Dynamic elastography attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a novel configuration, inspired by corneal elastography but generalizable to other applications, is studied. A polymer phantom layer is statically elongated via an in-plane biaxial normal stress while the phantom's response to transverse vibratory excitation is measured. We examine the interplay between biaxial prestress and waveguide effects in this plate-like tissue phantom. Finite static deformations caused by prestressing coupled with waveguide effects lead to results that are predicted by a novel coordinate transformation approach previously used to simplify reconstruction of anisotropic properties. Here, the approach estimates material viscoelastic properties independent of the nonzero prestress conditions without requiring advanced knowledge of those stress conditions.
In aortoiliac occlusive disease, atherosclerotic plaques can occlude the distal aortic bifurcation and proximal bilateral iliac artery and thus cause ischemia in the lower extremity. This is typically treated by restoring patency with balloon expandable stents. Stents are typically deployed in a "kissing stent" configuration into the bilateral iliac arteries and into the distal aortic bifurcation lumen to restore antegrade arterial flow. However, these stents typically become re-occluded by plaques. To understand the reasons for this and look for solutions, we simulated flow dynamics in the aortic bifurcation in the presence and absence of stents using computational fluid dynamics. Results demonstrated that the kissing stent configuration was associated with high levels of vorticity and flow constriction. These prothrombotic variables were alleviated in an alternative, aortoiliac fenestrated (AIFEN), tapered, and balloon-expandable stent design. Our findings suggest that stent design can be tailored to improve flow fields for aortoiliac stenting.

