首页 > 最新文献

Algal Research-Biomass Biofuels and Bioproducts最新文献

英文 中文
The transformation of typical heavy metals during the process for magnetic harvesting and subsequent liquefaction in ethanol of microalgae 微藻磁力收割和随后乙醇液化过程中典型重金属的转化
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1016/j.algal.2024.103766
Luqiu Lin , Jianhui Zeng , Chuxuan Zhang , Zhengkang Peng , Xun Gong
This study reports the transformation of three typical heavy metals (As(III), Hg(II), and Pb(II)) during the process for magnetic harvesting and subsequent liquefaction in ethanol of microalgae. The magnetic harvesting process of Chlorella Vulgaris (CV) was simulated using a co-precipitation method, achieving the highest magnetic harvesting ratio of 98.95 % at a pH of 8 and an iron-algae ratio of 0.4 g/g. Then the magnetically harvested CV was subjected to liquefaction in ethanol to explore the speciation and migration of As(III), Hg(II), and Pb(II). The environmental risk assessment of above three heavy metals in the bio-oil and biochar was assessed according to the Risk Assessment Code (RAC). Hg(II) and Pb(II) were found to be effectively stabilized and immobilized in the biochar, while As(III) exhibited a propensity to migrate into the bio-oil and existed mostly in the dangerous speciation such as fraction associated with Fe and Mn oxides and fraction bound to organic matter. It reflects a high environmental risk and necessitates a pre-removal treatment.
本研究报告了三种典型重金属(As(III)、Hg(II)和Pb(II))在微藻磁性收获和乙醇液化过程中的转化。采用共沉淀法模拟了小球藻(CV)的磁性收获过程,在 pH 值为 8 和铁藻比为 0.4 g/g 的条件下,最高磁性收获率达到 98.95%。然后,将磁性收获的 CV 在乙醇中进行液化,以探究 As(III)、Hg(II) 和 Pb(II) 的种类和迁移情况。根据风险评估准则(RAC)对生物油和生物炭中的上述三种重金属进行了环境风险评估。结果发现,汞(II)和铅(II)在生物炭中得到了有效的稳定和固定,而砷(III)则表现出迁移到生物油中的倾向,并主要以危险的形态存在,如与铁和锰氧化物相关的部分以及与有机物结合的部分。这反映了较高的环境风险,需要进行预去除处理。
{"title":"The transformation of typical heavy metals during the process for magnetic harvesting and subsequent liquefaction in ethanol of microalgae","authors":"Luqiu Lin ,&nbsp;Jianhui Zeng ,&nbsp;Chuxuan Zhang ,&nbsp;Zhengkang Peng ,&nbsp;Xun Gong","doi":"10.1016/j.algal.2024.103766","DOIUrl":"10.1016/j.algal.2024.103766","url":null,"abstract":"<div><div>This study reports the transformation of three typical heavy metals (As(III), Hg(II), and Pb(II)) during the process for magnetic harvesting and subsequent liquefaction in ethanol of microalgae. The magnetic harvesting process of <em>Chlorella Vulgaris</em> (CV) was simulated using a co-precipitation method, achieving the highest magnetic harvesting ratio of 98.95 % at a pH of 8 and an iron-algae ratio of 0.4 g/g. Then the magnetically harvested CV was subjected to liquefaction in ethanol to explore the speciation and migration of As(III), Hg(II), and Pb(II). The environmental risk assessment of above three heavy metals in the bio-oil and biochar was assessed according to the Risk Assessment Code (RAC). Hg(II) and Pb(II) were found to be effectively stabilized and immobilized in the biochar, while As(III) exhibited a propensity to migrate into the bio-oil and existed mostly in the dangerous speciation such as fraction associated with Fe and Mn oxides and fraction bound to organic matter. It reflects a high environmental risk and necessitates a pre-removal treatment.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103766"},"PeriodicalIF":4.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation and identification of thermophilic cyanobacterium inhabiting Shiv Kund (Sohna hot spring), India through polyphasic approach: Bioprospecting in varying nitrogen environment for biotechnological interest particularly for biofuel potential 通过多相法分离和鉴定栖息在印度 Shiv Kund(Sohna 温泉)的嗜热蓝藻:在不同氮环境中进行生物勘探,特别是生物燃料潜力方面的生物技术研究
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1016/j.algal.2024.103757
Neha Saini , Sharma Mona
Identifying a potential candidate having optimal growth characteristics and high-value biotechnological attributes, especially biofuel profile in the era of high rising renewable energy demands is necessary for a sustainable algal-biorefinery perspective. Thermophilic cyanobacteria are scarcely investigated for their industrial potential. In this regard, a preliminary study was performed to isolate a thermophilic cyanobacterium from Shiv Kund, Sohna hot spring, Gurugram, India. The polyphasic approach with molecular identification through 16SrRNA and phylogenetic analysis identified the isolated thermophilic cyanobacterium as Fischerella thermalis PCC 7521 based on the 99.15 % similarity in the NCBI-BLASTn results. Further, the phenotypic visualization under light microscopy and Scanning Electron Microscope (SEM) confirms the true-branching filamentous nitrogen fixing cyanobacterium. To examine its potential for a biotechnological perspective, the effect of different nitrogen concentrations in the growth medium on the biochemical profiling was studied. The highest biomass production and biomass productivity per day obtained was 1041.6 mg/L and 42.33 ± 1.52 mg/L/d⁎⁎(p < 0.01) in 0.1875 g/L (N/8) and 1.5 g/L (N) sodium nitrate concentration respectively. The effect of the growth phase on the biochemical profiling was also prominent and studying optimization helps in the cost-effective production of the required product. Surprisingly, nitrogen starvation has resulted in the increased production of pigments (chlorophyll, phycocyanin and carotenoids), proteins and lipids. The maximum carbohydrate production observed was under complete nitrogen availability (N) in the growth medium with 37.4 % more production in N than complete nitrogen starvation (N0) on 15th day of the growth cycle. Interestingly, the total lipid production observed was 457.41 ± 18.3 μg/mg (p ≤ 0.05) in N0 condition and 519.28 ± 21.3 μg/mg ⁎⁎(p < 0.01) in N/8 condition on 15th and 20th day of the growth cycle respectively. The effect of nitrogen concentrations on the C/N ratio and different functional groups were also examined. Overall, the results indicated F. thermalis PCC 7521 is a promising candidate for different biotechnological fields, especially biofuel production.
在可再生能源需求不断攀升的时代,要实现藻类生物炼制的可持续发展,就必须找到具有最佳生长特性和高价值生物技术属性(尤其是生物燃料特性)的潜在候选藻类。对于嗜热蓝藻的工业潜力,目前还鲜有研究。为此,我们进行了一项初步研究,从印度古鲁格拉姆的 Shiv Kund、Sohna 温泉中分离出一种嗜热蓝藻。根据 NCBI-BLASTn 结果中 99.15 % 的相似度,通过 16SrRNA 分子鉴定和系统进化分析的多相方法确定分离出的嗜热蓝藻为 Fischerella thermalis PCC 7521。此外,在光学显微镜和扫描电子显微镜(SEM)下观察到的表型也证实了这是一种真分支丝状固氮蓝藻。为了从生物技术角度考察其潜力,研究了生长培养基中不同氮浓度对生化分析的影响。在硝酸钠浓度为 0.1875 g/L (N/8) 和 1.5 g/L (N) 时,生物量产量和生物量生产率最高,分别为 1041.6 mg/L 和 42.33 ± 1.52 mg/L/d⁎⁎(p < 0.01)。生长阶段对生化分析的影响也很显著,研究优化有助于以具有成本效益的方式生产所需的产品。令人惊讶的是,氮饥饿导致色素(叶绿素、藻蓝蛋白和类胡萝卜素)、蛋白质和脂质的产量增加。在生长周期的第 15 天,观察到碳水化合物产量最高的是在生长培养基完全供氮(N)的情况下,N 比完全缺氮(N0)的产量高出 37.4%。有趣的是,在生长周期的第 15 天和第 20 天,在 N0 条件下观察到的总脂产量分别为 457.41 ± 18.3 μg/mg ⁎(p ≤ 0.05)和 519.28 ± 21.3 μg/mg ⁎⁎(p < 0.01)。此外,还研究了氮浓度对碳/氮比和不同官能团的影响。总之,研究结果表明 F. thermalis PCC 7521 有希望用于不同的生物技术领域,尤其是生物燃料生产。
{"title":"Isolation and identification of thermophilic cyanobacterium inhabiting Shiv Kund (Sohna hot spring), India through polyphasic approach: Bioprospecting in varying nitrogen environment for biotechnological interest particularly for biofuel potential","authors":"Neha Saini ,&nbsp;Sharma Mona","doi":"10.1016/j.algal.2024.103757","DOIUrl":"10.1016/j.algal.2024.103757","url":null,"abstract":"<div><div>Identifying a potential candidate having optimal growth characteristics and high-value biotechnological attributes, especially biofuel profile in the era of high rising renewable energy demands is necessary for a sustainable algal-biorefinery perspective. Thermophilic cyanobacteria are scarcely investigated for their industrial potential. In this regard, a preliminary study was performed to isolate a thermophilic cyanobacterium from Shiv Kund, Sohna hot spring, Gurugram, India. The polyphasic approach with molecular identification through 16SrRNA and phylogenetic analysis identified the isolated thermophilic cyanobacterium as <em>Fischerella thermalis</em> PCC 7521 based on the 99.15 % similarity in the NCBI-BLASTn results. Further, the phenotypic visualization under light microscopy and Scanning Electron Microscope (SEM) confirms the true-branching filamentous nitrogen fixing cyanobacterium. To examine its potential for a biotechnological perspective, the effect of different nitrogen concentrations in the growth medium on the biochemical profiling was studied. The highest biomass production and biomass productivity per day obtained was 1041.6 mg/L and 42.33 ± 1.52 mg/L/d<sup>⁎⁎</sup>(<em>p</em> &lt; 0.01) in 0.1875 g/L (N/8) and 1.5 g/L (N) sodium nitrate concentration respectively. The effect of the growth phase on the biochemical profiling was also prominent and studying optimization helps in the cost-effective production of the required product. Surprisingly, nitrogen starvation has resulted in the increased production of pigments (chlorophyll, phycocyanin and carotenoids), proteins and lipids. The maximum carbohydrate production observed was under complete nitrogen availability (N) in the growth medium with 37.4 % more production in N than complete nitrogen starvation (N<sub>0</sub>) on 15th day of the growth cycle. Interestingly, the total lipid production observed was 457.41 ± 18.3 μg/mg <sup>⁎</sup>(<em>p</em> ≤ 0.05) in N<sub>0</sub> condition and 519.28 ± 21.3 μg/mg <sup>⁎⁎</sup>(<em>p</em> &lt; 0.01) in N/8 condition on 15th and 20th day of the growth cycle respectively. The effect of nitrogen concentrations on the C/N ratio and different functional groups were also examined. Overall, the results indicated <em>F. thermalis</em> PCC 7521 is a promising candidate for different biotechnological fields, especially biofuel production.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103757"},"PeriodicalIF":4.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of different food-grade protein extraction methods on the proteomic profile and potential allergenicity of Spirulina (Arthrospira platensis) 不同食品级蛋白质提取方法对螺旋藻蛋白质组谱和潜在过敏性的影响
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1016/j.algal.2024.103765
Neda Irvani , Jessie King , Sara Hamzelou , Dawei Ji , Arineh Tahmasian , Biniam Kebede , Alan Carne , Dominic Agyei , Indrawati Oey
Various optimized methods for cell disintegration and protein extraction of algae have been reported, but there is a lack of information regarding the proteomic characterization of the extracted proteins; thus, systematic verification of the protein profiles to find potentially exploitable proteins, while minimizing allergenicity risks, is profitable. The method described in this study was developed to thoroughly investigate the proteome characterization of A. platensis following aqueous protein extraction by high-shear homogenization and pH shift. Liquid chromatography-tandem mass spectrometry was applied to assess the proteome obtained from four protein extraction methods using data-dependent proteome analysis. Overall, 699 proteins were identified; however, each extraction method identified unique proteins. The maximum number of exclusive proteins was observed using a combination of high-shear homogenization and acidic pH. The evaluation of protein abundance revealed a clear distinction between proteins isolated from pH 2 treatment compared to those obtained via neutral or basic pH treatment. The applied extraction methods affected the in silico computed physicochemical properties of the proteins. Using the AllerCatPro database, 12 putative allergenic proteins were detected, the most predominant of which were related to the C-phycocyanin beta subunit (P72508). This study demonstrated that extraction methods affect the detection, physicochemical properties, and potential allergenicity of the obtained proteins. Hence, the extraction methods used to obtain novel proteins must consider these aspects before using them as functional foods.
目前已报道了多种用于藻类细胞破碎和蛋白质提取的优化方法,但缺乏有关提取蛋白质的蛋白质组特征的信息;因此,对蛋白质概况进行系统的验证,以找到潜在的可利用蛋白质,同时最大限度地降低过敏风险,是有利可图的。本研究采用高剪切匀浆法和 pH 值偏移法进行水提取蛋白后,开发了一种方法来彻底研究 A. platensis 的蛋白质组特征。采用液相色谱-串联质谱法,利用数据依赖性蛋白质组分析评估了四种蛋白质提取方法获得的蛋白质组。共鉴定出 699 个蛋白质;然而,每种提取方法都鉴定出了独特的蛋白质。使用高剪切匀浆和酸性 pH 组合提取的蛋白质数量最多。对蛋白质丰度的评估显示,与通过中性或碱性 pH 处理分离出来的蛋白质相比,pH 值为 2 的蛋白质有明显的区别。所采用的提取方法影响了蛋白质的硅学计算理化性质。利用 AllerCatPro 数据库,检测到了 12 种推测的致敏蛋白质,其中最主要的与 C-花青素 beta 亚基(P72508)有关。这项研究表明,提取方法会影响所获蛋白质的检测、理化性质和潜在过敏性。因此,在将新型蛋白质用作功能食品之前,提取方法必须考虑到这些方面。
{"title":"Impact of different food-grade protein extraction methods on the proteomic profile and potential allergenicity of Spirulina (Arthrospira platensis)","authors":"Neda Irvani ,&nbsp;Jessie King ,&nbsp;Sara Hamzelou ,&nbsp;Dawei Ji ,&nbsp;Arineh Tahmasian ,&nbsp;Biniam Kebede ,&nbsp;Alan Carne ,&nbsp;Dominic Agyei ,&nbsp;Indrawati Oey","doi":"10.1016/j.algal.2024.103765","DOIUrl":"10.1016/j.algal.2024.103765","url":null,"abstract":"<div><div>Various optimized methods for cell disintegration and protein extraction of algae have been reported, but there is a lack of information regarding the proteomic characterization of the extracted proteins; thus, systematic verification of the protein profiles to find potentially exploitable proteins, while minimizing allergenicity risks, is profitable. The method described in this study was developed to thoroughly investigate the proteome characterization of <em>A. platensis</em> following aqueous protein extraction by high-shear homogenization and pH shift. Liquid chromatography-tandem mass spectrometry was applied to assess the proteome obtained from four protein extraction methods using data-dependent proteome analysis. Overall, 699 proteins were identified; however, each extraction method identified unique proteins. The maximum number of exclusive proteins was observed using a combination of high-shear homogenization and acidic pH. The evaluation of protein abundance revealed a clear distinction between proteins isolated from pH 2 treatment compared to those obtained via neutral or basic pH treatment. The applied extraction methods affected the in silico computed physicochemical properties of the proteins. Using the AllerCatPro database, 12 putative allergenic proteins were detected, the most predominant of which were related to the C-phycocyanin beta subunit (P72508). This study demonstrated that extraction methods affect the detection, physicochemical properties, and potential allergenicity of the obtained proteins. Hence, the extraction methods used to obtain novel proteins must consider these aspects before using them as functional foods.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103765"},"PeriodicalIF":4.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of ketocarotenoid production via heterologous expression of orange protein from Ipomoea batatas in indigenous microalga Ettlia sp. 通过在本地微藻 Ettlia sp. 中异源表达来自 Ipomoea batatas 的橙色蛋白提高酮类胡萝卜素的产量
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1016/j.algal.2024.103767
Jun-Woo Lee , Min-Woo Lee , Kyong-Hee Nam , Seong-Jun Chun , Hee-Mock Oh , EonSeon Jin , Hyung-Gwan Lee
Astaxanthin, one of the most powerful natural antioxidants, is used in high-value industries such as those of cosmetics, nutraceuticals, and food products derived from microalgae. In this study, Ettlia sp. mutants were generated by expressing two types of heterologous orange proteins, IbOr and IbOr-R96H, in which the 96th arginine of IbOr was substituted with histidine derived from Ipomoea batatas to enhance astaxanthin production. The Ett-IbOr-R96H mutant showed a 2.4-fold increase in β-carotene content compared to the wildtype (4.59 mg g−1DCW), reaching 10.82 mg g−1 under high-light conditions via two-phase cultivation. Under the stress treatment combination of high-light intensity and nitrogen deprivation, total carotenoid content increased to 17.24 mg L−1 and 21.94 mg L−1 in Ett-IbOr and Ett-IbOr-R96H, respectively. The astaxanthin and canthaxanthin contents in Ett-IbOr-R96H was 4.89 mg L−1 and 0.47 mg L−1, respectively, which were 1.8- and 1.5-fold higher, respectively, than those in Ett-IbOr. Additionally, photosynthetic efficiency (Fv/Fm) recovered in Ett-IbOr-R96H under dual-stress conditions compared to the wildtype while reactive oxygen species levels decreased throughout the cultivation period. Our findings suggest that the heterologous IbOr expression in Ettlia sp. may be an effective approach for enhancing the production of ketocarotenoids and improving stress resistance for industrial applications.
虾青素是最强大的天然抗氧化剂之一,被用于化妆品、营养保健品和微藻食品等高价值产业。本研究通过表达两种异源橙蛋白(IbOr 和 IbOr-R96H)生成了 Ettlia sp.突变体,其中 IbOr 的第 96 个精氨酸被来自 Ipomoea batatas 的组氨酸取代,以提高虾青素的产量。与野生型(4.59 mg g-1DCW)相比,Ett-IbOr-R96H突变体的β-胡萝卜素含量增加了2.4倍,在高光条件下通过两相培养达到10.82 mg g-1。在高光照强度和氮素剥夺的胁迫处理组合下,Ett-IbOr和Ett-IbOr-R96H的类胡萝卜素总含量分别增加到17.24毫克/升和21.94毫克/升。Ett-IbOr-R96H 的虾青素和角黄素含量分别为 4.89 mg L-1 和 0.47 mg L-1,分别是 Ett-IbOr 的 1.8 倍和 1.5 倍。此外,与野生型相比,Ett-IbOr-R96H 在双重胁迫条件下的光合效率(Fv/Fm)有所恢复,而活性氧水平在整个培养期间均有所下降。我们的研究结果表明,在 Ettlia sp.中异源表达 IbOr 可能是提高酮类胡萝卜素产量和抗逆性的有效方法,可用于工业应用。
{"title":"Enhancement of ketocarotenoid production via heterologous expression of orange protein from Ipomoea batatas in indigenous microalga Ettlia sp.","authors":"Jun-Woo Lee ,&nbsp;Min-Woo Lee ,&nbsp;Kyong-Hee Nam ,&nbsp;Seong-Jun Chun ,&nbsp;Hee-Mock Oh ,&nbsp;EonSeon Jin ,&nbsp;Hyung-Gwan Lee","doi":"10.1016/j.algal.2024.103767","DOIUrl":"10.1016/j.algal.2024.103767","url":null,"abstract":"<div><div>Astaxanthin, one of the most powerful natural antioxidants, is used in high-value industries such as those of cosmetics, nutraceuticals, and food products derived from microalgae. In this study, <em>Ettlia</em> sp. mutants were generated by expressing two types of heterologous orange proteins, IbOr and IbOr-R96H, in which the 96<sup>th</sup> arginine of IbOr was substituted with histidine derived from <em>Ipomoea batatas</em> to enhance astaxanthin production. The <em>Ett-IbOr-R96H</em> mutant showed a 2.4-fold increase in β-carotene content compared to the wildtype (4.59 mg g<sup>−1</sup>DCW), reaching 10.82 mg g<sup>−1</sup> under high-light conditions via two-phase cultivation. Under the stress treatment combination of high-light intensity and nitrogen deprivation, total carotenoid content increased to 17.24 mg L<sup>−1</sup> and 21.94 mg L<sup>−1</sup> in <em>Ett-IbOr</em> and <em>Ett-IbOr-R96H</em>, respectively. The astaxanthin and canthaxanthin contents in <em>Ett-IbOr-R96H</em> was 4.89 mg L<sup>−1</sup> and 0.47 mg L<sup>−1</sup>, respectively, which were 1.8- and 1.5-fold higher, respectively, than those in <em>Ett-IbOr</em>. Additionally, photosynthetic efficiency (Fv/Fm) recovered in <em>Ett-IbOr-R96H</em> under dual-stress conditions compared to the wildtype while reactive oxygen species levels decreased throughout the cultivation period. Our findings suggest that the heterologous <em>IbOr</em> expression in <em>Ettlia</em> sp. may be an effective approach for enhancing the production of ketocarotenoids and improving stress resistance for industrial applications.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103767"},"PeriodicalIF":4.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory role of microcystin in the response of microcystin-producing cyanobacteria to elevated CO2: Insights from metabolic profiling 微囊藻毒素在产微囊藻蓝藻对高浓度 CO2 的反应中的调控作用:代谢剖析的启示
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-20 DOI: 10.1016/j.algal.2024.103760
Jingjie Ma , Peifang Wang , Xun Wang , Bin Hu , Jin Qian
The regulatory role of microcystin in the response of microcystin-producing cyanobacteria to elevated CO2 remains poorly understood. To address this gap, this study compared the responses of wild-type toxic Microcystis PCC 7806 and its mcyB-knockout mutant to elevated CO2 using metabolomic profiling under nitrogen (N)-rich and N-poor conditions. Under N-poor conditions, elevated CO2 promoted carbohydrate synthesis and tricarboxylic acid cycle in both strains, without affecting their growth. Under N-rich conditions, both strains exhibited increased biomass with rising CO2 levels, attributed to enhanced carbohydrate synthesis, tricarboxylic acid cycle, glutamate-glutamine cycle, purine synthesis, and arginine synthesis. However, compared to the mutant, the proliferation of wild-type toxic Microcystis was less stimulated by elevated CO2. The difference was associated with its reduced activity in the pentose phosphate pathway, likely linked to microcystin synthesis. Besides, the difference was related to higher utilization of glutamate, arginine, and aspartate due to increased microcystin production, indicating the regulatory role of microcystin in the response of microcystin-producing cyanobacteria to elevated CO2. Importantly, elevated CO2 could enhance microcystin synthesis by promoting the production of carbon backbones (malonyl CoA), amino acids (including arginine, glutamate and aspartate) and methyl donors (S-adenosylmethionine) of the wild-type toxic Microcystis PCC 7806. Notably, sufficient nitrogen sources were required for increased amino acid and methyl donors synthesis at high CO2 concentration. The discovery revealed underlying mechanisms behind the potential for elevated CO2 levels to increase toxicity risk associated with Microcystis blooms.
人们对微囊藻毒素在产微囊藻蓝藻对高浓度 CO2 的反应中的调控作用仍然知之甚少。为了填补这一空白,本研究比较了野生型毒性微囊藻 PCC 7806 及其 mcyB 基因敲除突变体在富氮和贫氮条件下对高浓度 CO2 的响应。在贫氮条件下,高浓度 CO2 促进了两株菌株的碳水化合物合成和三羧酸循环,但不影响其生长。在富氮条件下,随着二氧化碳水平的升高,两株菌株的生物量都有所增加,这归因于碳水化合物合成、三羧酸循环、谷氨酸-谷氨酰胺循环、嘌呤合成和精氨酸合成的增强。然而,与突变体相比,野生型毒性微囊藻的增殖受二氧化碳升高的刺激较小。这种差异与其磷酸戊糖途径活性降低有关,而磷酸戊糖途径可能与微囊藻毒素的合成有关。此外,这种差异还与微囊藻毒素产量增加导致谷氨酸、精氨酸和天冬氨酸的利用率提高有关,表明微囊藻毒素在产微囊藻蓝藻对高浓度 CO2 的反应中起着调节作用。重要的是,高浓度 CO2 可促进野生型毒性微囊藻 PCC 7806 的碳骨架(丙二酰 CoA)、氨基酸(包括精氨酸、谷氨酸和天门冬氨酸)和甲基供体(S-腺苷蛋氨酸)的产生,从而增强微囊藻毒素的合成。值得注意的是,在高浓度二氧化碳条件下,氨基酸和甲基供体的合成需要充足的氮源。这一发现揭示了二氧化碳浓度升高可能增加与微囊藻藻华相关的毒性风险的潜在机制。
{"title":"Regulatory role of microcystin in the response of microcystin-producing cyanobacteria to elevated CO2: Insights from metabolic profiling","authors":"Jingjie Ma ,&nbsp;Peifang Wang ,&nbsp;Xun Wang ,&nbsp;Bin Hu ,&nbsp;Jin Qian","doi":"10.1016/j.algal.2024.103760","DOIUrl":"10.1016/j.algal.2024.103760","url":null,"abstract":"<div><div>The regulatory role of microcystin in the response of microcystin-producing cyanobacteria to elevated CO<sub>2</sub> remains poorly understood. To address this gap, this study compared the responses of wild-type toxic <em>Microcystis</em> PCC 7806 and its <em>mcy</em>B-knockout mutant to elevated CO<sub>2</sub> using metabolomic profiling under nitrogen (N)-rich and N-poor conditions. Under N-poor conditions, elevated CO<sub>2</sub> promoted carbohydrate synthesis and tricarboxylic acid cycle in both strains, without affecting their growth. Under N-rich conditions, both strains exhibited increased biomass with rising CO<sub>2</sub> levels, attributed to enhanced carbohydrate synthesis, tricarboxylic acid cycle, glutamate-glutamine cycle, purine synthesis, and arginine synthesis. However, compared to the mutant, the proliferation of wild-type toxic <em>Microcystis</em> was less stimulated by elevated CO<sub>2.</sub> The difference was associated with its reduced activity in the pentose phosphate pathway, likely linked to microcystin synthesis. Besides, the difference was related to higher utilization of glutamate, arginine, and aspartate due to increased microcystin production, indicating the regulatory role of microcystin in the response of microcystin-producing <em>cyanobacteria</em> to elevated CO<sub>2</sub>. Importantly, elevated CO<sub>2</sub> could enhance microcystin synthesis by promoting the production of carbon backbones (malonyl CoA), amino acids (including arginine, glutamate and aspartate) and methyl donors (S-adenosylmethionine) of the wild-type toxic <em>Microcystis</em> PCC 7806. Notably, sufficient nitrogen sources were required for increased amino acid and methyl donors synthesis at high CO<sub>2</sub> concentration. The discovery revealed underlying mechanisms behind the potential for elevated CO<sub>2</sub> levels to increase toxicity risk associated with <em>Microcystis</em> blooms.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103760"},"PeriodicalIF":4.6,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome-level genome assembly of the cosmopolitan diatom Skeletonema costatum provides insights into ecological adaptation 世界性硅藻 Skeletonema costatum 染色体级基因组组装为生态适应提供洞察力
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-20 DOI: 10.1016/j.algal.2024.103761
Shuya Liu , Nansheng Chen
The cosmopolitan diatom species Skeletonema costatum is an ecologically important dominant phytoplankton frequently found in the coastal estuarine and marine waters, and often causes harmful algae blooms. Despite of its critical ecological importance, chromosome-level genome assemble is still unavailable, hindering in-depth understanding of their evolution and environmental adaption. Here, we report a chromosome-level genome assembly for the marine diatom species S. costatum. The assembled genome size was 136.49 Mb, with a contig N50 of 302 Kb and 95.30 % of the reads anchored into 23 pseudo-chromosomes with a scaffold N50 of 6.19 Mb. A total of 28,321 protein-coding genes were predicted, with 86.03 % being functional annotated. The BUSCO assessment of genome assembly and genome annotation were both above 90 %. Phylogenetic analysis showed the expected topology, with S. costatum and its closely related species S. marinoi diverged from their common ancestor around 22.6 million years ago. The genome size of S. costatum is comparatively larger than those of its closely related diatoms, due mostly to its higher transposable element contents and larger number of proteincoding genes. Collinearity analysis revealed strong collinearity between S. costatum and other Skeletonema with most chromosomes showing clear one-to-one correspondences. A larger family of nine copies of the cryptochrome genes that function as blue light photoreceptors were identified in S. costatum, which could contribute its ecological success. The availability of the high-quality chromosome-level genome assembly for S. costatum represents a valuable resource that may facilitate comparative genomics for revealing important ecological clues and gene families, and future genetics and environmental studies among Skeletonema species.
世界性硅藻物种 Skeletonema costatum 是一种具有重要生态意义的优势浮游植物,经常出现在沿海河口和海洋水域,并经常引起有害藻类的大量繁殖。尽管它在生态学上具有重要意义,但染色体组水平的基因组组装仍然缺乏,这阻碍了对其进化和环境适应性的深入了解。在此,我们报告了海洋硅藻 S. costatum 的染色体组水平基因组组装。组装的基因组大小为 136.49 Mb,等位基因 N50 为 302 Kb,95.30% 的读数锚定在 23 个假染色体上,支架 N50 为 6.19 Mb。共预测出 28,321 个编码蛋白质的基因,其中 86.03% 已进行功能注释。对基因组组装和基因组注释的 BUSCO 评估均超过 90%。系统进化分析表明,S. costatum与其近缘种S. marinoi在大约2260万年前从共同祖先分化而来,这符合预期的拓扑结构。S. costatum的基因组大小比其近缘硅藻大,主要是由于其含有较多的转座元件和较多的蛋白编码基因。共线性分析表明,S. costatum 与其他 Skeletonema 之间具有很强的共线性,大多数染色体显示出明显的一一对应关系。在 S. costatum 中发现了一个较大的隐色素基因家族,其中有 9 个拷贝具有蓝光光感受器的功能,这可能有助于其生态成功。S. costatum高质量染色体级基因组组装的获得是一个宝贵的资源,可促进比较基因组学揭示重要的生态线索和基因家族,以及未来对Skeletonema物种间的遗传学和环境研究。
{"title":"Chromosome-level genome assembly of the cosmopolitan diatom Skeletonema costatum provides insights into ecological adaptation","authors":"Shuya Liu ,&nbsp;Nansheng Chen","doi":"10.1016/j.algal.2024.103761","DOIUrl":"10.1016/j.algal.2024.103761","url":null,"abstract":"<div><div>The cosmopolitan diatom species <em>Skeletonema costatum</em> is an ecologically important dominant phytoplankton frequently found in the coastal estuarine and marine waters, and often causes harmful algae blooms. Despite of its critical ecological importance, chromosome-level genome assemble is still unavailable, hindering in-depth understanding of their evolution and environmental adaption. Here, we report a chromosome-level genome assembly for the marine diatom species <em>S. costatum</em>. The assembled genome size was 136.49 Mb, with a contig N50 of 302 Kb and 95.30 % of the reads anchored into 23 pseudo-chromosomes with a scaffold N50 of 6.19 Mb. A total of 28,321 protein-coding genes were predicted, with 86.03 % being functional annotated. The BUSCO assessment of genome assembly and genome annotation were both above 90 %. Phylogenetic analysis showed the expected topology, with <em>S. costatum</em> and its closely related species <em>S. marinoi</em> diverged from their common ancestor around 22.6 million years ago. The genome size of <em>S. costatum</em> is comparatively larger than those of its closely related diatoms, due mostly to its higher transposable element contents and larger number of proteincoding genes. Collinearity analysis revealed strong collinearity between <em>S. costatum</em> and other <em>Skeletonema</em> with most chromosomes showing clear one-to-one correspondences. A larger family of nine copies of the cryptochrome genes that function as blue light photoreceptors were identified in <em>S. costatum</em>, which could contribute its ecological success. The availability of the high-quality chromosome-level genome assembly for <em>S. costatum</em> represents a valuable resource that may facilitate comparative genomics for revealing important ecological clues and gene families, and future genetics and environmental studies among <em>Skeletonema</em> species.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103761"},"PeriodicalIF":4.6,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing plastics bio-upcycling with photosynthetic microorganisms using bioengineering and bioconversion strategies 采用生物工程和生物转化战略,利用光合微生物推进塑料的生物升级再循环
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-20 DOI: 10.1016/j.algal.2024.103755
Hazlam Shamin Ahmad Shaberi , Hamidun Bunawan , Sean Craig , Samantha J. Bryan , Ahmad Bazli Ramzi
Biotechnological interventions have been increasingly adopted for addressing the persistence and recalcitrance of fossil fuel-derived plastic waste. Bioremediation through microbial and enzymatic degradation offers promising solutions, yet economic and scalability challenges persist, especially for addressing plastic waste accumulation in aquatic ecosystems. Despite recent advancements in plastic bioconversion and bio-upcycling using recombinant enzymes and microbes, current genetic and biological engineering platforms mainly employed heterotrophic chassis such as Escherichia coli and Pseudomonas putida, that are not suitable for direct cultivation using wastewater sources. Photosynthetic microorganisms like cyanobacteria and microalgae offer a sustainable alternative to the heterotrophic counterparts, in not only converting wastewater and CO2 as carbon and energy sources but also bring about carbon-neutral bioconversion potentials. Therefore, this review explores bioengineering strategies required to develop and harness the capabilities of cyanobacteria and microalgae for plastic biomineralisation. Pathway engineering in selected chassis is highlighted by detailing the metabolic pathways involved in plastic degradation where the application of growth-coupled genome editing and advanced biotechnological tools is further discussed. By integrating biofoundry-driven bioengineering strategies with growth-coupled selection, microalgal strain development can be accelerated towards achieving high substrate-to-product yields thus promoting carbon-neutral biorefinery and plastic bioconversion approaches.
为解决化石燃料衍生塑料废物的持久性和顽固性问题,越来越多地采用了生物技术干预措施。通过微生物和酶降解进行生物修复提供了前景广阔的解决方案,但经济性和可扩展性方面的挑战依然存在,尤其是在解决塑料废物在水生生态系统中的积累问题方面。尽管最近在利用重组酶和微生物进行塑料生物转化和生物升级再循环方面取得了进展,但目前的基因和生物工程平台主要采用大肠杆菌和假单胞菌等异养基质,不适合利用废水源直接培养。蓝藻和微藻等光合微生物为异养微生物提供了一种可持续的替代品,不仅能将废水和二氧化碳转化为碳和能源,还能带来碳中和的生物转化潜力。因此,本综述探讨了开发和利用蓝藻和微藻的能力进行塑料生物矿化所需的生物工程策略。通过详细介绍塑料降解所涉及的代谢途径,重点介绍了所选底盘中的途径工程,并进一步讨论了生长耦合基因组编辑和先进生物技术工具的应用。通过将生物铸造驱动的生物工程战略与生长耦合选择相结合,可以加速微藻菌株的开发,实现从基质到产品的高产,从而促进碳中和生物炼制和塑料生物转化方法的发展。
{"title":"Advancing plastics bio-upcycling with photosynthetic microorganisms using bioengineering and bioconversion strategies","authors":"Hazlam Shamin Ahmad Shaberi ,&nbsp;Hamidun Bunawan ,&nbsp;Sean Craig ,&nbsp;Samantha J. Bryan ,&nbsp;Ahmad Bazli Ramzi","doi":"10.1016/j.algal.2024.103755","DOIUrl":"10.1016/j.algal.2024.103755","url":null,"abstract":"<div><div>Biotechnological interventions have been increasingly adopted for addressing the persistence and recalcitrance of fossil fuel-derived plastic waste. Bioremediation through microbial and enzymatic degradation offers promising solutions, yet economic and scalability challenges persist, especially for addressing plastic waste accumulation in aquatic ecosystems. Despite recent advancements in plastic bioconversion and bio-upcycling using recombinant enzymes and microbes, current genetic and biological engineering platforms mainly employed heterotrophic chassis such as <em>Escherichia coli</em> and <em>Pseudomonas putida</em>, that are not suitable for direct cultivation using wastewater sources. Photosynthetic microorganisms like cyanobacteria and microalgae offer a sustainable alternative to the heterotrophic counterparts, in not only converting wastewater and CO<sub>2</sub> as carbon and energy sources but also bring about carbon-neutral bioconversion potentials. Therefore, this review explores bioengineering strategies required to develop and harness the capabilities of cyanobacteria and microalgae for plastic biomineralisation. Pathway engineering in selected chassis is highlighted by detailing the metabolic pathways involved in plastic degradation where the application of growth-coupled genome editing and advanced biotechnological tools is further discussed. By integrating biofoundry-driven bioengineering strategies with growth-coupled selection, microalgal strain development can be accelerated towards achieving high substrate-to-product yields thus promoting carbon-neutral biorefinery and plastic bioconversion approaches.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103755"},"PeriodicalIF":4.6,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sargassum hornery fucoidan oligosaccharide: Purification, characterization, and antioxidant effects targeting the MAPK and KEAP1-NRF2 signaling pathways 马尾藻角叉菜褐藻糖低聚糖:针对 MAPK 和 KEAP1-NRF2 信号通路的纯化、表征和抗氧化作用
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-19 DOI: 10.1016/j.algal.2024.103756
Shengyu Fan , Ying Xu , Lei Wang , Xin Gao , Soon-Mi Shim , Xiaoting Fu
The current research looked into the inhibitory effect of a purified component of Sargassum hornery fucoidan oligosaccharide (F2) with a sulfate content of 16.35 %, which showed substantial protective effects on H2O2-induced oxidative damage in RAW 264.7 cells and zebrafish. The chemical and structural characteristics were examined by GC, FTIR, MS, and NMR spectroscopy, revealing that F2 was composed of not only a mixed oligosaccharide with 1–4 degrees of polymerization but also had a main chain consisting of (1 → 3) linked α-L-Fucp and (1 → 3,4) linked α-L-Fucp, sulfated groups mainly at C2 position. It was found that F2 could activate the MAPK and Keap1-Nrf2 signaling pathways through the dissociation of the Keap1-Nrf2 complex in RAW 264.7 cells. Then Nrf2 entered the cell and bound to the antioxidant response element (ARE), resulting in activating the expression of downstream antioxidant genes. F2 was also found to have a strong protective effect on oxidative stress in zebrafish induced by H2O2, which can reduce the heart rate of zebrafish and prevent the generation of intracellular ROS and cell death. Therefore, S. hornery fucoidan oligosaccharide (F2) could be a potential ingredient for functional foods, cosmetics, and pharmaceuticals because of its antioxidant activity.
目前的研究探讨了马尾藻角叉菜褐藻糖低聚糖(F2)纯化成分的抑制作用,其硫酸盐含量为 16.35%,对 H2O2 诱导的 RAW 264.7 细胞和斑马鱼氧化损伤具有显著的保护作用。通过气相色谱、傅立叶变换红外光谱、质谱和核磁共振光谱研究了其化学和结构特征,发现 F2 不仅由 1-4 度聚合的混合寡糖组成,而且其主链由 (1 → 3) 连接的 α-L-Fucp 和 (1 → 3,4) 连接的 α-L-Fucp 组成,硫酸基团主要位于 C2 位。研究发现,F2 可通过解离 RAW 264.7 细胞中的 Keap1-Nrf2 复合物激活 MAPK 和 Keap1-Nrf2 信号通路。然后,Nrf2进入细胞并与抗氧化反应元件(ARE)结合,从而激活下游抗氧化基因的表达。研究还发现,F2 对 H2O2 诱导的斑马鱼氧化应激有很强的保护作用,能降低斑马鱼的心率,防止细胞内 ROS 的产生和细胞死亡。因此,S. hornery褐藻糖胶低聚糖(F2)因其抗氧化活性可成为功能性食品、化妆品和药品的潜在成分。
{"title":"Sargassum hornery fucoidan oligosaccharide: Purification, characterization, and antioxidant effects targeting the MAPK and KEAP1-NRF2 signaling pathways","authors":"Shengyu Fan ,&nbsp;Ying Xu ,&nbsp;Lei Wang ,&nbsp;Xin Gao ,&nbsp;Soon-Mi Shim ,&nbsp;Xiaoting Fu","doi":"10.1016/j.algal.2024.103756","DOIUrl":"10.1016/j.algal.2024.103756","url":null,"abstract":"<div><div>The current research looked into the inhibitory effect of a purified component of <em>Sargassum hornery</em> fucoidan oligosaccharide (F2) with a sulfate content of 16.35 %, which showed substantial protective effects on H<sub>2</sub>O<sub>2</sub>-induced oxidative damage in RAW 264.7 cells and zebrafish. The chemical and structural characteristics were examined by GC, FTIR, MS, and NMR spectroscopy, revealing that F2 was composed of not only a mixed oligosaccharide with 1–4 degrees of polymerization but also had a main chain consisting of (1 → 3) linked α-L-Fuc<em>p</em> and (1 → 3,4) linked α-L-Fuc<em>p</em>, sulfated groups mainly at C2 position. It was found that F2 could activate the MAPK and Keap1-Nrf2 signaling pathways through the dissociation of the Keap1-Nrf2 complex in RAW 264.7 cells. Then Nrf2 entered the cell and bound to the antioxidant response element (ARE), resulting in activating the expression of downstream antioxidant genes. F2 was also found to have a strong protective effect on oxidative stress in zebrafish induced by H<sub>2</sub>O<sub>2</sub>, which can reduce the heart rate of zebrafish and prevent the generation of intracellular ROS and cell death. Therefore, <em>S. hornery</em> fucoidan oligosaccharide (F2) could be a potential ingredient for functional foods, cosmetics, and pharmaceuticals because of its antioxidant activity.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103756"},"PeriodicalIF":4.6,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pilot plant cultivation of microalga Dictyosphaerium chlorelloides with night illumination from LEDs sources 利用 LED 光源的夜间照明进行微藻 Dictyosphaerium chlorelloides 的试点植物栽培
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-19 DOI: 10.1016/j.algal.2024.103759
Jana Kvíderová , David Kubáč , Jaromír Lukavský
Illumination during the night with white LEDs increased the growth of the microalga Dictyosphaerium chlorelloides strain CCALA 330 on a thin-film platform unit (150 L volume, 12 m2 area) approximately 2.5× in comparison to the platform illuminated only by the Sun. The mean PAR intensity on the Sun-illuminated unit was 71 μmol m−2 s−1, on the Sun + LEDs unit 549 μmol m−2 s−1, the mean temperatures were 15 °C and 20.1 °C. On the Sun unit the algae grew to a maximum of 15 g L−1 dry weight in 42 days, with Sun + LEDs into 17.8 g L−1 during 24 days when the both units reached the stationary phase of the growth curve. Biomass production was 3.3 in the Sun and 8.54 g m−2 d−1 in the Sun + LED, i.e. 0.27 and 0.68 g L−1 d−1. In total, the mean of 37.5 and 58.2 kWh per night were consumed, so the total electricity consumptions for biomass production was 0.20 and 0.40 kWh g−1 DW during LED + Sun cycles 1 and 2, respectively. The production of the extracellular polysaccharides was practically the same for both platforms, and constant during time. A more substantial double increase was only after 30 days of cultivation in both platforms and reached 4 g L−1. The fluorescence measurements proved good physiological state of the cultures. The PAR was found as a main driver of the photosynthetic activity. The correlation of the growth and fluorescence parameters to the environmental conditions was much more profound in the Sun pilot plant, therefore the reliable set of monitored parameters should be defined according to the cultivation type, for both of them we propose OD680/OD720 ratio as a proxy of nutrient deficiency.
在夜间用白色发光二极管照明,微藻 Dictyosphaerium chlorelloides 菌株 CCALA 330 在薄膜平台装置(体积 150 升,面积 12 平方米)上的生长速度比只用太阳光照明的平台提高了约 2.5 倍。太阳光照明装置上的平均 PAR 强度为 71 μmol m-2 s-1,太阳光 + LED 装置上的平均 PAR 强度为 549 μmol m-2 s-1,平均温度分别为 15 ℃ 和 20.1 ℃。在太阳光装置上,藻类在 42 天内生长到最大干重 15 克升/升,而在太阳光+LED 装置上,在 24 天内生长到 17.8 克升/升,此时两个装置都达到了生长曲线的静止阶段。太阳光照下的生物量产量为 3.3 克 m-2 d-1,太阳光照 + LED 下的生物量产量为 8.54 克 m-2 d-1,即 0.27 克 L-1 d-1 和 0.68 克 L-1 d-1。在 LED + Sun 循环 1 和 2 中,每晚的平均耗电量分别为 37.5 和 58.2 千瓦时,因此生物质生产的总耗电量分别为 0.20 和 0.40 千瓦时 g-1 DW。两个平台的胞外多糖产量基本相同,且随着时间的推移保持不变。在两个平台上培养 30 天后,细胞外多糖的产量才有较大幅度的双倍增长,达到 4 克/升。荧光测量结果证明培养物处于良好的生理状态。PAR 是光合作用的主要驱动力。在 Sun 试验植物中,生长和荧光参数与环境条件的相关性要大得多,因此应根据栽培类型确定一套可靠的监测参数,我们建议将 OD680/OD720 比率作为营养缺乏的替代指标。
{"title":"Pilot plant cultivation of microalga Dictyosphaerium chlorelloides with night illumination from LEDs sources","authors":"Jana Kvíderová ,&nbsp;David Kubáč ,&nbsp;Jaromír Lukavský","doi":"10.1016/j.algal.2024.103759","DOIUrl":"10.1016/j.algal.2024.103759","url":null,"abstract":"<div><div>Illumination during the night with white LEDs increased the growth of the microalga <em>Dictyosphaerium chlorelloides</em> strain CCALA 330 on a thin-film platform unit (150 L volume, 12 m<sup>2</sup> area) approximately 2.5× in comparison to the platform illuminated only by the Sun. The mean PAR intensity on the Sun-illuminated unit was 71 μmol m<sup>−2</sup> s<sup>−1</sup>, on the Sun + LEDs unit 549 μmol m<sup>−2</sup> s<sup>−1</sup>, the mean temperatures were 15 °C and 20.1 °C. On the Sun unit the algae grew to a maximum of 15 g L<sup>−1</sup> dry weight in 42 days, with Sun + LEDs into 17.8 g L<sup>−1</sup> during 24 days when the both units reached the stationary phase of the growth curve. Biomass production was 3.3 in the Sun and 8.54 g m<sup>−2</sup> d<sup>−1</sup> in the Sun + LED, i.e. 0.27 and 0.68 g L<sup>−1</sup> d<sup>−1</sup>. In total, the mean of 37.5 and 58.2 kWh per night were consumed, so the total electricity consumptions for biomass production was 0.20 and 0.40 kWh g<sup>−1</sup> DW during LED + Sun cycles 1 and 2, respectively. The production of the extracellular polysaccharides was practically the same for both platforms, and constant during time. A more substantial double increase was only after 30 days of cultivation in both platforms and reached 4 g L<sup>−1</sup>. The fluorescence measurements proved good physiological state of the cultures. The PAR was found as a main driver of the photosynthetic activity. The correlation of the growth and fluorescence parameters to the environmental conditions was much more profound in the Sun pilot plant, therefore the reliable set of monitored parameters should be defined according to the cultivation type, for both of them we propose OD<sub>680</sub>/OD<sub>720</sub> ratio as a proxy of nutrient deficiency.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103759"},"PeriodicalIF":4.6,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetically separable sorbent based on activated carbon derived from a new precursor Rhizoclonium hookeri for facile oil spill clean-up 基于新型前驱体 Rhizoclonium hookeri 衍生的活性炭的磁性可分离吸附剂,用于快速清理溢油
IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-18 DOI: 10.1016/j.algal.2024.103762
Saima Sohni , Owais Rashid , Sayyed Hamid Ali , Sher Bahadar Khan , Kalsoom Akhtar , Faryal Mazhar , Md. Sohrab Hossain , Murtaza Sayed , Najeeb Ullah
A huge quantity of synthetic toxic materials ends-up in water bodies causing long-lasting environmental and economic impacts due to catastrophic oil spill. Exploring marine algae as sorbent materials for oil spill remediation is a relatively new area and holds great potential. Herein, macroalgae Rhizoclonium hookeri (RH) derived magnetically recoverable activated carbon (RHAC@Fe3O4) composite has been proposed as an innovative and robust strategy for oil spill clean-up. The oil uptake efficiency of RHAC@Fe3O4 was probed using unused and used motor oil in synthetic seawater matrices by conducting batch wise experiments. Optimal conditions for the designed sorption system were met by varying time (10–60 min), dosage (0.2–1 g) and temperature (20, 30, 40 °C). Characterization studies showed that KOH-based activation played a vital role in developing pore structure and surface functionalities in the algal biochar. Batch experiments demonstrated over 90 % oil removal efficiency of RHAC@Fe3O4 from simulated oil spill after 30 min using 0.8 g of composite. Moreover, Fe3O4 loading onto carbon material allowed magnetic separation as a convenient alternative to filtration for the recovery of oil laden composite. Apart from superior oil removal ability, synthesized composite demonstrated robust performance up to five cycles in synthetic sea water matrices. Additionally, comparative study revealed better oil sequestration efficiency of the fabricated RHAC@Fe3O4 composite (93 %) as compared to its precursors, i.e. algal biochar (71 %) and AC (88 %). Based on these findings, it is advocated that designed RHAC@Fe3O4 composite being eco-friendly, economical and readily recoverable with enhanced oil uptake ability could potentially be an innovative platform for oil spill clean-up applications.
由于灾难性溢油事故,大量合成有毒物质最终进入水体,对环境和经济造成长期影响。将海洋藻类作为吸附材料用于溢油修复是一个相对较新的领域,具有巨大的潜力。在此,我们提出了大型藻类 Rhizoclonium hookeri(RH)衍生的磁性可回收活性碳(RHAC@Fe3O4)复合材料,作为一种创新而稳健的溢油清理策略。通过进行批量实验,使用合成海水基质中未使用和使用过的机油对 RHAC@Fe3O4 的吸油效率进行了探测。通过改变时间(10-60 分钟)、剂量(0.2-1 克)和温度(20、30、40 °C),达到了所设计吸附系统的最佳条件。表征研究表明,基于 KOH 的活化对海藻生物炭的孔隙结构和表面功能的形成起到了至关重要的作用。批量实验表明,在使用 0.8 克复合材料 30 分钟后,RHAC@Fe3O4 对模拟溢油的去除率超过 90%。此外,将 Fe3O4 添加到碳材料上可实现磁性分离,从而方便地替代过滤来回收含油复合材料。除了卓越的除油能力外,合成的复合材料在合成海水基质中也表现出了长达五个周期的稳定性能。此外,比较研究显示,与前体物质(即海藻生物炭(71%)和 AC(88%))相比,所制造的 RHAC@Fe3O4 复合材料的固油效率更高(93%)。基于这些研究结果,我们认为所设计的 RHAC@Fe3O4 复合材料具有环保、经济、易回收、吸油能力强等特点,有可能成为溢油清理应用的创新平台。
{"title":"Magnetically separable sorbent based on activated carbon derived from a new precursor Rhizoclonium hookeri for facile oil spill clean-up","authors":"Saima Sohni ,&nbsp;Owais Rashid ,&nbsp;Sayyed Hamid Ali ,&nbsp;Sher Bahadar Khan ,&nbsp;Kalsoom Akhtar ,&nbsp;Faryal Mazhar ,&nbsp;Md. Sohrab Hossain ,&nbsp;Murtaza Sayed ,&nbsp;Najeeb Ullah","doi":"10.1016/j.algal.2024.103762","DOIUrl":"10.1016/j.algal.2024.103762","url":null,"abstract":"<div><div>A huge quantity of synthetic toxic materials ends-up in water bodies causing long-lasting environmental and economic impacts due to catastrophic oil spill. Exploring marine algae as sorbent materials for oil spill remediation is a relatively new area and holds great potential. Herein, macroalgae <em>Rhizoclonium hookeri</em> (RH) derived magnetically recoverable activated carbon (RHAC@Fe<sub>3</sub>O<sub>4</sub>) composite has been proposed as an innovative and robust strategy for oil spill clean-up. The oil uptake efficiency of RHAC@Fe<sub>3</sub>O<sub>4</sub> was probed using unused and used motor oil in synthetic seawater matrices by conducting batch wise experiments. Optimal conditions for the designed sorption system were met by varying time (10–60 min), dosage (0.2–1 g) and temperature (20, 30, 40 °C). Characterization studies showed that KOH-based activation played a vital role in developing pore structure and surface functionalities in the algal biochar. Batch experiments demonstrated over 90 % oil removal efficiency of RHAC@Fe<sub>3</sub>O<sub>4</sub> from simulated oil spill after 30 min using 0.8 g of composite. Moreover, Fe<sub>3</sub>O<sub>4</sub> loading onto carbon material allowed magnetic separation as a convenient alternative to filtration for the recovery of oil laden composite. Apart from superior oil removal ability, synthesized composite demonstrated robust performance up to five cycles in synthetic sea water matrices. Additionally, comparative study revealed better oil sequestration efficiency of the fabricated RHAC@Fe<sub>3</sub>O<sub>4</sub> composite (93 %) as compared to its precursors, i.e. algal biochar (71 %) and AC (88 %). Based on these findings, it is advocated that designed RHAC@Fe<sub>3</sub>O<sub>4</sub> composite being eco-friendly, economical and readily recoverable with enhanced oil uptake ability could potentially be an innovative platform for oil spill clean-up applications.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103762"},"PeriodicalIF":4.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Algal Research-Biomass Biofuels and Bioproducts
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1