Pub Date : 2025-04-04DOI: 10.1007/s11090-025-10561-4
Anton Manakhov, Subhash Ayirala, Nikolay Sirotkin, Anna Khlyustova
The intensive operations of enterprises across various sectors, such as textiles, chemicals, and electronics, generate significant amounts of contaminated water discharges, commonly referred to as industrial wastewater. The application of Advanced Oxidative Technologies, including ozonation, UV irradiation, Fenton processes, and plasma chemistry, is becoming increasingly prevalent for purification purposes. Among these methods, plasma chemistry is regarded as the most promising due to its integration of physical and chemical effects. The combination of plasma with liquids activates the liquid and generates chemically reactive species (atoms, radicals, ions, etc.), whose interactions facilitate the degradation of organic compounds, the binding and precipitation of inorganic ions, and the synthesis of new structures. This study provides a concise review of the use of plasma in contact with liquids for the removal of organic and inorganic components from wastewater. The development of oxide structures during plasma combustion positively influences the removal of impurities.
{"title":"Solution Plasma as A Tool for the Synthesis of Nanostructures and Purification from Contaminants. A Brief Review","authors":"Anton Manakhov, Subhash Ayirala, Nikolay Sirotkin, Anna Khlyustova","doi":"10.1007/s11090-025-10561-4","DOIUrl":"10.1007/s11090-025-10561-4","url":null,"abstract":"<div><p>The intensive operations of enterprises across various sectors, such as textiles, chemicals, and electronics, generate significant amounts of contaminated water discharges, commonly referred to as industrial wastewater. The application of Advanced Oxidative Technologies, including ozonation, UV irradiation, Fenton processes, and plasma chemistry, is becoming increasingly prevalent for purification purposes. Among these methods, plasma chemistry is regarded as the most promising due to its integration of physical and chemical effects. The combination of plasma with liquids activates the liquid and generates chemically reactive species (atoms, radicals, ions, etc.), whose interactions facilitate the degradation of organic compounds, the binding and precipitation of inorganic ions, and the synthesis of new structures. This study provides a concise review of the use of plasma in contact with liquids for the removal of organic and inorganic components from wastewater. The development of oxide structures during plasma combustion positively influences the removal of impurities.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 4","pages":"1293 - 1312"},"PeriodicalIF":2.5,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145161660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study a formation process of single-layer anti-reflection coatings using porous silicon oxide (SiOx) films formed in atmospheric-pressure (AP), very high-frequency (VHF) plasma. A two-step process is proposed for forming porous SiOx films: deposition of carbon and hydrogen-containing silicon oxide (SiOCH) layers on a substrate on which polystyrene nanospheres are pre-arranged in hexamethyldisiloxane and hydrogen-fed AP-VHF plasma and subsequent removal of the polystyrene nanospheres/transformation of the SiOCH layer into inorganic SiOx one by post-oxidation in oxygen-fed AP-VHF plasma. Transmission electron microscopy and energy dispersive X-ray analyses have confirmed that the polystyrene nanospheres underlying the SiOCH layer are effectively removed by the post-oxidation and that air is introduced into the place where the polystyrene nanospheres are present, which are supported by the optical reflectance measurements. The reaction mechanism during the post-oxidation process is discussed, based on the Fourier transform infrared adsorption spectroscopy measurements.
{"title":"Formation of Porous Silicon Oxides for Single-Layer Anti-reflection Coatings on Transparent Materials Using Atmospheric-Pressure Very High-Frequency Plasma","authors":"Leapheng Uon, Naoto Mizusawa, Reo Yamauchi, Hiromasa Ohmi, Hiroaki Kakiuchi","doi":"10.1007/s11090-025-10559-y","DOIUrl":"10.1007/s11090-025-10559-y","url":null,"abstract":"<div><p>We study a formation process of single-layer anti-reflection coatings using porous silicon oxide (SiO<sub><i>x</i></sub>) films formed in atmospheric-pressure (AP), very high-frequency (VHF) plasma. A two-step process is proposed for forming porous SiO<sub><i>x</i></sub> films: deposition of carbon and hydrogen-containing silicon oxide (SiOCH) layers on a substrate on which polystyrene nanospheres are pre-arranged in hexamethyldisiloxane and hydrogen-fed AP-VHF plasma and subsequent removal of the polystyrene nanospheres/transformation of the SiOCH layer into inorganic SiO<sub><i>x</i></sub> one by post-oxidation in oxygen-fed AP-VHF plasma. Transmission electron microscopy and energy dispersive X-ray analyses have confirmed that the polystyrene nanospheres underlying the SiOCH layer are effectively removed by the post-oxidation and that air is introduced into the place where the polystyrene nanospheres are present, which are supported by the optical reflectance measurements. The reaction mechanism during the post-oxidation process is discussed, based on the Fourier transform infrared adsorption spectroscopy measurements.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 4","pages":"1247 - 1260"},"PeriodicalIF":2.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145171098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-22DOI: 10.1007/s11090-025-10556-1
Germain Dionmbete, Jean-Baptiste Tarkwa, Franck William Tatchemo Boyom, Serge Nzali, Elie Acayanka, Georges Youbi Kamgang
The conversion of atmospheric nitrogen into nitrogen fertilizer has gained much attention owing to the increasing demand for food given the growth of the world’s population. The gliding arc plasma exhibited great potential in this area and constitutes a green alternative to the conventional Haber–Bosch process of nitrogen fixation by mitigating carbon footprints. The moist air gliding arc plasma treatment has been reported to be effective for the production of nitrogen species for agricultural applications. However, the amount of nitrogen species in the treated water rapidly reached a maximum value within a short time and then no longer increased. Thus, this work proposed an innovative approach to allow nitrate production to continually increase by incorporating a natural harmless dolomite mineral. Interestingly, the results demonstrated a significant effect of dolomite on increasing the nitrate concentration from 115.76 ± 3.15 to 263.19 ± 4.31 mg/L. The effects of operating parameters such as the nature of the feeding gas, the flow rate, the dolomite dosage, and the temperature were investigated. The optimal conditions were established as follows: flow rate, 800 L/h; dolomite dose, 2 g/L; temperature, 45 °C; and moist air gas. Under these conditions, the nitrite and nitrate concentrations reached 16.09 ± 0.50 mg/L and 294.73 ± 5.14 mg/L, respectively, within 60 min of aging. The mechanism of nitrate production was investigated, revealing that the plasma-generated acid species catalyzed dolomite dissolution, releasing Ca2+ and Mg2+ ions. In turn, these species react simultaneously with the produced nitrate ions to form double salts of Ca(NO3)2 and Mg(NO3)2, which serve as reservoirs to promote their accumulation. This study demonstrated substantial nitrate production improvement in distilled water via the use of moist air gliding arc plasma and offered a promising green alternative for nitrogen-based fertilizer production.
{"title":"Boosting Nitrate Production in Plasma-Activated Water by Incorporating Dolomite Minerals for Potential Application as a Nitrogen Fertilizer","authors":"Germain Dionmbete, Jean-Baptiste Tarkwa, Franck William Tatchemo Boyom, Serge Nzali, Elie Acayanka, Georges Youbi Kamgang","doi":"10.1007/s11090-025-10556-1","DOIUrl":"10.1007/s11090-025-10556-1","url":null,"abstract":"<div><p>The conversion of atmospheric nitrogen into nitrogen fertilizer has gained much attention owing to the increasing demand for food given the growth of the world’s population. The gliding arc plasma exhibited great potential in this area and constitutes a green alternative to the conventional Haber–Bosch process of nitrogen fixation by mitigating carbon footprints. The moist air gliding arc plasma treatment has been reported to be effective for the production of nitrogen species for agricultural applications. However, the amount of nitrogen species in the treated water rapidly reached a maximum value within a short time and then no longer increased. Thus, this work proposed an innovative approach to allow nitrate production to continually increase by incorporating a natural harmless dolomite mineral. Interestingly, the results demonstrated a significant effect of dolomite on increasing the nitrate concentration from 115.76 ± 3.15 to 263.19 ± 4.31 mg/L. The effects of operating parameters such as the nature of the feeding gas, the flow rate, the dolomite dosage, and the temperature were investigated. The optimal conditions were established as follows: flow rate, 800 L/h; dolomite dose, 2 g/L; temperature, 45 °C; and moist air gas. Under these conditions, the nitrite and nitrate concentrations reached 16.09 ± 0.50 mg/L and 294.73 ± 5.14 mg/L, respectively, within 60 min of aging. The mechanism of nitrate production was investigated, revealing that the plasma-generated acid species catalyzed dolomite dissolution, releasing Ca<sup>2+</sup> and Mg<sup>2+</sup> ions. In turn, these species react simultaneously with the produced nitrate ions to form double salts of Ca(NO<sub>3</sub>)<sub>2</sub> and Mg(NO<sub>3</sub>)<sub>2</sub>, which serve as reservoirs to promote their accumulation. This study demonstrated substantial nitrate production improvement in distilled water via the use of moist air gliding arc plasma and offered a promising green alternative for nitrogen-based fertilizer production.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"707 - 723"},"PeriodicalIF":2.6,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1007/s11090-025-10554-3
I. V. Krivtsun, A. I. Momot, D. V. Antoniv, Binhao Qin
Numerical modeling of atmospheric pressure current-carrying argon plasma containing a single spherical metal particle was performed. The plasma is described in the hydrodynamic approach with account for its thermal and ionization non-equilibrium near the particle. Spatial distributions of electric current, electric potential, and electron flux around a single particle were calculated. The electric current flowing through the particle in the plasma was determined and compared with the model of the highly conducting particle in the uniform conducting media. The surface distribution and total heat flux density from plasma to the particle were studied. The range 10−5–10−4 m of particle radius and the range (0.5–2)×107 A/m2 of current density in unperturbed plasma, corresponding to the conditions of plasma transferred arc surfacing and plasma powder spheroidization, were considered. The electron temperature was assumed to be constant.
{"title":"Metal Particle in Atmospheric Pressure Current-Carrying Argon Plasma: Numerical Modeling","authors":"I. V. Krivtsun, A. I. Momot, D. V. Antoniv, Binhao Qin","doi":"10.1007/s11090-025-10554-3","DOIUrl":"10.1007/s11090-025-10554-3","url":null,"abstract":"<div><p>Numerical modeling of atmospheric pressure current-carrying argon plasma containing a single spherical metal particle was performed. The plasma is described in the hydrodynamic approach with account for its thermal and ionization non-equilibrium near the particle. Spatial distributions of electric current, electric potential, and electron flux around a single particle were calculated. The electric current flowing through the particle in the plasma was determined and compared with the model of the highly conducting particle in the uniform conducting media. The surface distribution and total heat flux density from plasma to the particle were studied. The range 10<sup>−5</sup>–10<sup>−4</sup> m of particle radius and the range (0.5–2)×10<sup>7</sup> A/m<sup>2</sup> of current density in unperturbed plasma, corresponding to the conditions of plasma transferred arc surfacing and plasma powder spheroidization, were considered. The electron temperature was assumed to be constant.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"971 - 991"},"PeriodicalIF":2.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-08DOI: 10.1007/s11090-025-10558-z
Camden E. Carroll, Rajagopalan V. Ranganathan, Ciel C. Voy, Zhili Zhang
Dielectric barrier discharge plasma has been shown as an effective alternative in renewable NH3 production, however a catalyst which enhances the process to commercial potential is still being sought. This work investigates three catalysts, CaH2, Ca3N2, and LiH for NH3 synthesis when subjected to plasma. This work found a maximum synthesis rate of 6440 µmol h− 1 gcat−1 for CaH2 and an efficiency of 4.0 g-NH3 kWh− 1 gcat−1. Varying flow ratios to determine effects on synthesis demonstrated CaH2 and LiH preferred hydrogen rich environments while Ca3N2 performed best in nitrogen rich flows. These results suggest each of the tested catalysts could have different reaction pathways or dependencies. Gas chromatography was used to quantify production levels and optical emission spectroscopy was used to determine vibrational temperatures of molecular nitrogen. These findings introduce three catalysts for use in plasma-based NH3 synthesis and characterize the potential for increased efficiency of ammonia production.
{"title":"Application of Calcium Hydride, Calcium Nitride, and Lithium Hydride Catalysts for Enhanced Ammonia Synthesis in Dielectric Barrier Discharge Plasma","authors":"Camden E. Carroll, Rajagopalan V. Ranganathan, Ciel C. Voy, Zhili Zhang","doi":"10.1007/s11090-025-10558-z","DOIUrl":"10.1007/s11090-025-10558-z","url":null,"abstract":"<div><p>Dielectric barrier discharge plasma has been shown as an effective alternative in renewable NH<sub>3</sub> production, however a catalyst which enhances the process to commercial potential is still being sought. This work investigates three catalysts, CaH<sub>2</sub>, Ca<sub>3</sub>N<sub>2</sub>, and LiH for NH<sub>3</sub> synthesis when subjected to plasma. This work found a maximum synthesis rate of 6440 µmol h<sup>− 1</sup> g<sub>cat</sub><sup>−1</sup> for CaH<sub>2</sub> and an efficiency of 4.0 g-NH<sub>3</sub> kWh<sup>− 1</sup> g<sub>cat</sub><sup>−1</sup>. Varying flow ratios to determine effects on synthesis demonstrated CaH<sub>2</sub> and LiH preferred hydrogen rich environments while Ca<sub>3</sub>N<sub>2</sub> performed best in nitrogen rich flows. These results suggest each of the tested catalysts could have different reaction pathways or dependencies. Gas chromatography was used to quantify production levels and optical emission spectroscopy was used to determine vibrational temperatures of molecular nitrogen. These findings introduce three catalysts for use in plasma-based NH<sub>3</sub> synthesis and characterize the potential for increased efficiency of ammonia production.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"829 - 841"},"PeriodicalIF":2.6,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-07DOI: 10.1007/s11090-025-10557-0
Jie Yu, Huihui Ma, Wenjing Ma, Kai Wang, Chenxu Liang, Minrui Li, Quanfang Lu
The Ag2O/CuO nanoshuttles stacked with nanosheets were fabricated in CH3COONa solution via direct current (DC) diaphragm discharge plasma technique, in which a silver-copper (Ag-Cu) alloy sheet was used as anode, and a graphite rod inserted into a quartz glass tube with a small hole on the sidewall was acted as cathode. The preparation mechanism of Ag2O/CuO was discussed in detail. The performance of Ag2O/CuO nanoshuttles as electrode material was assessed for sensing glucose. The results showed that Ag2O/CuO electrode exhibits a low limit of detection of 0.35 µM, high sensitivity of 1001.2 µA mM− 1 cm− 2, wide linear range of 0.01–7.2 mM, and fast response time of only 0.4 s. In addition, Ag2O/CuO has high selectivity, high stability and good repeatability. The glucose in human saliva is determined using Ag2O/CuO modified electrode, the recovery is 101.1%~103.2%, and the relative standard deviations (RSDs) are below 5%. All results indicated that Ag2O/CuO prepared by diaphragm discharge plasma can be regarded as an alternative electrode material for the glucose sensing. Compared with other synthesis methods, diaphragm discharge is a simple, effective, and green technique without expensive platinum, metal salts, alkali sources, and high temperature.
Graphical Abstract
Ag2O/CuO nanoshuttles were fabricated via direct current diaphragm discharge plasma technique, and then regarded as an electrode material for sensing glucose
{"title":"Diaphragm Discharge Synthesis of Ag2O/CuO Nanoshuttle for Enzyme-Free Glucose Sensing","authors":"Jie Yu, Huihui Ma, Wenjing Ma, Kai Wang, Chenxu Liang, Minrui Li, Quanfang Lu","doi":"10.1007/s11090-025-10557-0","DOIUrl":"10.1007/s11090-025-10557-0","url":null,"abstract":"<div><p>The Ag<sub>2</sub>O/CuO nanoshuttles stacked with nanosheets were fabricated in CH<sub>3</sub>COONa solution via direct current (DC) diaphragm discharge plasma technique, in which a silver-copper (Ag-Cu) alloy sheet was used as anode, and a graphite rod inserted into a quartz glass tube with a small hole on the sidewall was acted as cathode. The preparation mechanism of Ag<sub>2</sub>O/CuO was discussed in detail. The performance of Ag<sub>2</sub>O/CuO nanoshuttles as electrode material was assessed for sensing glucose. The results showed that Ag<sub>2</sub>O/CuO electrode exhibits a low limit of detection of 0.35 µM, high sensitivity of 1001.2 µA mM<sup>− 1</sup> cm<sup>− 2</sup>, wide linear range of 0.01–7.2 mM, and fast response time of only 0.4 s. In addition, Ag<sub>2</sub>O/CuO has high selectivity, high stability and good repeatability. The glucose in human saliva is determined using Ag<sub>2</sub>O/CuO modified electrode, the recovery is 101.1%~103.2%, and the relative standard deviations (RSDs) are below 5%. All results indicated that Ag<sub>2</sub>O/CuO prepared by diaphragm discharge plasma can be regarded as an alternative electrode material for the glucose sensing. Compared with other synthesis methods, diaphragm discharge is a simple, effective, and green technique without expensive platinum, metal salts, alkali sources, and high temperature.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Ag<sub>2</sub>O/CuO nanoshuttles were fabricated via direct current diaphragm discharge plasma technique, and then regarded as an electrode material for sensing glucose</p></div></div></figure></div></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"773 - 794"},"PeriodicalIF":2.6,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-04DOI: 10.1007/s11090-025-10553-4
Koya Ishinokoshi, Rio Okano, Yasunori Tanaka, Tatsuo Ishijima, Yusuke Nakano
A novel method for generating high-temperature gas using a tandem-type inductively coupled thermal plasma (Tandem-ICTP), composed of two vertically arranged coils, was proposed to experimentally evaluate the dielectric properties of hot gases. The dielectric properties of high-temperature insulation gases are critical for determining the success or failure of current interruption in gas circuit breakers (GCBs). In this study, we focused on the detailed investigation of the high-temperature gas field generated by Tandem-ICTP. The temperature of (hbox {CO}_2) gas, heated by varying the lower-coil input power in the Tandem-ICTP system, was estimated using spectroscopic measurements at the electrode position, applying the Boltzmann plot method. Additionally, an electromagnetic thermofluid simulation was conducted to support the experimentally measured temperatures and to estimate the mole concentration of (hbox {CO}_2) gas between the electrodes. The results revealed that the temperature of the (hbox {CO}_2) gas could exceed 3800 K using the Tandem-ICTP and could be adjusted by approximately 2600 K by modifying the input power of lower-coil. Furthermore, the mole concentration of high-temperature (hbox {CO}_2) gas between the electrodes was found to be approximately 40(%), as determined by numerical simulation. This method demonstrates that a dielectric test can be conducted in the wide range of high-temperature gas fields above 3000 K by controlling parameters such as the input power of lower-coil in the Tandem-ICTP system.
{"title":"Thermal Plasma-Induced High Temperature Insulation Gas Generation for Dielectric Property Measurement above 3000 K","authors":"Koya Ishinokoshi, Rio Okano, Yasunori Tanaka, Tatsuo Ishijima, Yusuke Nakano","doi":"10.1007/s11090-025-10553-4","DOIUrl":"10.1007/s11090-025-10553-4","url":null,"abstract":"<div><p>A novel method for generating high-temperature gas using a tandem-type inductively coupled thermal plasma (Tandem-ICTP), composed of two vertically arranged coils, was proposed to experimentally evaluate the dielectric properties of hot gases. The dielectric properties of high-temperature insulation gases are critical for determining the success or failure of current interruption in gas circuit breakers (GCBs). In this study, we focused on the detailed investigation of the high-temperature gas field generated by Tandem-ICTP. The temperature of <span>(hbox {CO}_2)</span> gas, heated by varying the lower-coil input power in the Tandem-ICTP system, was estimated using spectroscopic measurements at the electrode position, applying the Boltzmann plot method. Additionally, an electromagnetic thermofluid simulation was conducted to support the experimentally measured temperatures and to estimate the mole concentration of <span>(hbox {CO}_2)</span> gas between the electrodes. The results revealed that the temperature of the <span>(hbox {CO}_2)</span> gas could exceed 3800 K using the Tandem-ICTP and could be adjusted by approximately 2600 K by modifying the input power of lower-coil. Furthermore, the mole concentration of high-temperature <span>(hbox {CO}_2)</span> gas between the electrodes was found to be approximately 40<span>(%)</span>, as determined by numerical simulation. This method demonstrates that a dielectric test can be conducted in the wide range of high-temperature gas fields above 3000 K by controlling parameters such as the input power of lower-coil in the Tandem-ICTP system.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"951 - 970"},"PeriodicalIF":2.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01DOI: 10.1007/s11090-025-10555-2
Madyan Ahmed Khalaf, Baida M. Ahmed, Sahar A. H. Al-Sharqi
Cold atmospheric direct plasma (CADP), an ionized gas at ambient temperature, represents a promising approach to enhancing tissue regeneration. A laboratory-based study was conducted to investigate the effects of medical CADP on the reparative potential of full-thickness acute skin wounds in murine models. For the in vivo investigations, two full-thickness dermal injuries were induced in each murine subject, each with a diameter of approximately 8 mm (n = 20). We employed a floating electrode within a CADP system that generates atmospheric pressure air plasma, characterized by a plasma temperature ranging from 36 to 38 °C. The dermal wounds received three plasma treatments, administered every two days, with irradiation durations of 5, 15, and 25 s. These wounds were subsequently evaluated at intervals of 2, 4, 6, 8, and 11 days post-wounding through histological examination and concentration analysis of growth factors. On the eleventh day, the wound healing rates were recorded at 34.80% for the control group, while the plasma-treated groups achieved rates of 56.62%, 84.97%, and 97.82%, respectively. Histological examination revealed that plasma-treatment promotes the development of epidermal keratin and granular strata, along with the formation of hair follicles and sebaceous glands. Concentration analysis of growth factors indicates increased levels of these factors alongside a reduction in white blood cell counts. The CADP therapeutic intervention has significantly enhanced the healing efficacy of acute dermatological lesions without any noticeable adverse effects or the simultaneous activation of pro-inflammatory signaling pathways. These findings highlight the advantages of employing plasma applications for wound management in clinical settings.
低温大气直接等离子体(CADP)是一种环境温度下的电离气体,是一种很有前途的增强组织再生的方法。在实验室基础上研究了医用CADP对小鼠全层急性皮肤创伤模型修复潜力的影响。在体内研究中,在每只小鼠受试者中诱导两个全层皮肤损伤,每个直径约为8 mm (n = 20)。我们在CADP系统中使用了一个浮动电极,产生大气压空气等离子体,其特征是等离子体温度范围为36至38°C。皮肤伤口接受三次等离子治疗,每两天给药一次,照射时间分别为5、15和25秒。随后,通过组织学检查和生长因子浓度分析,在伤后2、4、6、8和11天对这些伤口进行评估。第11天,对照组创面愈合率为34.80%,血浆治疗组创面愈合率分别为56.62%、84.97%和97.82%。组织学检查显示,血浆治疗促进表皮角蛋白和颗粒层的发育,并促进毛囊和皮脂腺的形成。生长因子的浓度分析表明,这些因子的水平增加,同时白细胞计数减少。CADP治疗干预显著提高了急性皮肤病病变的愈合效果,无明显的不良反应,也没有同时激活促炎信号通路。这些发现突出了在临床环境中应用等离子体进行伤口管理的优势。
{"title":"Irradiation With Cold Atmospheric Direct Plasma: An Innovative Approach to Treating Murine Cutaneous Wounds","authors":"Madyan Ahmed Khalaf, Baida M. Ahmed, Sahar A. H. Al-Sharqi","doi":"10.1007/s11090-025-10555-2","DOIUrl":"10.1007/s11090-025-10555-2","url":null,"abstract":"<div><p>Cold atmospheric direct plasma (CADP), an ionized gas at ambient temperature, represents a promising approach to enhancing tissue regeneration. A laboratory-based study was conducted to investigate the effects of medical CADP on the reparative potential of full-thickness acute skin wounds in murine models. For the in vivo investigations, two full-thickness dermal injuries were induced in each murine subject, each with a diameter of approximately 8 mm (<i>n</i> = 20). We employed a floating electrode within a CADP system that generates atmospheric pressure air plasma, characterized by a plasma temperature ranging from 36 to 38 °C. The dermal wounds received three plasma treatments, administered every two days, with irradiation durations of 5, 15, and 25 s. These wounds were subsequently evaluated at intervals of 2, 4, 6, 8, and 11 days post-wounding through histological examination and concentration analysis of growth factors. On the eleventh day, the wound healing rates were recorded at 34.80% for the control group, while the plasma-treated groups achieved rates of 56.62%, 84.97%, and 97.82%, respectively. Histological examination revealed that plasma-treatment promotes the development of epidermal keratin and granular strata, along with the formation of hair follicles and sebaceous glands. Concentration analysis of growth factors indicates increased levels of these factors alongside a reduction in white blood cell counts. The CADP therapeutic intervention has significantly enhanced the healing efficacy of acute dermatological lesions without any noticeable adverse effects or the simultaneous activation of pro-inflammatory signaling pathways. These findings highlight the advantages of employing plasma applications for wound management in clinical settings.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"753 - 771"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-26DOI: 10.1007/s11090-025-10546-3
{"title":"Thanks to Reviewers in 2024","authors":"","doi":"10.1007/s11090-025-10546-3","DOIUrl":"10.1007/s11090-025-10546-3","url":null,"abstract":"","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"659 - 660"},"PeriodicalIF":2.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-23DOI: 10.1007/s11090-025-10548-1
T. S. Larsen, J. A. Andersen, J. M. Christensen, A. Fateev, M. Østberg, E. Morais, A. Bogaerts, A. D. Jensen
A co-axial packed-bed DBD reactor was used to conduct plasma-assisted non-oxidative coupling of methane (NOCM) utilizing glass beads as packing material at a fixed plasma power of 30 W. The influence on NOCM of five different bead size distributions (2000–5000 µm, 900–1100 µm, 425–600 µm, 212–300 µm, 150–212 µm) and operating pressure (1.2 bar, 1.7 bar) was investigated. The observed products consist of a mixture of saturated and unsaturated C2–C5 hydrocarbons. The conversion of methane decreased from 8.5 to 3.7% with decreasing bead size, while the selectivity towards unsaturated C2 compounds increased from 16 to 50% with decreasing bead size. These reactor performance variations are associated with the transitional plasma dynamics and degree of partial discharging, as determined by characterization of non-ideal charge–voltage plots for the five tested glass bead sizes.
{"title":"Plasma-Assisted Non-Oxidative Coupling of Methane: Effects of Bead Size Distribution and Operating Pressure in a Co-axial DBD","authors":"T. S. Larsen, J. A. Andersen, J. M. Christensen, A. Fateev, M. Østberg, E. Morais, A. Bogaerts, A. D. Jensen","doi":"10.1007/s11090-025-10548-1","DOIUrl":"10.1007/s11090-025-10548-1","url":null,"abstract":"<div><p>A co-axial packed-bed DBD reactor was used to conduct plasma-assisted non-oxidative coupling of methane (NOCM) utilizing glass beads as packing material at a fixed plasma power of 30 W. The influence on NOCM of five different bead size distributions (2000–5000 µm, 900–1100 µm, 425–600 µm, 212–300 µm, 150–212 µm) and operating pressure (1.2 bar, 1.7 bar) was investigated. The observed products consist of a mixture of saturated and unsaturated C<sub>2</sub>–C<sub>5</sub> hydrocarbons. The conversion of methane decreased from 8.5 to 3.7% with decreasing bead size, while the selectivity towards unsaturated C<sub>2</sub> compounds increased from 16 to 50% with decreasing bead size. These reactor performance variations are associated with the transitional plasma dynamics and degree of partial discharging, as determined by characterization of non-ideal charge–voltage plots for the five tested glass bead sizes.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"843 - 871"},"PeriodicalIF":2.6,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11090-025-10548-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}