Pub Date : 2024-09-07DOI: 10.1016/j.hazadv.2024.100463
Jiefei Cao , Feng Xiao
This study addresses critical uncertainties regarding the interactions of per- and polyfluoroalkyl substances (PFAS) with plastic (e.g., polypropylene, PP) and borosilicate glass materials, which are either recommended or advised against by prevalent analytical methods. Our results indicate that borosilicate glass minimally adsorbs short-chain, moderate-chain, and some long-chain PFAS with <11 perfluorinated carbons, maintaining the integrity of PFAS solutions. The ratios of PFAS concentrations in solutions contained in borosilicate glass compared to those in solutions unaffected by laboratory ware interaction showed minimal deviation, with most compounds displaying values within the established acceptable limits of 87 % to 107 % for C3‒C10 PFAS. Similarly, PP tubes, syringes, and pipette tips also demonstrated minimal or moderate interactions: perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) showed relatively consistent recoveries in PP syringes and pipette tips, ranging from 96 % to 107 % and minimal adsorption to PP centrifuge tubes during a 105-h contact period. Both materials, however, showed significant adsorption of the longest-chain PFAS in this study (C11), pointing to enhanced adsorption due to their hydrophobic nature. However, microfilters demonstrate significant adsorption of long-chain PFAS, including PFOA and PFOS. We developed a Gradient Flush Syringe Method to mitigate adsorption losses on syringe filters, achieved a significant reduction in C11 PFAS retention on filters from >90 % to nearly 0.01 %. Methanol-induced matrix effects were also studied, showed that increasing methanol concentrations led to artificially increasing the analyzed concentration of short-chain PFAS from the true concentration.
{"title":"Interactions of per- and polyfluoroalkyl substances with polypropylene plastic and borosilicate glass: Resolving key uncertainties for accurate analysis","authors":"Jiefei Cao , Feng Xiao","doi":"10.1016/j.hazadv.2024.100463","DOIUrl":"10.1016/j.hazadv.2024.100463","url":null,"abstract":"<div><p>This study addresses critical uncertainties regarding the interactions of per- and polyfluoroalkyl substances (PFAS) with plastic (e.g., polypropylene, PP) and borosilicate glass materials, which are either recommended or advised against by prevalent analytical methods. Our results indicate that borosilicate glass minimally adsorbs short-chain, moderate-chain, and some long-chain PFAS with <11 perfluorinated carbons, maintaining the integrity of PFAS solutions. The ratios of PFAS concentrations in solutions contained in borosilicate glass compared to those in solutions unaffected by laboratory ware interaction showed minimal deviation, with most compounds displaying values within the established acceptable limits of 87 % to 107 % for C3‒C10 PFAS. Similarly, PP tubes, syringes, and pipette tips also demonstrated minimal or moderate interactions: perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) showed relatively consistent recoveries in PP syringes and pipette tips, ranging from 96 % to 107 % and minimal adsorption to PP centrifuge tubes during a 105-h contact period. Both materials, however, showed significant adsorption of the longest-chain PFAS in this study (C11), pointing to enhanced adsorption due to their hydrophobic nature. However, microfilters demonstrate significant adsorption of long-chain PFAS, including PFOA and PFOS. We developed a Gradient Flush Syringe Method to mitigate adsorption losses on syringe filters, achieved a significant reduction in C11 PFAS retention on filters from >90 % to nearly 0.01 %. Methanol-induced matrix effects were also studied, showed that increasing methanol concentrations led to artificially increasing the analyzed concentration of short-chain PFAS from the true concentration.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"16 ","pages":"Article 100463"},"PeriodicalIF":5.4,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000640/pdfft?md5=a804e335b65ff57e0618898c5597a546&pid=1-s2.0-S2772416624000640-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microplastics, small sized plastic particles having size <5 mm are formed through primary process including production of beauty products, microbeads and microfibres as well as secondary process including mechanical weathering, friction, aberration and fragmentation of large plastics. The major sources of microplastics are land-based and ocean-based sources. Microplastic pollution is a serious concern due to the persistent, low biodegradability and bio-accumulative behaviour. Microplastics can bioaccumulate in the food chain and can cause ecological and human health risk. Hence, it is important to remove from the aquatic ecosystems. Microplastics are removed from aquatic systems and wastewater through a series of processes such as physical, chemical and biological treatments. In the present articles, >250 articles are reviewed to collect the information regarding the various physical, chemical and biological methods for the removal of microplastics. Also, the probable control strategies to combat with plastic pollution were assessed. It was concluded that recent water treatment methods are efficient in removing microplastic pollution. The efficiencies to remove microplastic from the water ranged between 74 %-99.2 %, 65 %-99.20 % and 77 %-100 % for physical, chemical and biological treatment methods, respectively. Among the three treatment methods, physical methods especially the filtration of water from biochar is the most efficient way (efficiency up to 100 %) to remove microplastics. It was also concluded that creating public awareness, promoting reusing, recycling and reducing, and application of bioplastics can control the production of microplastics from plastic wastes. This review will be useful to add current knowledge regarding the abatement of microplastic pollution, and finding novel solution to control microplastics. This review will also help the policymakers to implement most effective and cost-efficient method to remove microplastics, and to find out new methods to reduce, reuse and recycle plastic wastes.
{"title":"Recent advancement in microplastic removal process from wastewater - A critical review","authors":"Lovely Dayal , Krishna Yadav , Uttiya Dey , Kousik Das , Preeti Kumari , Deep Raj , Rashmi Ranjan Mandal","doi":"10.1016/j.hazadv.2024.100460","DOIUrl":"10.1016/j.hazadv.2024.100460","url":null,"abstract":"<div><p>Microplastics, small sized plastic particles having size <5 mm are formed through primary process including production of beauty products, microbeads and microfibres as well as secondary process including mechanical weathering, friction, aberration and fragmentation of large plastics. The major sources of microplastics are land-based and ocean-based sources. Microplastic pollution is a serious concern due to the persistent, low biodegradability and bio-accumulative behaviour. Microplastics can bioaccumulate in the food chain and can cause ecological and human health risk. Hence, it is important to remove from the aquatic ecosystems. Microplastics are removed from aquatic systems and wastewater through a series of processes such as physical, chemical and biological treatments. In the present articles, >250 articles are reviewed to collect the information regarding the various physical, chemical and biological methods for the removal of microplastics. Also, the probable control strategies to combat with plastic pollution were assessed. It was concluded that recent water treatment methods are efficient in removing microplastic pollution. The efficiencies to remove microplastic from the water ranged between 74 %-99.2 %, 65 %-99.20 % and 77 %-100 % for physical, chemical and biological treatment methods, respectively. Among the three treatment methods, physical methods especially the filtration of water from biochar is the most efficient way (efficiency up to 100 %) to remove microplastics. It was also concluded that creating public awareness, promoting reusing, recycling and reducing, and application of bioplastics can control the production of microplastics from plastic wastes. This review will be useful to add current knowledge regarding the abatement of microplastic pollution, and finding novel solution to control microplastics. This review will also help the policymakers to implement most effective and cost-efficient method to remove microplastics, and to find out new methods to reduce, reuse and recycle plastic wastes.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"16 ","pages":"Article 100460"},"PeriodicalIF":5.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000615/pdfft?md5=d1fe7e0b600cbcdd37b32b56e2a06905&pid=1-s2.0-S2772416624000615-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1016/j.hazadv.2024.100458
Fabrizio Ambrosino , Nicola Gargiulo , Giuseppe Della Peruta , Carlo Gravino , Gaetano Gagliardo , Francesco Pisciotta , Salvatore Esposito , Giuseppe La Verde , Domenico Caputo , Mariagabriella Pugliese
4A, 13X, phillipsite and chabazite zeolites have been characterized regarding their capacity to remove Cs+ and Co2+ ions from aqueous solutions. The aim is to simulate the decontamination process of radioactive wastewater, originating from the former Garigliano nuclear plant in Italy, which is contaminated with 137Cs and 60Co. The four zeolites, in powder state, have been tested with solutions containing cesium nitrate and cobalt nitrate hexahydrate, in both individual and combined configurations, at different solid/liquid ratios. The Cs+ and Co2+ concentrations have been monitored over time by inductively coupled plasma (ICP) spectrometry. The results demonstrate the high efficacy of 13X zeolite providing almost 100 % of removal of both elements in a relatively short time (20–30 min). These findings are the basis for the kinetic characterization of the zeolite using radioactive solutions and, hence, for the setup of an in-situ pre-pilot plant to carry out tests with contaminated wastewater at the Garigliano facility. 13X zeolite presents a promising alternative for decommissioning radioactive wastewater.
{"title":"Study and characterization of zeolites for the removal of artificial radionuclides in wastewater samples from nuclear power plants","authors":"Fabrizio Ambrosino , Nicola Gargiulo , Giuseppe Della Peruta , Carlo Gravino , Gaetano Gagliardo , Francesco Pisciotta , Salvatore Esposito , Giuseppe La Verde , Domenico Caputo , Mariagabriella Pugliese","doi":"10.1016/j.hazadv.2024.100458","DOIUrl":"10.1016/j.hazadv.2024.100458","url":null,"abstract":"<div><p>4A, 13X, phillipsite and chabazite zeolites have been characterized regarding their capacity to remove Cs<sup>+</sup> and Co<sup>2+</sup> ions from aqueous solutions. The aim is to simulate the decontamination process of radioactive wastewater, originating from the former Garigliano nuclear plant in Italy, which is contaminated with <sup>137</sup>Cs and <sup>60</sup>Co. The four zeolites, in powder state, have been tested with solutions containing cesium nitrate and cobalt nitrate hexahydrate, in both individual and combined configurations, at different solid/liquid ratios. The Cs<sup>+</sup> and Co<sup>2+</sup> concentrations have been monitored over time by inductively coupled plasma (ICP) spectrometry. The results demonstrate the high efficacy of 13X zeolite providing almost 100 % of removal of both elements in a relatively short time (20–30 min). These findings are the basis for the kinetic characterization of the zeolite using radioactive solutions and, hence, for the setup of an in-situ pre-pilot plant to carry out tests with contaminated wastewater at the Garigliano facility. 13X zeolite presents a promising alternative for decommissioning radioactive wastewater.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"16 ","pages":"Article 100458"},"PeriodicalIF":5.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000597/pdfft?md5=2bcd4d960d9e65cfa7cdf1e75b9e2398&pid=1-s2.0-S2772416624000597-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.hazadv.2024.100449
Francis O. Konaté , Véronique Vitry , Arsène H. Yonli
When dealing with electronic waste, printed circuit boards (PCBs) are some of the most important materials in terms of recovery possibilities, because of their high content of precious metals and base metals, notably copper (> 20% w/w), in addition to organic resins and ceramic materials. Efficient hydrometallurgical metals recovery from electronic waste is an important on-going research topic, and the present study consisted in the development of a process for the concentration of precious metals by leaching and recovery of major base metals mainly copper.
A fraction of crushed PCBs concentrated in metals with more than 50 % copper was used for the leaching tests for two types of components: processor cards and mobile phone cards. For the leaching process, two steps were carried out. A first step consisted in leaching the concentrate three times with sulfuric acid and hydrogen peroxide, a second step consisted in lead removal by nitric acid leaching.
The obtained results exhibit that, for processor cards, the first stage of leaching allowed the extraction of about 98 % of copper. Other base metals, zinc (99.8 %) and nickel (96 %) were also significantly leached. Precious metals were less leached except Ag with 88 % of release. The second stage of leaching with nitric acid allowed significant removal of lead (66 %). For mobile phone cards, the first stage of leaching led to an almost complete extraction of Cu (>98 %) and some other base metals (Fe, Ni, Sn, and Zn > 90 %). Al, Co and Mn were also extracted at 76 %, 78 % and 81 % respectively. Precious metals remained in the residue, except Pd which was leached at 16 %. The second stage of leaching with dilute nitric acid solution was not necessary for mobile phone cards, as it was responsible of an important Ag release from residue (80 %).
{"title":"Leaching of base metals in PCBs and copper cementation by iron powder","authors":"Francis O. Konaté , Véronique Vitry , Arsène H. Yonli","doi":"10.1016/j.hazadv.2024.100449","DOIUrl":"10.1016/j.hazadv.2024.100449","url":null,"abstract":"<div><p>When dealing with electronic waste, printed circuit boards (PCBs) are some of the most important materials in terms of recovery possibilities, because of their high content of precious metals and base metals, notably copper (> 20% w/w), in addition to organic resins and ceramic materials. Efficient hydrometallurgical metals recovery from electronic waste is an important on-going research topic, and the present study consisted in the development of a process for the concentration of precious metals by leaching and recovery of major base metals mainly copper.</p><p>A fraction of crushed PCBs concentrated in metals with more than 50 % copper was used for the leaching tests for two types of components: processor cards and mobile phone cards. For the leaching process, two steps were carried out. A first step consisted in leaching the concentrate three times with sulfuric acid and hydrogen peroxide, a second step consisted in lead removal by nitric acid leaching.</p><p>The obtained results exhibit that, for processor cards, the first stage of leaching allowed the extraction of about 98 % of copper. Other base metals, zinc (99.8 %) and nickel (96 %) were also significantly leached. Precious metals were less leached except Ag with 88 % of release. The second stage of leaching with nitric acid allowed significant removal of lead (66 %). For mobile phone cards, the first stage of leaching led to an almost complete extraction of Cu (>98 %) and some other base metals (Fe, Ni, Sn, and Zn > 90 %). Al, Co and Mn were also extracted at 76 %, 78 % and 81 % respectively. Precious metals remained in the residue, except Pd which was leached at 16 %. The second stage of leaching with dilute nitric acid solution was not necessary for mobile phone cards, as it was responsible of an important Ag release from residue (80 %).</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"15 ","pages":"Article 100449"},"PeriodicalIF":5.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000500/pdfft?md5=4f5da475e018c24c2f92dbe3d5a2b188&pid=1-s2.0-S2772416624000500-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.hazadv.2024.100451
Shaikha S. AlNeyadi, Seeta SA, Shooq N. Aljasmi, Dana S. Alshkeili, M.H. Al Anoud, O.S. Salama
The rising presence of ibuprofen (IBP) in natural water bodies, restricting from its widespread pharmaceutical usage, necessitates effective remediation strategies. This study introduces IB-COF, a novel covalent organic framework synthesized via a solvothermal method, specifically engineered for IBP extraction from aqueous solutions. IB-COF showcases remarkable adsorption performance, achieving equilibrium within 60 min with a capacity of 512 mg/g, outperforming conventional adsorbents. Its adsorption kinetics align with pseudo-second-order and Langmuir models, indicating efficient monolayer adsorption. Significantly, IB-COF exhibits robust recyclability over five cycles. Among the prevalence of IBP contamination, IB-COF demonstrates promise in selectively extracting IBP even in the presence of competing pharmaceuticals. Overall, our findings underscore the potential of IB-COF as an advanced adsorbent for mitigating IBP pollution in water sources, contributing significantly to environmental purification efforts and water pollution mitigation strategies.
{"title":"Ibuprofen removal from water using the IB-COF covalent organic framework","authors":"Shaikha S. AlNeyadi, Seeta SA, Shooq N. Aljasmi, Dana S. Alshkeili, M.H. Al Anoud, O.S. Salama","doi":"10.1016/j.hazadv.2024.100451","DOIUrl":"10.1016/j.hazadv.2024.100451","url":null,"abstract":"<div><p>The rising presence of ibuprofen (IBP) in natural water bodies, restricting from its widespread pharmaceutical usage, necessitates effective remediation strategies. This study introduces IB-COF, a novel covalent organic framework synthesized via a solvothermal method, specifically engineered for IBP extraction from aqueous solutions. IB-COF showcases remarkable adsorption performance, achieving equilibrium within 60 min with a capacity of 512 mg/g, outperforming conventional adsorbents. Its adsorption kinetics align with pseudo-second-order and Langmuir models, indicating efficient monolayer adsorption. Significantly, IB-COF exhibits robust recyclability over five cycles. Among the prevalence of IBP contamination, IB-COF demonstrates promise in selectively extracting IBP even in the presence of competing pharmaceuticals. Overall, our findings underscore the potential of IB-COF as an advanced adsorbent for mitigating IBP pollution in water sources, contributing significantly to environmental purification efforts and water pollution mitigation strategies.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"15 ","pages":"Article 100451"},"PeriodicalIF":5.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000524/pdfft?md5=b3f2d0237f6ccd30f8124630e2d1a815&pid=1-s2.0-S2772416624000524-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.hazadv.2024.100453
Hongyu Chen , Wei Li , Haixia Zhu, Shuo Shen
The use of pesticides has led to increased soil and water pollution, which has even affected the world's third pole, the Tibetan Plateau. In this study, the adsorption and desorption experiments of spirotetramat on three typical soils were conducted to investigate the migration and leaching risk of pesticides in the Qinghai-Tibet Plateau ecosystem. We used batch equilibrium technique for adsorption-desorption experiments and evaluated leaching risk by computational simulation experiments under laboratory conditions. The Freundlich adsorption constants Kf of spirotetramat in the soils of Haidong, Haixi and Haibei were as follows: At 22.26, 15.13 and 6.85, the maximum adsorption capacity Cmax was 434.80, 217.40 and 169.50 mg kg-1, the average adsorption rates were 77.92, 54.27 and 39.13 %, and the desorption constants (Kf) were 43.27, 22.35 and 11.56, respectively. The hysteresis coefficient HI>1.00 in the soil of Haidong and Haixi, and 0.70<HI<1.00 in the soil of Haibei, indicating that with the increase of temperature, the adsorption capacity of the tested soil for spirotetramat decreases, which increases the migration risk of pesticides. The desorption of spirotetramat in the soil of Haidong and Haixi has a lag. The GUS values of spirotetramat in the soils of Haidong, Haixi and Haibei were 1.15, 1.63 and 1.72, respectively, which were all lower than 1.80, indicating that spirotetramat was a non-leaching pesticide, and the leaching risk of spirotetramat in the soils of Qinghai was small, and the potential harm to groundwater was at a low level.
{"title":"Insights on leaching, adsorption–desorption of spirotetramat and its four metabolites on “Third Pole” pollution-free area:Qinghai–Tibet Plateau","authors":"Hongyu Chen , Wei Li , Haixia Zhu, Shuo Shen","doi":"10.1016/j.hazadv.2024.100453","DOIUrl":"10.1016/j.hazadv.2024.100453","url":null,"abstract":"<div><p>The use of pesticides has led to increased soil and water pollution, which has even affected the world's third pole, the Tibetan Plateau. In this study, the adsorption and desorption experiments of spirotetramat on three typical soils were conducted to investigate the migration and leaching risk of pesticides in the Qinghai-Tibet Plateau ecosystem. We used batch equilibrium technique for adsorption-desorption experiments and evaluated leaching risk by computational simulation experiments under laboratory conditions. The Freundlich adsorption constants K<sub>f</sub> of spirotetramat in the soils of Haidong, Haixi and Haibei were as follows: At 22.26, 15.13 and 6.85, the maximum adsorption capacity C<sub>max</sub> was 434.80, 217.40 and 169.50 mg kg<sup>-1</sup>, the average adsorption rates were 77.92, 54.27 and 39.13 %, and the desorption constants (K<sub>f</sub>) were 43.27, 22.35 and 11.56, respectively. The hysteresis coefficient HI>1.00 in the soil of Haidong and Haixi, and 0.70<HI<1.00 in the soil of Haibei, indicating that with the increase of temperature, the adsorption capacity of the tested soil for spirotetramat decreases, which increases the migration risk of pesticides. The desorption of spirotetramat in the soil of Haidong and Haixi has a lag. The GUS values of spirotetramat in the soils of Haidong, Haixi and Haibei were 1.15, 1.63 and 1.72, respectively, which were all lower than 1.80, indicating that spirotetramat was a non-leaching pesticide, and the leaching risk of spirotetramat in the soils of Qinghai was small, and the potential harm to groundwater was at a low level.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"15 ","pages":"Article 100453"},"PeriodicalIF":5.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000548/pdfft?md5=5dcc2c8dea4fb4bfe1a38accb845fb86&pid=1-s2.0-S2772416624000548-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.hazadv.2024.100450
Paul Ocheje Ameh , Mohamed A. Habila , Rajni Garg , Christian Chinweuba Onoyima , Godwin O. Ihegboro , Chimaobi James Ononamadu , Rishav Garg , Zainab Adamu , Udeh Jideoliseh Joel , Racheal Showunmi
Achieving sustainable development requires efficient waste water treatment. Green synthesized iron nanoparticles have attracted much attention as potential catalysts for water remediation in view of their lost cost, high reactivity and good adsorption capacity. This study investigated the applicability of iron oxide nanoparticles synthesized from Citrullus lanatus fruit waste (IONP) in the remediation of contaminated water samples that were collected from River Jakara in Kano State Nigeria. The prepared nanoparticle was characterized using Brunauer–Emmett–Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Thermogravimetric Analysis (TGA). The BET results revealed that IONP have large surface area and are nanometer sized particles. SEM analysis indicated that the adsorbent contain microsphere which might have facilitated the efficient purification of the river water while TGA study revealed that the adsorbent exhibited a three step decomposition process. Data obtained from XRD indicated that the synthesized adsorbent is of high purity and crystalline in nature with an average particle size of 17 nm. Results obtained after treatment of the river water with the adsorbent gave enhanced values of Total Dissolved Solids, Turbidity, Chemical Oxygen Demand, Dissolved Oxygen, phosphate and pH; thus confirming the high adsorption ability of the prepared nanoparticles. The percentage removal of Ni(II) Pb (II) and Cd (II) ions in the river water by IONP was found to depend on adsorbent concentration, agitation time and pH. The adsorption process of these metal ions onto the adsorbent was best described by the Langmuir isotherm model and followed pseudo second order kinetics. The regeneration stability of the adsorbent was adequate when treated with the heavy metals ions at optimum conditions. The nanoparticle synthesized from Citrullus lanatus waste was found to be an efficient and environmentally friendly alternative for treatment of contaminated water.
{"title":"Removal of contaminants from river Jakara using iron oxide nano particles prepared from Citrullus lanatus fruit waste","authors":"Paul Ocheje Ameh , Mohamed A. Habila , Rajni Garg , Christian Chinweuba Onoyima , Godwin O. Ihegboro , Chimaobi James Ononamadu , Rishav Garg , Zainab Adamu , Udeh Jideoliseh Joel , Racheal Showunmi","doi":"10.1016/j.hazadv.2024.100450","DOIUrl":"10.1016/j.hazadv.2024.100450","url":null,"abstract":"<div><p>Achieving sustainable development requires efficient waste water treatment. Green synthesized iron nanoparticles have attracted much attention as potential catalysts for water remediation in view of their lost cost, high reactivity and good adsorption capacity. This study investigated the applicability of iron oxide nanoparticles synthesized from <em>Citrullus lanatus</em> fruit waste (IONP) in the remediation of contaminated water samples that were collected from River Jakara in Kano State Nigeria. The prepared nanoparticle was characterized using Brunauer–Emmett–Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Thermogravimetric Analysis (TGA). The BET results revealed that IONP have large surface area and are nanometer sized particles. SEM analysis indicated that the adsorbent contain microsphere which might have facilitated the efficient purification of the river water while TGA study revealed that the adsorbent exhibited a three step decomposition process. Data obtained from XRD indicated that the synthesized adsorbent is of high purity and crystalline in nature with an average particle size of 17 nm. Results obtained after treatment of the river water with the adsorbent gave enhanced values of Total Dissolved Solids, Turbidity, Chemical Oxygen Demand, Dissolved Oxygen, phosphate and pH; thus confirming the high adsorption ability of the prepared nanoparticles. The percentage removal of Ni(II) Pb (II) and Cd (II) ions in the river water by IONP was found to depend on adsorbent concentration, agitation time and pH. The adsorption process of these metal ions onto the adsorbent was best described by the Langmuir isotherm model and followed pseudo second order kinetics. The regeneration stability of the adsorbent was adequate when treated with the heavy metals ions at optimum conditions. The nanoparticle synthesized from <em>Citrullus lanatus</em> waste was found to be an efficient and environmentally friendly alternative for treatment of contaminated water.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"15 ","pages":"Article 100450"},"PeriodicalIF":5.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000512/pdfft?md5=914ade04efe0b491c4749307a0c76f79&pid=1-s2.0-S2772416624000512-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141841527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.hazadv.2024.100448
Zhi-Cheng Wu, Chun-Yu Lai, He-Ping Zhao
Wastewater with high salinity (> 1%) presents a significant challenge to conventional wastewater treatment, particularly for the nitrification process. However, the osmotic adaptation strategies of nitrifying microorganisms remain poorly understood. In this study, we examined the impacts of salinity on the ammonia and nitrite oxidation processes in wastewater. The biofilm samples without salinity acclimation (0 g NaCl/L), after 1% salinity acclimation (10 g NaCl/L), and after 3% salinity acclimation (30 g NaCl/L) were inoculated to conical flasks containing synthetic high-salt wastewater (30 g NaCl/L), respectively. The research findings indicate that, following the salinity acclimation of biofilm, the activity of ammonia oxidation surpassed that of nitrite oxidation. 16S rRNA gene amplicon analysis revealed a noteworthy increase in the abundance of Nitrosomonas (ammonia-oxidizing bacteria) and an unclassified ammonia-oxidizing archaeon within the Nitrososphaeraceae family. In contrast, Nitrospira (nitrite-oxidizing bacteria) exhibited a significant decrease (p < 0.01). Metagenomic analysis indicates certain strains, such as Nitrosomonas sp. PL2, Nitrosomonas mobilis PL3, and Nitrososphaeraceae gen. sp. PL5, possessed various genes related to Na+ efflux, K+ uptake, glutamate synthesis or transport. However, Nitrospira sp. PL6 and Nitrospira sp. PL7 lacked K+ uptake genes. This study elucidates the microbial mechanisms underlying the variations in nitrification observed before and after salinity acclimation of biofilm, which helps to develop microbial evolution strategies to remove nitrogen pollutants under high salinity conditions.
高盐度(> 1%)废水对传统废水处理,尤其是硝化过程提出了巨大挑战。然而,人们对硝化微生物的渗透适应策略仍然知之甚少。在这项研究中,我们考察了盐度对废水中氨和亚硝酸盐氧化过程的影响。将未适应盐度(0 g NaCl/L)、适应 1%盐度(10 g NaCl/L)和适应 3% 盐度(30 g NaCl/L)的生物膜样品分别接种到装有合成高盐废水(30 g NaCl/L)的锥形瓶中。研究结果表明,生物膜经盐度适应后,氨氧化活性超过了亚硝酸盐氧化活性。16S rRNA 基因扩增片段分析表明,氨氧化细菌亚硝单胞菌和一种未分类的氨氧化古细菌在亚硝基磷脂菌科(Nitrososphaeraceae)中的数量显著增加。相比之下,亚硝酸盐氧化细菌(Nitrospira)的数量显著减少(p < 0.01)。元基因组分析表明,某些菌株(如亚硝基单胞菌 PL2、亚硝基单胞菌 PL3 和亚硝基磷脂菌属 PL5)拥有与 Na+ 外排、K+ 摄取、谷氨酸合成或转运有关的各种基因。然而,Nitrospira sp.这项研究阐明了生物膜适应盐度前后硝化作用变化的微生物机理,有助于制定微生物进化策略,以清除高盐度条件下的氮污染物。
{"title":"Salinity acclimation of nitrifying microorganisms: Nitrification performance, microbial community, osmotic adaptation strategies","authors":"Zhi-Cheng Wu, Chun-Yu Lai, He-Ping Zhao","doi":"10.1016/j.hazadv.2024.100448","DOIUrl":"10.1016/j.hazadv.2024.100448","url":null,"abstract":"<div><p>Wastewater with high salinity (> 1%) presents a significant challenge to conventional wastewater treatment, particularly for the nitrification process. However, the osmotic adaptation strategies of nitrifying microorganisms remain poorly understood. In this study, we examined the impacts of salinity on the ammonia and nitrite oxidation processes in wastewater. The biofilm samples without salinity acclimation (0 g NaCl/L), after 1% salinity acclimation (10 g NaCl/L), and after 3% salinity acclimation (30 g NaCl/L) were inoculated to conical flasks containing synthetic high-salt wastewater (30 g NaCl/L), respectively. The research findings indicate that, following the salinity acclimation of biofilm, the activity of ammonia oxidation surpassed that of nitrite oxidation. 16S rRNA gene amplicon analysis revealed a noteworthy increase in the abundance of <em>Nitrosomonas</em> (ammonia-oxidizing bacteria) and an unclassified ammonia-oxidizing archaeon within the <em>Nitrososphaeraceae</em> family. In contrast, <em>Nitrospira</em> (nitrite-oxidizing bacteria) exhibited a significant decrease (<em>p < 0.01</em>). Metagenomic analysis indicates certain strains, such as <em>Nitrosomonas</em> sp. PL2, <em>Nitrosomonas mobilis</em> PL3, and <em>Nitrososphaeraceae</em> gen. sp. PL5, possessed various genes related to Na<sup>+</sup> efflux, K<sup>+</sup> uptake, glutamate synthesis or transport. However, <em>Nitrospira</em> sp. PL6 and <em>Nitrospira</em> sp. PL7 lacked K<sup>+</sup> uptake genes. This study elucidates the microbial mechanisms underlying the variations in nitrification observed before and after salinity acclimation of biofilm, which helps to develop microbial evolution strategies to remove nitrogen pollutants under high salinity conditions.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"15 ","pages":"Article 100448"},"PeriodicalIF":5.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000494/pdfft?md5=e62150d59a307d89ecf7f9d0ecd88c4e&pid=1-s2.0-S2772416624000494-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141960828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxic gases cause a significant number of human deaths every year across the globe. Different types of harmful substances can affect individuals in various ways. Inhaling these gases can have harmful consequences for the body, leading to physiological changes or even death. As a preliminary measure, a simulation application is utilized to detect certain gases by utilizing small-scale and flexible architectures, along with advanced detection techniques. The active material used in this study is a patch of emitting graphene embedded on a polyimide film (Kapton), which helps to determine the frequency of the RF Planar Resonant Structure. We plan to utilize the graphene-Kapton sensor for conducting non-invasive testing. The device has been tested for detecting and recognizing various dangerous and toxic gases, including Fluorine azide (F2N), Hydrogen Iodide (HI), Nitrogen (N2), Methane (CH4), and Carbon monoxide (CO). The simulation results suggest that the Graphene-Kapton flexible sensor provides excellent detection performance. The sensor can accurately identify each gas based on its distinct characteristics. Furthermore, ample sensitivity analysis against geometrical parameters and external electrical stimulation is performed to show the robustness and reliability of the proposed structure.
{"title":"Wearable Kapton graphene biosensor for detection of toxic gases","authors":"Ilghar Rezaei , Alireza Barati Haghverdi , Ali Soldoozy , Toktam Aghaee , Sadegh Biabanifard","doi":"10.1016/j.hazadv.2024.100452","DOIUrl":"10.1016/j.hazadv.2024.100452","url":null,"abstract":"<div><p>Toxic gases cause a significant number of human deaths every year across the globe. Different types of harmful substances can affect individuals in various ways. Inhaling these gases can have harmful consequences for the body, leading to physiological changes or even death. As a preliminary measure, a simulation application is utilized to detect certain gases by utilizing small-scale and flexible architectures, along with advanced detection techniques. The active material used in this study is a patch of emitting graphene embedded on a polyimide film (Kapton), which helps to determine the frequency of the RF Planar Resonant Structure. We plan to utilize the graphene-Kapton sensor for conducting non-invasive testing. The device has been tested for detecting and recognizing various dangerous and toxic gases, including Fluorine azide (F2N), Hydrogen Iodide (HI), Nitrogen (N2), Methane (CH4), and Carbon monoxide (CO). The simulation results suggest that the Graphene-Kapton flexible sensor provides excellent detection performance. The sensor can accurately identify each gas based on its distinct characteristics. Furthermore, ample sensitivity analysis against geometrical parameters and external electrical stimulation is performed to show the robustness and reliability of the proposed structure.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"15 ","pages":"Article 100452"},"PeriodicalIF":5.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000536/pdfft?md5=91a87fb2c7a16feabfe963207126110b&pid=1-s2.0-S2772416624000536-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.hazadv.2024.100456
Kangyuan Qu , Sukma Melati , Junwei Zeng , Jiayu Li , Menglin Shi , Liutong Chen , Yucheng Liu , Shiwei Xie
Deltamethrin (DM) use in agricultural production and storage can result in the presence of residues in several feed ingredients, which can then be ingested by aquatic animals, potentially leading to adverse health effects. Although the potential toxicity of the lipophilic deltamethrin has been evaluated in several studies, there is a paucity of comprehensive studies on the negative effects induced by chronic exposure of shrimp to deltamethrin at different dietary lipid levels. A feeding experiment of six weeks was carried out to assess whether alterations in dietary lipid levels have an impact on the toxicity of DM. In a feeding experiment on Litopenaeus vannamei, the effects of dietary fat levels on the toxicity of DM were studied. There were six distinct diets created comprising three levels of DM (0.2 mg⋅kg–1, 1 mg⋅kg–1, 5 mg⋅kg–1), and two lipid levels (6.96 %, 10.88 %). The diets were designated as LF0.2, LF1, LF5, HF0.2, HF1, HF5. The growth performance and whole shrimp body lipid were reduced with the increase of DM addition to the diet, and DM caused abnormal changes in lipoproteins (LDL, HDL, LPS) in shrimp when feeding diets containing high doses of DM. Furthermore, GOT, GPT, AKP, and ACP activities were found to be significantly increased by long-term exposure to DM. Meanwhile, the way that genes linked to the nuclear factor kappa-B immune signaling pathway showed a significant increase in the hepatopancreas (dorsal, imd, pelle, ikkβ), intestine (imd, tube, pelle), and muscle (toll, imd, pelle) of shrimp following exposure to DM. Similarly, cellular autophagy genes in the hepatopancreas (atg9, atg12), muscle (atg3, atg9), and intestine (atg3, atg5, atg9, beclin, atg13) were significantly upregulated in a dose-dependent manner after shrimp chronic exposure to DM. Histopathological damage was also induced in the muscles under DM exposure. In summary, chronic exposure to DM resulted in a slowing of growth performance, disruption of lipoprotein metabolism, impairment of hepatopancreatic, intestinal, and muscle-related immune functions, as well as the promotion of autophagy and damage to shrimp muscle.
{"title":"Toxicological effect of deltamethrin on enzymatical, apoptosis and immune response, histological morphology in Litopenaeus vannamei","authors":"Kangyuan Qu , Sukma Melati , Junwei Zeng , Jiayu Li , Menglin Shi , Liutong Chen , Yucheng Liu , Shiwei Xie","doi":"10.1016/j.hazadv.2024.100456","DOIUrl":"10.1016/j.hazadv.2024.100456","url":null,"abstract":"<div><p>Deltamethrin (DM) use in agricultural production and storage can result in the presence of residues in several feed ingredients, which can then be ingested by aquatic animals, potentially leading to adverse health effects. Although the potential toxicity of the lipophilic deltamethrin has been evaluated in several studies, there is a paucity of comprehensive studies on the negative effects induced by chronic exposure of shrimp to deltamethrin at different dietary lipid levels. A feeding experiment of six weeks was carried out to assess whether alterations in dietary lipid levels have an impact on the toxicity of DM. In a feeding experiment on <em>Litopenaeus vannamei</em>, the effects of dietary fat levels on the toxicity of DM were studied. There were six distinct diets created comprising three levels of DM (0.2 mg⋅kg<sup>–1</sup>, 1 mg⋅kg<sup>–1</sup>, 5 mg⋅kg<sup>–1</sup>), and two lipid levels (6.96 %, 10.88 %). The diets were designated as LF0.2, LF1, LF5, HF0.2, HF1, HF5. The growth performance and whole shrimp body lipid were reduced with the increase of DM addition to the diet, and DM caused abnormal changes in lipoproteins (LDL, HDL, LPS) in shrimp when feeding diets containing high doses of DM. Furthermore, GOT, GPT, AKP, and ACP activities were found to be significantly increased by long-term exposure to DM. Meanwhile, the way that genes linked to the nuclear factor kappa-B immune signaling pathway showed a significant increase in the hepatopancreas (<em>dorsal, imd, pelle, ikkβ</em>), intestine (<em>imd, tube, pelle</em>), and muscle (<em>toll, imd, pelle</em>) of shrimp following exposure to DM. Similarly, cellular autophagy genes in the hepatopancreas (<em>atg9, atg12</em>), muscle (<em>atg3, atg9</em>), and intestine (<em>atg3, atg5, atg9, beclin, atg13</em>) were significantly upregulated in a dose-dependent manner after shrimp chronic exposure to DM. Histopathological damage was also induced in the muscles under DM exposure. In summary, chronic exposure to DM resulted in a slowing of growth performance, disruption of lipoprotein metabolism, impairment of hepatopancreatic, intestinal, and muscle-related immune functions, as well as the promotion of autophagy and damage to shrimp muscle.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"15 ","pages":"Article 100456"},"PeriodicalIF":5.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000573/pdfft?md5=596322a47aa8d3de166df8a0aa98fd48&pid=1-s2.0-S2772416624000573-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}