Emerging pollutants such as active pharmaceutical compounds (APCs) excreted by humans and animals are of growing concern due to their environmental impacts. This study aimed at to assess the phycoremediation potential of the microalgae Scenedesmus subspicatus for the removal of APCs, from water under controlled light and temperature conditions. The effects of hydrolysis and photolysis on the compounds were also monitored. Known concentrations of acetaminophen, acetylsalicylic acid, salicylic acid, albendazole, atenolol, propranolol, caffeine, carbamazepine, ibuprofen, ciprofloxacin, norfloxacin, ofloxacin, sulfamethoxazole, and trimethoprim were added in the microalgae medium. Samples were collected at 7-day intervals over twenty-one days and analyzed by UHPLC-MS/MS. Salicylic acid, albendazole, acetaminophen, atenolol, propranolol, and sulfamethoxazole were degraded by photolysis, hydrolysis, and phycoremediation, with the latter proving be more efficient. Propranolol and sulfamethoxazole presented low degradation by photolysis and hydrolysis. Some of the investigated compounds showed limited degradation and were not eliminated by any methods. Caffeine, carbamazepine, and trimethoprim were unaffected by hydrolysis, photolysis, or phycoremediation. Microalgae growth during the experiment was limited, suggesting toxic effects of some APCs. The findings highlight the importance of phycoremediation as a promising alternative for removing emerging pollutants from water.