首页 > 最新文献

Algal Research-Biomass Biofuels and Bioproducts最新文献

英文 中文
Substrate functionalization by cold plasma treatments as an alternative process to the cultivation of microalgae in biofilm: Application to Botryococcus 通过冷等离子体处理对基质进行功能化处理,作为在生物膜中培养微藻的替代工艺:应用于植物球菌
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.algal.2024.103728
Microalgae are renowned for their diverse production of molecules, including biofuels. However, biotechnological processes aiming at producing these biomolecules have yet to achieve economic sustainability due to the high costs associated with downstream processing, which can make up to 80 % of the total production costs. Since microalgae immobilized on a flat surface are characterized by a higher productivity and an easier harvesting than bulk culture systems, flat cultures may present better economic viability. Nevertheless, immobilizing filamentous or colonial microalgae on a flat surface is challenging due to their inherent 3D development. In this study, we explored the effectiveness of a plasma-modified polyethylene terephthalate flat surface for improving the immobilization of the green freshwater colonial microalga Botryococcus protuberans, a promising taxon for biofuel production. Plasma treatments were found to alter the wettability and surface energy of polyethylene terephthalate substrates. Botryococcus adhesion was enhanced significantly on O2 plasma-modified substrates compared to untreated substrates. The adhesion was strong enough to prevent colony development in the water column while allowing the development of a biofilm over one month, with minimal impact on their physiology.
微藻类以生产包括生物燃料在内的多种分子而闻名。然而,旨在生产这些生物分子的生物技术工艺尚未实现经济上的可持续性,原因是与下游加工相关的成本较高,可占总生产成本的 80%。与散装培养系统相比,固定在平面上的微藻具有生产率高、收获容易的特点,因此平面培养可能具有更好的经济可行性。然而,由于丝状或菌落微藻固有的三维发育特性,将其固定在平面上具有挑战性。在这项研究中,我们探索了等离子体改性聚对苯二甲酸乙二醇酯平板表面在提高绿色淡水菌落微藻 Botryococcus protuberans 固定化方面的有效性,这种微藻是一种很有希望用于生物燃料生产的类群。研究发现,等离子处理可改变聚对苯二甲酸乙二醇酯基底的润湿性和表面能。与未经处理的基质相比,经 O2 等离子体改性的基质上的肉孢子菌粘附力明显增强。这种粘附力很强,足以防止菌落在水体中发展,同时还能在一个月内形成生物膜,而对其生理机能的影响微乎其微。
{"title":"Substrate functionalization by cold plasma treatments as an alternative process to the cultivation of microalgae in biofilm: Application to Botryococcus","authors":"","doi":"10.1016/j.algal.2024.103728","DOIUrl":"10.1016/j.algal.2024.103728","url":null,"abstract":"<div><div>Microalgae are renowned for their diverse production of molecules, including biofuels. However, biotechnological processes aiming at producing these biomolecules have yet to achieve economic sustainability due to the high costs associated with downstream processing, which can make up to 80 % of the total production costs. Since microalgae immobilized on a flat surface are characterized by a higher productivity and an easier harvesting than bulk culture systems, flat cultures may present better economic viability. Nevertheless, immobilizing filamentous or colonial microalgae on a flat surface is challenging due to their inherent 3D development. In this study, we explored the effectiveness of a plasma-modified polyethylene terephthalate flat surface for improving the immobilization of the green freshwater colonial microalga <em>Botryococcus protuberans</em>, a promising taxon for biofuel production. Plasma treatments were found to alter the wettability and surface energy of polyethylene terephthalate substrates. <em>Botryococcus</em> adhesion was enhanced significantly on O<sub>2</sub> plasma-modified substrates compared to untreated substrates. The adhesion was strong enough to prevent colony development in the water column while allowing the development of a biofilm over one month, with minimal impact on their physiology.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ambivalent effects of mass cultivation of biodiesel producible green alga Tetraselmis striata on a microbial ecosystem: Evidence from mesocosm experiments 大量培养可产生生物柴油的绿藻 Tetraselmis striata 对微生物生态系统的矛盾影响:来自中观宇宙实验的证据
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.algal.2024.103735
A 280-ton plant for the mass cultivation of Tetraselmis striata was operated from 2012 to 2019 to produce biodiesel fuel in western Korean coastal waters (Incheon) as a pilot project. This was the first instance globally where a microalgal mass cultivation plant for biodiesel production was implemented in coastal waters, and no prior studies had investigated the impact of microalgal mass cultivation plant on surrounding microecosystems. In this study, bioreactors (1× and 10×) mimicking a large-scale T. striata cultivation plant were installed in semi-permeable a mesocosms (5 tons) to assess their impact on the microbial ecosystem. The results showed that the release of large amounts of dissolve organic carbon (DOC) from the T. striata bioreactors. The 10× pond had a DOC concentration of 21.3 mg/L compared to the control pond of 2.1 mg/L. For the Water Quality Index (WQI), the 1× and 10× bioreactor installed mesocosms improved from Class II (Good) at the beginning of the experiment to Class I (Excellent) via decreasing nutrient levels and increasing of DO levels. However, from a biodiversity perspective, the microbial ecosystem deteriorated, with reductions in the diversity of zooplankton, ciliates, and phytoplankton. The correlation analysis and random forest variable importance measures indicated that the primary factor driving these changes was the alteration of the bacterial community due to elevated DOC levels. These findings indicate that while the mass cultivation of T. striata may improve physicochemical water quality, it has adverse effects on biological environments. Therefore, it is crucial to monitor physical, chemical, and biological factors comprehensively when cultivating microalgae on a large scale in marine environments.
作为试点项目,韩国西部沿海水域(仁川)从 2012 年至 2019 年运行了一个 280 吨级的条纹四膜藻大规模培育工厂,以生产生物柴油燃料。这是全球首次在近海水域建造用于生产生物柴油的微藻大规模培养工厂,此前也没有研究调查过微藻大规模培养工厂对周围微生态系统的影响。在这项研究中,模拟大规模条纹叶藻培养工厂的生物反应器(1×和 10×)被安装在半透膜中观池(5 吨)中,以评估其对微生物生态系统的影响。结果表明,从 T. striata 生物反应器中释放出大量溶解有机碳(DOC)。10× 池塘的 DOC 浓度为 21.3 mg/L,而对照池塘的 DOC 浓度为 2.1 mg/L。在水质指数(WQI)方面,安装了 1× 和 10× 生物反应器的中观池塘通过降低营养水平和增加溶解氧水平,从实验开始时的二级(良好)提高到一级(优秀)。然而,从生物多样性的角度来看,微生物生态系统恶化了,浮游动物、纤毛虫和浮游植物的多样性减少了。相关性分析和随机森林变量重要性测量结果表明,驱动这些变化的主要因素是 DOC 水平升高导致的细菌群落的改变。这些研究结果表明,虽然大量养殖条纹状藻类可能会改善水质的物理化学状况,但会对生物环境产生不利影响。因此,在海洋环境中大规模培养微藻时,全面监测物理、化学和生物因素至关重要。
{"title":"Ambivalent effects of mass cultivation of biodiesel producible green alga Tetraselmis striata on a microbial ecosystem: Evidence from mesocosm experiments","authors":"","doi":"10.1016/j.algal.2024.103735","DOIUrl":"10.1016/j.algal.2024.103735","url":null,"abstract":"<div><div>A 280-ton plant for the mass cultivation of <em>Tetraselmis striata</em> was operated from 2012 to 2019 to produce biodiesel fuel in western Korean coastal waters (Incheon) as a pilot project. This was the first instance globally where a microalgal mass cultivation plant for biodiesel production was implemented in coastal waters, and no prior studies had investigated the impact of microalgal mass cultivation plant on surrounding microecosystems. In this study, bioreactors (1× and 10×) mimicking a large-scale <em>T. striata</em> cultivation plant were installed in semi-permeable a mesocosms (5 tons) to assess their impact on the microbial ecosystem. The results showed that the release of large amounts of dissolve organic carbon (DOC) from the <em>T. striata</em> bioreactors. The 10× pond had a DOC concentration of 21.3 mg/L compared to the control pond of 2.1 mg/L. For the Water Quality Index (WQI), the 1× and 10× bioreactor installed mesocosms improved from Class II (Good) at the beginning of the experiment to Class I (Excellent) via decreasing nutrient levels and increasing of DO levels. However, from a biodiversity perspective, the microbial ecosystem deteriorated, with reductions in the diversity of zooplankton, ciliates, and phytoplankton. The correlation analysis and random forest variable importance measures indicated that the primary factor driving these changes was the alteration of the bacterial community due to elevated DOC levels. These findings indicate that while the mass cultivation of <em>T. striata</em> may improve physicochemical water quality, it has adverse effects on biological environments. Therefore, it is crucial to monitor physical, chemical, and biological factors comprehensively when cultivating microalgae on a large scale in marine environments.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing nutrient bioavailability in distillery wastewater through electrochemical oxidation for microalgal growth: Insights on biomass yield, nutrient utilisation, and VFA-assisted carbon capture 通过电化学氧化促进微藻生长,提高酒厂废水中营养物质的生物利用率:生物质产量、养分利用和 VFA 辅助碳捕获的启示
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.algal.2024.103734
Two-stage treatment of distillery wastewater (DWW) via electrochemical oxidation (EO) using Ti-RuO2 anodes (35 cm2 area) followed by mixotrophic microalgal treatment was investigated. In the first-stage, EO of DWW has improved the bioavailability of nitrogen and phosphorus at 3.95–5.14 mg/Ah and 0.43–1.02 mg/Ah, respectively, which had strong correlation with current density. EO also reduced ∼30 % TOC, 53 % COD and ∼44 % TN. In the second-stage, the ability of a novel microalgae, Asterarsys quadricellulare to mitigate the toxicity of electrochemically oxidised DWW (EO-DWW) while utilising the nutrients effectively was investigated. The mixotrophic algal growth effectively utilised 85 % phosphate and 91 % nitrate present in EO-DWW at a corresponding growth rate of 0.73 d−1. The algal biomass was found to have ∼15 % carbohydrates, ∼12 % lipids and ∼33 % proteins. Subsequently, a bench-scale bubble column photobioreactor investigation was carried out to understand the carbon dynamics during the growth of Asterarsys quadricellulare. The metabolic uptake of monocarboxylic volatile fatty acids (VFA) and nitrate were found to release OH ions, which eventually helped in dissolving CO2 in the reactor through a diffusion-limited process. The total energy spent in bench-scale EO system was 840 kWh (3024 kJ) per L of DWW, and the energy recovery potential of second-stage algal reactor was ∼8.7 %. The microtoxicity experiments with Alivibrio fischeri revealed that two-stage treated DWW was found to be safe for reuse as the microalgal growth has abated the toxicity of EO-DWW.
研究人员使用 Ti-RuO2 阳极(面积为 35 cm2)对酒厂废水进行了两阶段电化学氧化(EO)处理,然后进行混养微藻处理。在第一阶段,DWW 的电化学氧化提高了氮和磷的生物利用率,分别为 3.95-5.14 mg/Ah 和 0.43-1.02 mg/Ah,这与电流密度密切相关。环氧乙烷还降低了 30 % 的 TOC、53 % 的 COD 和 44 % 的 TN。在第二阶段,研究了新型微藻 Asterarsys quadricellulare 在有效利用营养物质的同时减轻电化学氧化 DWW(EO-DWW)毒性的能力。混养藻类的生长有效利用了 EO-DWW 中 85% 的磷酸盐和 91% 的硝酸盐,相应的生长率为 0.73 d-1。藻类生物量中碳水化合物含量为 15%,脂类含量为 12%,蛋白质含量为 33%。随后,进行了一项台架规模的气泡柱光生物反应器研究,以了解四角星藻生长过程中的碳动态。研究发现,单羧基挥发性脂肪酸(VFA)和硝酸盐的代谢吸收释放出羟基离子,最终通过扩散限制过程帮助溶解反应器中的二氧化碳。台式环氧乙烷系统的总能耗为每升 DWW 840 kWh(3024 kJ),二级藻类反应器的能量回收潜力为 8.7%。用弗氏弧菌(Alivibrio fischeri)进行的微毒性实验表明,经过两级处理的 DWW 可以安全再利用,因为微藻的生长减轻了环氧乙烷-DWW 的毒性。
{"title":"Enhancing nutrient bioavailability in distillery wastewater through electrochemical oxidation for microalgal growth: Insights on biomass yield, nutrient utilisation, and VFA-assisted carbon capture","authors":"","doi":"10.1016/j.algal.2024.103734","DOIUrl":"10.1016/j.algal.2024.103734","url":null,"abstract":"<div><div>Two-stage treatment of distillery wastewater (DWW) via electrochemical oxidation (EO) using Ti-RuO<sub>2</sub> anodes (35 cm<sup>2</sup> area) followed by mixotrophic microalgal treatment was investigated. In the first-stage, EO of DWW has improved the bioavailability of nitrogen and phosphorus at 3.95–5.14 mg/Ah and 0.43–1.02 mg/Ah, respectively, which had strong correlation with current density. EO also reduced ∼30 % TOC, 53 % COD and ∼44 % TN. In the second-stage, the ability of a novel microalgae, <em>Asterarsys quadricellulare</em> to mitigate the toxicity of electrochemically oxidised DWW (EO-DWW) while utilising the nutrients effectively was investigated. The mixotrophic algal growth effectively utilised 85 % phosphate and 91 % nitrate present in EO-DWW at a corresponding growth rate of 0.73 d<sup>−1</sup>. The algal biomass was found to have ∼15 % carbohydrates, ∼12 % lipids and ∼33 % proteins. Subsequently, a bench-scale bubble column photobioreactor investigation was carried out to understand the carbon dynamics during the growth of <em>Asterarsys quadricellulare</em>. The metabolic uptake of monocarboxylic volatile fatty acids (VFA) and nitrate were found to release OH<sup>−</sup> ions, which eventually helped in dissolving CO<sub>2</sub> in the reactor through a diffusion-limited process. The total energy spent in bench-scale EO system was 840 kWh (3024 kJ) per L of DWW, and the energy recovery potential of second-stage algal reactor was ∼8.7 %. The microtoxicity experiments with <em>Alivibrio fischeri</em> revealed that two-stage treated DWW was found to be safe for reuse as the microalgal growth has abated the toxicity of EO-DWW.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of cellulose nanocrystals on the emulsion stability and rheological properties of microalgal Pickering emulsions 纤维素纳米晶对微藻皮克林乳液稳定性和流变特性的影响
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.algal.2024.103731
This study investigates the effect of cellulose nanocrystals (CNCs) to Pickering emulsions prepared with microalgal particles (Spirulina sp. (SPI), Chlorella sp. HS2 (CLO)). The microalgae particles show a weak interfacial localization and Pickering behavior on the O/W emulsion depending on the size (avg. drop size ∼5.39 μm with SPI and 22.15 μm with CLO), resulting in a different stabilization effect. When CNC is additionally mixed with the Pickering emulsions including large microalgae particles (CLO), CNC replaces microalgae particles and localizes at the interface, enhancing strong emulsion stabilization. For the Pickering emulsions including small microalgae (SPI), CNC localizes at the continuous phase, forming a network structure regardless of the concentration. This interfacial localization behavior of CNC against microalgae particles is reflected in the rheological behavior of the Pickering emulsion. Depending on the location of CNC, the emulsions exhibit the two-step yielding behavior, mainly attributed to the CNC network in the continuous phase. The complex role of particles in the emulsion system is more sensitively reflected in the large amplitude oscillatory shear (LAOS) region, characterized using the sequence of physical process (SPP) rheological analysis. The maximum elasticity (Emax) in SPP analysis, which indicates the recovery of the deformed structure, exhibits a significant difference, discriminating structural characteristics of CNC dispersion incorporated with microalgae particles. Emulsion with CLO-CNC has lower Emax than the SPI-CNC case because CNC particles disperse at the interface and the continuous phase. Then the distance between CNC particles is longer, resulting in a weak network structure throughout the emulsion. Due to a weak network of CNC, the emulsion is more vulnerable to coalescence compared to the SPI-CNC system. Therefore, this study suggests that CNC particles added to the Pickering emulsion with microalgae compete to localize at the interface and give coalescence suppression effects to the emulsion. Also, for the Pickering emulsion system composed of multi-particles, rheological analysis including SPP analysis successfully indicates structural characteristics and flow-induced stabilization of Pickering emulsions with multi-particles that microscopic characterization could not detect.
本研究探讨了纤维素纳米晶体(CNC)对使用微藻颗粒(螺旋藻(SPI)、小球藻 HS2(CLO))制备的皮克林乳液的影响。微藻颗粒的大小不同(SPI 的平均液滴大小为 5.39 μm,CLO 的平均液滴大小为 22.15 μm),其在 O/W 型乳液中的界面定位和 Pickering 行为也不同,从而产生了不同的稳定效果。当 CNC 与含有大颗粒微藻的 Pickering 乳液(CLO)混合时,CNC 取代了微藻颗粒,并在界面处定位,增强了乳液的稳定性。对于含有小微藻的皮克林乳液(SPI),无论浓度如何,氯化萘都会定位于连续相,形成网络结构。CNC 针对微藻颗粒的这种界面定位行为反映在皮克林乳液的流变行为中。根据氯化萘的位置,乳液表现出两步屈服行为,这主要归因于连续相中的氯化萘网络。颗粒在乳液体系中的复杂作用在大振幅振荡剪切(LAOS)区域得到了更敏感的反映,该区域采用物理过程序列(SPP)流变分析法进行表征。SPP 分析中的最大弹性(Emax)表示变形结构的恢复情况,显示出显著差异,可区分加入微藻颗粒的 CNC 分散体的结构特征。CLO-CNC 乳液的 Emax 值低于 SPI-CNC 乳液,这是因为 CNC 颗粒分散在界面和连续相上。因此 CNC 颗粒之间的距离较长,导致整个乳液的网络结构较弱。与 SPI-CNC 系统相比,由于 CNC 网络结构薄弱,乳液更容易发生凝聚。因此,本研究表明,添加到含有微藻的 Pickering 乳液中的 CNC 粒子会竞争性地定位于界面处,从而起到抑制乳液凝聚的作用。此外,对于由多颗粒组成的 Pickering 乳化液体系,流变学分析(包括 SPP 分析)成功地表明了含有多颗粒的 Pickering 乳化液的结构特征和流动诱导稳定,而这是微观表征无法检测到的。
{"title":"Effect of cellulose nanocrystals on the emulsion stability and rheological properties of microalgal Pickering emulsions","authors":"","doi":"10.1016/j.algal.2024.103731","DOIUrl":"10.1016/j.algal.2024.103731","url":null,"abstract":"<div><div>This study investigates the effect of cellulose nanocrystals (CNCs) to Pickering emulsions prepared with microalgal particles (<em>Spirulina</em> sp. (SPI), <em>Chlorella</em> sp. HS2 (CLO)). The microalgae particles show a weak interfacial localization and Pickering behavior on the O/W emulsion depending on the size (avg. drop size ∼5.39 μm with SPI and 22.15 μm with CLO), resulting in a different stabilization effect. When CNC is additionally mixed with the Pickering emulsions including large microalgae particles (CLO), CNC replaces microalgae particles and localizes at the interface, enhancing strong emulsion stabilization. For the Pickering emulsions including small microalgae (SPI), CNC localizes at the continuous phase, forming a network structure regardless of the concentration. This interfacial localization behavior of CNC against microalgae particles is reflected in the rheological behavior of the Pickering emulsion. Depending on the location of CNC, the emulsions exhibit the two-step yielding behavior, mainly attributed to the CNC network in the continuous phase. The complex role of particles in the emulsion system is more sensitively reflected in the large amplitude oscillatory shear (LAOS) region, characterized using the sequence of physical process (SPP) rheological analysis. The maximum elasticity (E<sub>max</sub>) in SPP analysis, which indicates the recovery of the deformed structure, exhibits a significant difference, discriminating structural characteristics of CNC dispersion incorporated with microalgae particles. Emulsion with CLO-CNC has lower E<sub>max</sub> than the SPI-CNC case because CNC particles disperse at the interface and the continuous phase. Then the distance between CNC particles is longer, resulting in a weak network structure throughout the emulsion. Due to a weak network of CNC, the emulsion is more vulnerable to coalescence compared to the SPI-CNC system. Therefore, this study suggests that CNC particles added to the Pickering emulsion with microalgae compete to localize at the interface and give coalescence suppression effects to the emulsion. Also, for the Pickering emulsion system composed of multi-particles, rheological analysis including SPP analysis successfully indicates structural characteristics and flow-induced stabilization of Pickering emulsions with multi-particles that microscopic characterization could not detect.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular insights into the enhanced growth of cyanobacteria by adaptive laboratory evolution in wastewater environments 通过适应性实验室进化提高蓝藻在废水环境中生长的分子见解
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.algal.2024.103724
The expansion of population leads to an increase in nutrient-rich wastewater, posing a threat to the ecosystem. The cultivation of economically beneficial cyanobacteria consumes amounts of freshwater, exacerbating the depletion of freshwater resources. This study investigates the potential of utilizing adaptive laboratory evolution (ALE) to enhance the growth performance of Synechocystis sp. PCC 6803, a model cyanobacterium, in wastewater. After 374 days of ALE, a strain designated as WW was successfully evolved. When cultivated in wastewater, WW exhibited a specific growth rate of 0.317 per day and achieved a dry weight of 0.693 g/L by the 13th day, outperforming the wild type. WW achieved removal efficiencies of 35.55 % for total nitrogen and 60.95 % for total phosphorus in the wastewater. RNA sequencing and photosynthetic measurements revealed that enhanced photosynthetic capacity in the WW contributes to its superior growth performance. The lipid content in WW was 16.19 %, with a notable increase in the proportion of polyunsaturated fatty acids. The shift in fatty acid composition has a consequential impact on biodiesel index, including oxidation stability and saponification number. This study not only demonstrates the effectiveness of ALE in enhancing the growth of cyanobacteria in wastewater for biofuel production, but also offers significant insights into the molecular mechanisms that drive this improved performance.
人口膨胀导致富含营养物质的废水增加,对生态系统构成威胁。对经济有益的蓝藻的培育需要消耗大量淡水,加剧了淡水资源的枯竭。本研究探讨了利用实验室适应性进化(ALE)提高蓝藻模型 Synechocystis sp.经过 374 天的适应性实验室进化,一株名为 WW 的菌株成功进化。在废水中培养时,WW 的特定生长率为每天 0.317,到第 13 天时干重达到 0.693 克/升,优于野生型。WW 对废水中总氮和总磷的去除率分别为 35.55% 和 60.95%。RNA 测序和光合作用测量结果表明,WW光合作用能力的增强是其生长性能优越的原因之一。WW 中的脂质含量为 16.19%,多不饱和脂肪酸的比例明显增加。脂肪酸组成的变化会对生物柴油的氧化稳定性和皂化度等指标产生影响。这项研究不仅证明了 ALE 在提高废水中蓝藻的生长以生产生物燃料方面的有效性,而且还为我们深入了解驱动这种性能改善的分子机制提供了重要依据。
{"title":"Molecular insights into the enhanced growth of cyanobacteria by adaptive laboratory evolution in wastewater environments","authors":"","doi":"10.1016/j.algal.2024.103724","DOIUrl":"10.1016/j.algal.2024.103724","url":null,"abstract":"<div><div>The expansion of population leads to an increase in nutrient-rich wastewater, posing a threat to the ecosystem. The cultivation of economically beneficial cyanobacteria consumes amounts of freshwater, exacerbating the depletion of freshwater resources. This study investigates the potential of utilizing adaptive laboratory evolution (ALE) to enhance the growth performance of <em>Synechocystis</em> sp. PCC 6803, a model cyanobacterium, in wastewater. After 374 days of ALE, a strain designated as WW was successfully evolved. When cultivated in wastewater, WW exhibited a specific growth rate of 0.317 per day and achieved a dry weight of 0.693 g/L by the 13th day, outperforming the wild type. WW achieved removal efficiencies of 35.55 % for total nitrogen and 60.95 % for total phosphorus in the wastewater. RNA sequencing and photosynthetic measurements revealed that enhanced photosynthetic capacity in the WW contributes to its superior growth performance. The lipid content in WW was 16.19 %, with a notable increase in the proportion of polyunsaturated fatty acids. The shift in fatty acid composition has a consequential impact on biodiesel index, including oxidation stability and saponification number. This study not only demonstrates the effectiveness of ALE in enhancing the growth of cyanobacteria in wastewater for biofuel production, but also offers significant insights into the molecular mechanisms that drive this improved performance.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational fluid dynamics (CFD) simulation modeling for the cultivation of microalgal monoculture in axenic enclosed bubble column photobioreactor (BCPBR) 在轴向封闭式气泡柱光生物反应器(BCPBR)中培养单一微藻的计算流体动力学(CFD)模拟模型
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.algal.2024.103725
Researchers are more concerned with axenic-enclosed PBRs, where there is less or no chance of contamination during the production of biochemical and highly valuable metabolites, and monocultures of microalgae are being grown more frequently. It is a closed, manufactured vessel that aids in the photosynthesis of microalgal cells using artificial light or sunlight as the energy source. In this study, the bubble column PBR (BCPBR) was selected because it possessed some advantages over other PBRs for the growth of Chlorella vulgaris. The BCPBR system prevents contact between the enclosed microalgal cells and the environment, allowing the culturing of microalgae species that are difficult to grow in open pond systems. To compare BCPBR performance quantitatively, the efficient mixing expected in BCPBR, as discussed in the literature, was applied to the CFD model. The experimental results observed during the cultivation of C. vulgaris with restaurant wastewater (RWW) in BCPBR clearly showed better mixing, high growth, and improved treatment efficiency. CFD analysis was conducted on the evolution of bubbles in the BCPBR. The Pressure-Implicit with Splitting of Operators (PISO) pressure correction method is used for velocity and pressure coupling. A geo-reconstruct approach is used to construct the interface, and a second-order upwind calculation technique is used to determine the flow parameters. Therefore, CFD simulation in this study will contribute to the following aspects: (i) the volume fraction contours and velocity contours are going to validate the experimental study as the homogenous mixing favors the growth and productivity, (ii) To study how the size of the nozzle and inlet velocity affect the turbulence generated by bubbles in a BCPBR to identify the optimal nozzle size and velocity for the required turbulence.
研究人员更关注的是轴向封闭式 PBR,因为在生产生化和高价值代谢物的过程中,受到污染的机会较少或没有污染,而且微藻的单培也越来越频繁。它是一种封闭的人造容器,利用人造光或太阳光作为能源,帮助微藻细胞进行光合作用。在本研究中,之所以选择气泡柱 PBR(BCPBR),是因为与其他 PBR 相比,它在普通小球藻的生长方面具有一些优势。BCPBR 系统可防止封闭的微藻细胞与环境接触,从而可以培养难以在开放池塘系统中生长的微藻物种。为了定量比较 BCPBR 的性能,我们将文献中讨论的 BCPBR 中预期的高效混合应用于 CFD 模型。在 BCPBR 中用餐饮废水(RWW)培养粗毛藻时观察到的实验结果清楚地表明,混合效果更好,粗毛藻生长旺盛,处理效率提高。对 BCPBR 中气泡的演变进行了 CFD 分析。速度和压力耦合采用了压力-隐含运算器分割(PISO)压力校正方法。采用地理重构法构建界面,并使用二阶上风计算技术确定流动参数。因此,本研究中的 CFD 模拟将在以下方面做出贡献:(i) 体积分数等值线和速度等值线将验证实验研究,因为均匀混合有利于气泡的生长和生产率;(ii) 研究喷嘴尺寸和入口速度如何影响 BCPBR 中气泡产生的湍流,以确定所需湍流的最佳喷嘴尺寸和速度。
{"title":"Computational fluid dynamics (CFD) simulation modeling for the cultivation of microalgal monoculture in axenic enclosed bubble column photobioreactor (BCPBR)","authors":"","doi":"10.1016/j.algal.2024.103725","DOIUrl":"10.1016/j.algal.2024.103725","url":null,"abstract":"<div><div>Researchers are more concerned with axenic-enclosed PBRs, where there is less or no chance of contamination during the production of biochemical and highly valuable metabolites, and monocultures of microalgae are being grown more frequently. It is a closed, manufactured vessel that aids in the photosynthesis of microalgal cells using artificial light or sunlight as the energy source. In this study, the bubble column PBR (BCPBR) was selected because it possessed some advantages over other PBRs for the growth of <em>Chlorella vulgaris</em>. The BCPBR system prevents contact between the enclosed microalgal cells and the environment, allowing the culturing of microalgae species that are difficult to grow in open pond systems. To compare BCPBR performance quantitatively, the efficient mixing expected in BCPBR, as discussed in the literature, was applied to the CFD model. The experimental results observed during the cultivation of <em>C. vulgaris</em> with restaurant wastewater (RWW) in BCPBR clearly showed better mixing, high growth, and improved treatment efficiency. CFD analysis was conducted on the evolution of bubbles in the BCPBR. The Pressure-Implicit with Splitting of Operators (PISO) pressure correction method is used for velocity and pressure coupling. A geo-reconstruct approach is used to construct the interface, and a second-order upwind calculation technique is used to determine the flow parameters. Therefore, CFD simulation in this study will contribute to the following aspects: (i) the volume fraction contours and velocity contours are going to validate the experimental study as the homogenous mixing favors the growth and productivity, (ii) To study how the size of the nozzle and inlet velocity affect the turbulence generated by bubbles in a BCPBR to identify the optimal nozzle size and velocity for the required turbulence.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the interventional effects of Chlamydomonas reinhardtii peptides on chronic unpredictable mild stress-induced depressive-like model mice through metabolomics and microbiota 通过代谢组学和微生物群研究衣藻多肽对慢性不可预测轻度应激诱导的抑郁样模型小鼠的干预作用
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-23 DOI: 10.1016/j.algal.2024.103715
Depression is a progressive neurodegenerative disease characterized by high prevalence, high suicide rate and high recurrence rate. In this study, the protein from Chlamydomonas reinhardtii was extracted and neutral protease hydrolysate (NPH) was obtained. Its in vitro MAO-A (Monoamine oxidase A) inhibitory activity and in vivo anti-depressive effects in chronic unpredictable mild stress (CUMS) model mice were investigated. The results demonstrated that NPH can improve depressive behaviour in CUMS model mice by elevating neurotransmitter levels and alleviating hippocampal tissue structure damage. The metabolomic analysis of brain and serum samples showed that their common metabolic pathways associated with anti-depressive effects are mainly alanine, aspartate, and glutamate metabolism, glycerophospholipid metabolism, tryptophan metabolism, and caffeine metabolism. Then, the gut microbiota analysis of feces indicated that 8 species with significant changes were associated with anti-depressive effects. Finally, 5 pairs of highly correlated metabolite-bacterium pairs were identified to modulate depressive behaviours. Taken together, the present data suggests that Chlamydomonas reinhardtii-derived hydrolysate could be used for development of functional foods with potential to improve depression.
抑郁症是一种进行性神经退行性疾病,具有高发病率、高自杀率和高复发率的特点。本研究从衣藻中提取蛋白质,得到中性蛋白酶水解物(NPH)。研究了NPH的体外MAO-A(单胺氧化酶A)抑制活性和在慢性不可预知轻度应激(CUMS)模型小鼠体内的抗抑郁作用。结果表明,NPH能通过提高神经递质水平和减轻海马组织结构损伤来改善CUMS模型小鼠的抑郁行为。脑样本和血清样本的代谢组学分析表明,它们与抗抑郁作用相关的常见代谢途径主要是丙氨酸、天门冬氨酸和谷氨酸代谢、甘油磷脂代谢、色氨酸代谢和咖啡因代谢。然后,粪便中的肠道微生物群分析表明,有 8 个物种的显著变化与抗抑郁作用有关。最后,还发现了 5 对高度相关的代谢物-细菌配对,可调节抑郁行为。综上所述,本研究的数据表明,衣藻衍生的水解物可用于开发具有改善抑郁潜能的功能性食品。
{"title":"Study on the interventional effects of Chlamydomonas reinhardtii peptides on chronic unpredictable mild stress-induced depressive-like model mice through metabolomics and microbiota","authors":"","doi":"10.1016/j.algal.2024.103715","DOIUrl":"10.1016/j.algal.2024.103715","url":null,"abstract":"<div><div>Depression is a progressive neurodegenerative disease characterized by high prevalence, high suicide rate and high recurrence rate. In this study, the protein from <em>Chlamydomonas reinhardtii</em> was extracted and neutral protease hydrolysate (NPH) was obtained. Its in vitro MAO-A (Monoamine oxidase A) inhibitory activity and in vivo anti-depressive effects in chronic unpredictable mild stress (CUMS) model mice were investigated. The results demonstrated that NPH can improve depressive behaviour in CUMS model mice by elevating neurotransmitter levels and alleviating hippocampal tissue structure damage. The metabolomic analysis of brain and serum samples showed that their common metabolic pathways associated with anti-depressive effects are mainly alanine, aspartate, and glutamate metabolism, glycerophospholipid metabolism, tryptophan metabolism, and caffeine metabolism. Then, the gut microbiota analysis of feces indicated that 8 species with significant changes were associated with anti-depressive effects. Finally, 5 pairs of highly correlated metabolite-bacterium pairs were identified to modulate depressive behaviours. Taken together, the present data suggests that <em>Chlamydomonas reinhardtii</em>-derived hydrolysate could be used for development of functional foods with potential to improve depression.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing phlorotannins extraction from Fucus vesiculosus using Box-Behnken design: Unveiling techniques for enhanced antioxidant activity and metabolic enzyme inhibition 利用 Box-Behnken 设计优化从 Fucus vesiculosus 中提取叶绿素:揭示增强抗氧化活性和抑制代谢酶的技术
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-22 DOI: 10.1016/j.algal.2024.103723
Phlorotannins, phenolic compounds found in brown macroalgae, exhibit potential bioactive effects. This study evaluated the extraction of phlorotannins from Fucus vesiculosus using conventional and ultrasound-assisted extraction (UAE) methods, focusing on solvent-material ratio, solvent concentration, extraction time, and sonication power for UAE. The experiments, designed using a Box-Behnken design, measured total phlorotannin content (TPhC), DPPH, FRAP, and ABTS. The conventional method, under optimal conditions, produced TPhC, DPPH, FRAP, and ABTS values of 512.25 ± 14.26 mg PGE/100 g, 29.70 ± 1.40 mg TE/100 g, 589.57 ± 15.06 mg TE/100 g, and 332.73 ± 31.03 mg TE/100 g, respectively. The UAE method, under its optimal conditions, yielded higher values: 954.00 ± 33.65 mg PGE/100 g, 146.35 ± 3.30 mg TE/100 g, 1037.61 ± 32.93 mg TE/100 g, and 809.95 ± 46.58 mg TE/100 g. The extracts were tested for inhibitory effects on α-amylase and α-glucosidase, with the purified UAE extract showing greater inhibition of α-amylase (IC50 = 7.06 ± 0.67 μg/mL) compared to acarbose (IC50 = 14.63 ± 0.28 μg/mL). For α-glucosidase, acarbose had higher activity (IC50 = 11.54 ± 0.04 μg/mL) than the UAE purified extract (IC50 = 15.04 ± 0.07 μg/mL). UHPLC-qTOF-MS analysis identified various phlorotannin derivatives, with Tetrafucotetraphlorethol (m/z 993) only in the UAE purified extract. This study concludes that purified phlorotannin extract from UAE can potentially regulate α-amylase and α-glucosidase, enzymes linked to metabolic disorders like diabetes and obesity.
绿单宁是一种存在于棕色大型藻类中的酚类化合物,具有潜在的生物活性作用。本研究评估了采用传统和超声辅助萃取(UAE)方法从岩藻中萃取绿单宁的情况,重点关注 UAE 的溶剂-材料比、溶剂浓度、萃取时间和超声功率。实验采用 Box-Behnken 设计,测量了总单宁含量(TPhC)、DPPH、FRAP 和 ABTS。在最佳条件下,传统方法产生的 TPhC、DPPH、FRAP 和 ABTS 值分别为 512.25 ± 14.26 毫克 PGE/100 克、29.70 ± 1.40 毫克 TE/100 克、589.57 ± 15.06 毫克 TE/100 克和 332.73 ± 31.03 毫克 TE/100 克。在最佳条件下,阿联酋方法得到了更高的数值:954.00 ± 33.65 mg PGE/100 g、146.35 ± 3.30 mg TE/100 g、1037.61 ± 32.93 mg TE/100 g 和 809.95 ± 46.58 mg TE/100 g。测试了提取物对α-淀粉酶和α-葡萄糖苷酶的抑制作用,与阿卡波糖(IC50 = 14.63 ± 0.28 μg/mL)相比,纯化的 UAE 提取物对α-淀粉酶的抑制作用更大(IC50 = 7.06 ± 0.67 μg/mL)。对于α-葡萄糖苷酶,阿卡波糖的活性(IC50 = 11.54 ± 0.04 μg/mL)高于阿联酋纯化提取物(IC50 = 15.04 ± 0.07 μg/mL)。超高效液相色谱-qTOF-MS分析鉴定出了多种绿丹宁衍生物,其中只有阿联酋纯化提取物中含有四桉叶油醇(m/z 993)。这项研究的结论是,从阿联酋纯化的叶单宁提取物有可能调节α-淀粉酶和α-葡萄糖苷酶,这些酶与糖尿病和肥胖症等代谢紊乱有关。
{"title":"Optimizing phlorotannins extraction from Fucus vesiculosus using Box-Behnken design: Unveiling techniques for enhanced antioxidant activity and metabolic enzyme inhibition","authors":"","doi":"10.1016/j.algal.2024.103723","DOIUrl":"10.1016/j.algal.2024.103723","url":null,"abstract":"<div><div>Phlorotannins, phenolic compounds found in brown macroalgae, exhibit potential bioactive effects. This study evaluated the extraction of phlorotannins from <em>Fucus vesiculosus</em> using conventional and ultrasound-assisted extraction (UAE) methods, focusing on solvent-material ratio, solvent concentration, extraction time, and sonication power for UAE. The experiments, designed using a Box-Behnken design, measured total phlorotannin content (TPhC), DPPH, FRAP, and ABTS. The conventional method, under optimal conditions, produced TPhC, DPPH, FRAP, and ABTS values of 512.25 ± 14.26 mg PGE/100 g, 29.70 ± 1.40 mg TE/100 g, 589.57 ± 15.06 mg TE/100 g, and 332.73 ± 31.03 mg TE/100 g, respectively. The UAE method, under its optimal conditions, yielded higher values: 954.00 ± 33.65 mg PGE/100 g, 146.35 ± 3.30 mg TE/100 g, 1037.61 ± 32.93 mg TE/100 g, and 809.95 ± 46.58 mg TE/100 g. The extracts were tested for inhibitory effects on α-amylase and α-glucosidase, with the purified UAE extract showing greater inhibition of α-amylase (IC<sub>50</sub> = 7.06 ± 0.67 μg/mL) compared to acarbose (IC<sub>50</sub> = 14.63 ± 0.28 μg/mL). For α-glucosidase, acarbose had higher activity (IC<sub>50</sub> = 11.54 ± 0.04 μg/mL) than the UAE purified extract (IC<sub>50</sub> = 15.04 ± 0.07 μg/mL). UHPLC-qTOF-MS analysis identified various phlorotannin derivatives, with Tetrafucotetraphlorethol (<em>m</em>/<em>z</em> 993) only in the UAE purified extract. This study concludes that purified phlorotannin extract from UAE can potentially regulate α-amylase and α-glucosidase, enzymes linked to metabolic disorders like diabetes and obesity.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dietary supplementation of Sargassum fusiforme can effectively alleviate high-fat diet induced metabolic abnormalities 膳食补充马尾藻能有效缓解高脂饮食引起的代谢异常
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-22 DOI: 10.1016/j.algal.2024.103722
Sargassum fusiforme, a brown seaweed widely consumed as a culinary delicacy and medicinal herb in East Asian countries, contains multiple bioactive compounds with anti-inflammatory, antioxidant, and anti-obesity properties. This suggests that its dietary consumption could help mitigate metabolic diseases induced by high-fat diet (HFD). To test this hypothesis, we initially analyzed the nutritional components of the macroalga, and evaluated its acute oral toxicity and long-term safety. Subsequently, we explored the impacts of its dietary intake on HFD-fed mice. Additionally, 16S rRNA sequencing was employed to further elucidate the mechanism underlying the protective effects of this macroalga against HFD-induced metabolic abnormalities. Our results revealled that S. fusiforme has a desirable nutrient profile, characterized by rich carbohydrates, polyunsaturated fatty acids, and carotenoids, and is also highly safe for consumption. Its dietary intake remarkably alleviated HFD-induced metabolic disorders. Analysis of gut microbiota showed that HFD consumption increased the relative abundance of Firmicutes and decreased Bacteroidetes. This trend was further exacerbated by S. fusiforme supplementation, resulting in a higher Firmicutes/Bacteroidetes ratio compared to both the control and HFD groups. At the genus level, Muribaculum, Lactobacillus, Clostridia_UCG_014, Clostridium_sp, Acetatifactor, Eubacterium_coprostanoligenes, and IS_44 (from family Nitrosomonadaceae) were significantly enriched in the mice supplemented with S. fusiforme. These findings support the potential use of S. fusiforme as a functional food to counteract HFD-induced metabolic dysbiosis.
马尾藻(Sargassum fusiforme)是一种褐色海藻,在东亚国家作为美食和药材被广泛食用,它含有多种生物活性化合物,具有抗炎、抗氧化和抗肥胖的特性。这表明,从饮食中摄入这种物质有助于减轻高脂饮食(HFD)引起的代谢性疾病。为了验证这一假设,我们首先分析了大型藻类的营养成分,并评估了其急性口服毒性和长期安全性。随后,我们探讨了从膳食中摄取大叶藻对高脂饮食小鼠的影响。此外,我们还利用 16S rRNA 测序进一步阐明了这种大型藻类对 HFD 引起的代谢异常具有保护作用的机制。我们的研究结果表明,S. fusiforme具有理想的营养成分,富含碳水化合物、多不饱和脂肪酸和类胡萝卜素,食用安全性高。从膳食中摄入这种植物能显著缓解高氟酸诱导的代谢紊乱。对肠道微生物群的分析表明,摄入高频分解膳食会增加固着菌的相对丰度,而减少类杆菌的相对丰度。补充 S. fusiforme 进一步加剧了这一趋势,导致与对照组和高氟日粮组相比,固着菌/类杆菌的比例更高。在属的层面上,补充了扶桑花菌素的小鼠体内的Muribaculum、乳酸杆菌、梭状芽孢杆菌_UCG_014、梭状芽孢杆菌_sp、Acetatifactor、Eubacterium_coprostanoligenes和IS_44(来自亚硝基单胞菌科)显著富集。这些研究结果支持将扶桑花菌素作为一种功能性食品来对抗高氟酸膳食诱导的代谢紊乱。
{"title":"The dietary supplementation of Sargassum fusiforme can effectively alleviate high-fat diet induced metabolic abnormalities","authors":"","doi":"10.1016/j.algal.2024.103722","DOIUrl":"10.1016/j.algal.2024.103722","url":null,"abstract":"<div><div><em>Sargassum fusiforme</em>, a brown seaweed widely consumed as a culinary delicacy and medicinal herb in East Asian countries, contains multiple bioactive compounds with anti-inflammatory, antioxidant, and anti-obesity properties. This suggests that its dietary consumption could help mitigate metabolic diseases induced by high-fat diet (HFD). To test this hypothesis, we initially analyzed the nutritional components of the macroalga, and evaluated its acute oral toxicity and long-term safety. Subsequently, we explored the impacts of its dietary intake on HFD-fed mice. Additionally, 16S rRNA sequencing was employed to further elucidate the mechanism underlying the protective effects of this macroalga against HFD-induced metabolic abnormalities. Our results revealled that <em>S. fusiforme</em> has a desirable nutrient profile, characterized by rich carbohydrates, polyunsaturated fatty acids, and carotenoids, and is also highly safe for consumption. Its dietary intake remarkably alleviated HFD-induced metabolic disorders. Analysis of gut microbiota showed that HFD consumption increased the relative abundance of Firmicutes and decreased Bacteroidetes. This trend was further exacerbated by <em>S. fusiforme</em> supplementation, resulting in a higher Firmicutes/Bacteroidetes ratio compared to both the control and HFD groups. At the genus level, <em>Muribaculum</em>, <em>Lactobacillus</em>, <em>Clostridia_UCG_014</em>, <em>Clostridium</em>_sp, <em>Acetatifactor</em>, <em>Eubacterium_coprostanoligenes</em>, and <em>IS_44</em> (from family Nitrosomonadaceae) were significantly enriched in the mice supplemented with <em>S. fusiforme</em>. These findings support the potential use of <em>S. fusiforme</em> as a functional food to counteract HFD-induced metabolic dysbiosis.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topical formulations contained an extract from marine alga Cladophora glomerata 外用制剂含有海洋藻类 Cladophora glomerata 的提取物
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-21 DOI: 10.1016/j.algal.2024.103717
The Cladophora glomerata is a green alga abundant in fresh and seawater. The extraction of C. glomerata using glycol-based solvents, including butylene glycol (BG), polyethylene glycol 400 (PEG 400), and propylene glycol (PG), as the green solvents to obtain antioxidants and nutrients that can be further used in health care and pharmaceutical applications. The extraction of C. glomerata with glycol-base solvents using the microwave-assisted extraction (MAE) method was optimized. The liquid extraction using 60 % volume by volume of polyethylene glycol yielded the highest total phenolic content (4.00 ± 0.08 mg gallic acid equivalence per g dry weight) and antioxidant activity (IC50 0.14 ± 0.02 mg/mL). The algal extract was stable at pH 6 to 8 and a temperature lower than 25 °C. After incorporating the algal extract in topical formulations including serum and emulgel, we found that the preparations were stable and retained the extract's antioxidant activity. In addition, all algal extracts, extract-loaded serum, and emulgel did not show cytotoxicity effects in normal adult human dermal fibroblasts.
团扇藻是一种绿色藻类,在淡水和海水中含量丰富。使用乙二醇基溶剂(包括丁二醇(BG)、聚乙二醇 400(PEG 400)和丙二醇(PG))作为绿色溶剂萃取团扇藻,可获得抗氧化剂和营养物质,并可进一步应用于保健和制药领域。利用微波辅助萃取(MAE)法,对乙二醇基溶剂萃取草苁蓉进行了优化。使用体积分数为 60% 的聚乙二醇进行液体萃取时,总酚含量(每克干重 4.00 ± 0.08 毫克没食子酸当量)和抗氧化活性(IC50 0.14 ± 0.02 毫克/毫升)最高。海藻提取物在 pH 值为 6 至 8 和温度低于 25 °C 的条件下稳定。将海藻提取物加入血清和凝胶等外用制剂后,我们发现这些制剂非常稳定,并保留了提取物的抗氧化活性。此外,所有海藻萃取物、萃取物负载的血清和凝胶在正常成人真皮成纤维细胞中均未显示出细胞毒性效应。
{"title":"Topical formulations contained an extract from marine alga Cladophora glomerata","authors":"","doi":"10.1016/j.algal.2024.103717","DOIUrl":"10.1016/j.algal.2024.103717","url":null,"abstract":"<div><div>The <em>Cladophora glomerata</em> is a green alga abundant in fresh and seawater. The extraction of <em>C. glomerata</em> using glycol-based solvents, including butylene glycol (BG), polyethylene glycol 400 (PEG 400), and propylene glycol (PG), as the green solvents to obtain antioxidants and nutrients that can be further used in health care and pharmaceutical applications. The extraction of <em>C. glomerata</em> with glycol-base solvents using the microwave-assisted extraction (MAE) method was optimized. The liquid extraction using 60 % volume by volume of polyethylene glycol yielded the highest total phenolic content (4.00 ± 0.08 mg gallic acid equivalence per g dry weight) and antioxidant activity (IC<sub>50</sub> 0.14 ± 0.02 mg/mL). The algal extract was stable at pH 6 to 8 and a temperature lower than 25 °C. After incorporating the algal extract in topical formulations including serum and emulgel, we found that the preparations were stable and retained the extract's antioxidant activity. In addition, all algal extracts, extract-loaded serum, and emulgel did not show cytotoxicity effects in normal adult human dermal fibroblasts.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Algal Research-Biomass Biofuels and Bioproducts
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1