significance of critical factors. This study comprehensively addresses these challenges by discussing and refining methods for estimating power consumption in a plasma system. Insights are drawn from our ongoing research in plasma NO<sub><i>x</i></sub> synthesis, specifically a thorough analysis of the discharge dynamics in a recently developed reactor “high-frequency spark discharge” using a high-speed camera, ICCD camera, and high-performance oscilloscope at various pulse widths of the applied voltage. The investigation revealed the importance of accounting for the post-spark period in the voltage cycle during power estimation, as it demonstrates an influence on NO<sub><i>x</i></sub> synthesis. Furthermore, the study highlighted and addressed critical errors in power measurement and energy cost estimation in the literature. It is found that a significant error, exceeding ± 70%, arises from overlooking signals delay in the setup and improper adjustment of oscilloscope functions, particularly channel impedance, data averaging, bandwidth, and sampling rate. This paper serves as a valuable guide towards establishing standardized measurements toward the precise estimation of energy costs in plasma processes.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse Texturing Characteristics Through Metal-Assisted Plasma Etching with Silver Nanowires 利用银纳米线进行金属辅助等离子体蚀刻实现多样化纹理特征
IF 3.6 3区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-04-23 DOI: 10.1007/s11090-024-10469-5
Dong-Geon Lee, Hyun-Seung Ryu, Mi-Jin Jin, D. Um, Chang-Il Kim
{"title":"Diverse Texturing Characteristics Through Metal-Assisted Plasma Etching with Silver Nanowires","authors":"Dong-Geon Lee, Hyun-Seung Ryu, Mi-Jin Jin, D. Um, Chang-Il Kim","doi":"10.1007/s11090-024-10469-5","DOIUrl":"https://doi.org/10.1007/s11090-024-10469-5","url":null,"abstract":"","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-Stage Method for Removing Dyes under the Action of Underwater Plasma and Ferrites of Cobalt, Nickel, and Titanium 在水下等离子体和钴、镍和钛铁氧体作用下去除染料的一步法
IF 3.6 3区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-04-23 DOI: 10.1007/s11090-024-10471-x
A. Khlyustova, N. Sirotkin
{"title":"One-Stage Method for Removing Dyes under the Action of Underwater Plasma and Ferrites of Cobalt, Nickel, and Titanium","authors":"A. Khlyustova, N. Sirotkin","doi":"10.1007/s11090-024-10471-x","DOIUrl":"https://doi.org/10.1007/s11090-024-10471-x","url":null,"abstract":"","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140671575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plasma Chemistry and Plasma Processing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1