Pub Date : 2021-10-06Epub Date: 2021-08-05DOI: 10.1146/annurev-cellbio-120219-024915
Zuzana Musilova, Walter Salzburger, Fabio Cortesi
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive to the ultraviolet to red spectrum of light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection.
{"title":"The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function.","authors":"Zuzana Musilova, Walter Salzburger, Fabio Cortesi","doi":"10.1146/annurev-cellbio-120219-024915","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120219-024915","url":null,"abstract":"<p><p>Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive to the ultraviolet to red spectrum of light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39277521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-06Epub Date: 2021-08-05DOI: 10.1146/annurev-cellbio-010521-015047
Lei Li, Kun-Hsiang Liu, Jen Sheen
Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root-shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues.
{"title":"Dynamic Nutrient Signaling Networks in Plants.","authors":"Lei Li, Kun-Hsiang Liu, Jen Sheen","doi":"10.1146/annurev-cellbio-010521-015047","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-010521-015047","url":null,"abstract":"<p><p>Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root-shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497281/pdf/nihms-1691452.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39277522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-06Epub Date: 2021-06-29DOI: 10.1146/annurev-cellbio-010521-010834
Ethan C Garner
One of the most common bacterial shapes is a rod, yet we have a limited understanding of how this simple shape is constructed. While only six proteins are required for rod shape, we are just beginning to understand how they self-organize to build the micron-sized enveloping structures that define bacterial shape out of nanometer-sized glycan strains. Here, we detail and summarize the insights gained over the last 20 years into this complex problem that have been achieved with a wide variety of different approaches. We also explain and compare both current and past models of rod shape formation and maintenance and then highlight recent insights into how the Rod complex might be regulated.
{"title":"Toward a Mechanistic Understanding of Bacterial Rod Shape Formation and Regulation.","authors":"Ethan C Garner","doi":"10.1146/annurev-cellbio-010521-010834","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-010521-010834","url":null,"abstract":"<p><p>One of the most common bacterial shapes is a rod, yet we have a limited understanding of how this simple shape is constructed. While only six proteins are required for rod shape, we are just beginning to understand how they self-organize to build the micron-sized enveloping structures that define bacterial shape out of nanometer-sized glycan strains. Here, we detail and summarize the insights gained over the last 20 years into this complex problem that have been achieved with a wide variety of different approaches. We also explain and compare both current and past models of rod shape formation and maintenance and then highlight recent insights into how the Rod complex might be regulated.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39038217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-06Epub Date: 2021-07-02DOI: 10.1146/annurev-cellbio-120219-055100
Baoyu Liu, Elizabeth M Kolawole, Brian D Evavold
T cell activation is a critical event in the adaptive immune response, indispensable for cell-mediated and humoral immunity as well as for immune regulation. Recent years have witnessed an emerging trend emphasizing the essential role that physical force and mechanical properties play at the T cell interface. In this review, we integrate current knowledge of T cell antigen recognition and the different models of T cell activation from the perspective of mechanobiology, focusing on the interaction between the T cell receptor (TCR) and the peptide-major histocompatibility complex (pMHC) antigen. We address the shortcomings of TCR affinity alone in explaining T cell functional outcomes and the rising status of force-regulated TCR bond lifetimes, most notably the TCR catch bond. Ultimately, T cell activation and the ensuing physiological responses result from mechanical interaction between TCRs and the pMHC.
{"title":"Mechanobiology of T Cell Activation: To Catch a Bond.","authors":"Baoyu Liu, Elizabeth M Kolawole, Brian D Evavold","doi":"10.1146/annurev-cellbio-120219-055100","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120219-055100","url":null,"abstract":"<p><p>T cell activation is a critical event in the adaptive immune response, indispensable for cell-mediated and humoral immunity as well as for immune regulation. Recent years have witnessed an emerging trend emphasizing the essential role that physical force and mechanical properties play at the T cell interface. In this review, we integrate current knowledge of T cell antigen recognition and the different models of T cell activation from the perspective of mechanobiology, focusing on the interaction between the T cell receptor (TCR) and the peptide-major histocompatibility complex (pMHC) antigen. We address the shortcomings of TCR affinity alone in explaining T cell functional outcomes and the rising status of force-regulated TCR bond lifetimes, most notably the TCR catch bond. Ultimately, T cell activation and the ensuing physiological responses result from mechanical interaction between TCRs and the pMHC.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39062830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-06Epub Date: 2021-08-20DOI: 10.1146/annurev-cellbio-120319-112654
Maria Antonietta Tosches
With the discovery of the incredible diversity of neurons, Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural units of nervous systems but also evolutionary units, because their identities are encoded in the genome. With the advent of high-throughput cellular transcriptomics, neuronal identities can be characterized and compared systematically across species. The comparison of neurons in mammals, reptiles, and birds indicates that the mammalian cerebral cortex is a mosaic of deeply conserved and recently evolved neuron types. Using the cerebral cortex as a case study, this review illustrates how comparing neuron types across species is key to reconciling observations on neural development, neuroanatomy, circuit wiring, and physiology for an integrated understanding of brain evolution.
{"title":"From Cell Types to an Integrated Understanding of Brain Evolution: The Case of the Cerebral Cortex.","authors":"Maria Antonietta Tosches","doi":"10.1146/annurev-cellbio-120319-112654","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120319-112654","url":null,"abstract":"<p><p>With the discovery of the incredible diversity of neurons, Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural units of nervous systems but also evolutionary units, because their identities are encoded in the genome. With the advent of high-throughput cellular transcriptomics, neuronal identities can be characterized and compared systematically across species. The comparison of neurons in mammals, reptiles, and birds indicates that the mammalian cerebral cortex is a mosaic of deeply conserved and recently evolved neuron types. Using the cerebral cortex as a case study, this review illustrates how comparing neuron types across species is key to reconciling observations on neural development, neuroanatomy, circuit wiring, and physiology for an integrated understanding of brain evolution.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39329979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-06Epub Date: 2021-07-06DOI: 10.1146/annurev-cellbio-032321-035734
Rajarshi P Ghosh, Barbara J Meyer
Nuclei are central hubs for information processing in eukaryotic cells. The need to fit large genomes into small nuclei imposes severe restrictions on genome organization and the mechanisms that drive genome-wide regulatory processes. How a disordered polymer such as chromatin, which has vast heterogeneity in its DNA and histone modification profiles, folds into discernibly consistent patterns is a fundamental question in biology. Outstanding questions include how genomes are spatially and temporally organized to regulate cellular processes with high precision and whether genome organization is causally linked to transcription regulation. The advent of next-generation sequencing, super-resolution imaging, multiplexed fluorescent in situ hybridization, and single-molecule imaging in individual living cells has caused a resurgence in efforts to understand the spatiotemporal organization of the genome. In this review, we discuss structural and mechanistic properties of genome organization at different length scales and examine changes in higher-order chromatin organization during important developmental transitions.
{"title":"Spatial Organization of Chromatin: Emergence of Chromatin Structure During Development.","authors":"Rajarshi P Ghosh, Barbara J Meyer","doi":"10.1146/annurev-cellbio-032321-035734","DOIUrl":"10.1146/annurev-cellbio-032321-035734","url":null,"abstract":"<p><p>Nuclei are central hubs for information processing in eukaryotic cells. The need to fit large genomes into small nuclei imposes severe restrictions on genome organization and the mechanisms that drive genome-wide regulatory processes. How a disordered polymer such as chromatin, which has vast heterogeneity in its DNA and histone modification profiles, folds into discernibly consistent patterns is a fundamental question in biology. Outstanding questions include how genomes are spatially and temporally organized to regulate cellular processes with high precision and whether genome organization is causally linked to transcription regulation. The advent of next-generation sequencing, super-resolution imaging, multiplexed fluorescent in situ hybridization, and single-molecule imaging in individual living cells has caused a resurgence in efforts to understand the spatiotemporal organization of the genome. In this review, we discuss structural and mechanistic properties of genome organization at different length scales and examine changes in higher-order chromatin organization during important developmental transitions.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664233/pdf/nihms-1760456.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39086823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-06Epub Date: 2021-07-21DOI: 10.1146/annurev-cellbio-120319-114716
Mansi Srivastava
The majority of animal phyla have species that can regenerate. Comparing regeneration across animals can reconstruct the molecular and cellular evolutionary history of this process. Recent studies have revealed some similarity in regeneration mechanisms, but rigorous comparative methods are needed to assess whether these resemblances are ancestral pathways (homology) or are the result of convergent evolution (homoplasy). This review aims to provide a framework for comparing regeneration across animals, focusing on gene regulatory networks (GRNs), which are substrates for assessing process homology. The homology of the wound-induced activation of Wnt signaling and of adult stem cells provides examples of ongoing studies of regeneration that enable comparisons in a GRN framework. Expanding the study of regeneration GRNs in currently studied species and broadening taxonomic sampling for these approaches will identify processes that are unifying principles of regeneration biology across animals. These insights are important both for evolutionary studies of regeneration and for human regenerative medicine.
{"title":"Beyond Casual Resemblance: Rigorous Frameworks for Comparing Regeneration Across Species.","authors":"Mansi Srivastava","doi":"10.1146/annurev-cellbio-120319-114716","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120319-114716","url":null,"abstract":"<p><p>The majority of animal phyla have species that can regenerate. Comparing regeneration across animals can reconstruct the molecular and cellular evolutionary history of this process. Recent studies have revealed some similarity in regeneration mechanisms, but rigorous comparative methods are needed to assess whether these resemblances are ancestral pathways (homology) or are the result of convergent evolution (homoplasy). This review aims to provide a framework for comparing regeneration across animals, focusing on gene regulatory networks (GRNs), which are substrates for assessing process homology. The homology of the wound-induced activation of Wnt signaling and of adult stem cells provides examples of ongoing studies of regeneration that enable comparisons in a GRN framework. Expanding the study of regeneration GRNs in currently studied species and broadening taxonomic sampling for these approaches will identify processes that are unifying principles of regeneration biology across animals. These insights are important both for evolutionary studies of regeneration and for human regenerative medicine.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39205337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-06Epub Date: 2021-07-27DOI: 10.1146/annurev-cellbio-042721-105528
Marina Garrido-Casado, Gloria Asensio-Juárez, Miguel Vicente-Manzanares
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division.
{"title":"Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division.","authors":"Marina Garrido-Casado, Gloria Asensio-Juárez, Miguel Vicente-Manzanares","doi":"10.1146/annurev-cellbio-042721-105528","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-042721-105528","url":null,"abstract":"<p><p>Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39226042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-06Epub Date: 2021-06-21DOI: 10.1146/annurev-cellbio-120219-035530
Trond Lamark, Terje Johansen
Selective autophagy is the lysosomal degradation of specific intracellular components sequestered into autophagosomes, late endosomes, or lysosomes through the activity of selective autophagy receptors (SARs). SARs interact with autophagy-related (ATG)8 family proteins via sequence motifs called LC3-interacting region (LIR) motifs in vertebrates and Atg8-interacting motifs (AIMs) in yeast and plants. SARs can be divided into two broad groups: soluble or membrane bound. Cargo or substrate selection may be independent or dependent of ubiquitin labeling of the cargo. In this review, we discuss mechanisms of mammalian selective autophagy with a focus on the unifying principles employed in substrate recognition, interaction with the forming autophagosome via LIR-ATG8 interactions, and the recruitment of core autophagy components for efficient autophagosome formation on the substrate.
{"title":"Mechanisms of Selective Autophagy.","authors":"Trond Lamark, Terje Johansen","doi":"10.1146/annurev-cellbio-120219-035530","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120219-035530","url":null,"abstract":"<p><p>Selective autophagy is the lysosomal degradation of specific intracellular components sequestered into autophagosomes, late endosomes, or lysosomes through the activity of selective autophagy receptors (SARs). SARs interact with autophagy-related (ATG)8 family proteins via sequence motifs called LC3-interacting region (LIR) motifs in vertebrates and Atg8-interacting motifs (AIMs) in yeast and plants. SARs can be divided into two broad groups: soluble or membrane bound. Cargo or substrate selection may be independent or dependent of ubiquitin labeling of the cargo. In this review, we discuss mechanisms of mammalian selective autophagy with a focus on the unifying principles employed in substrate recognition, interaction with the forming autophagosome via LIR-ATG8 interactions, and the recruitment of core autophagy components for efficient autophagosome formation on the substrate.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39251498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-06DOI: 10.1146/annurev-cellbio-120219-054401
Joe Chin-Hun Kuo, Matthew J Paszek
Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.
{"title":"Glycocalyx Curving the Membrane: Forces Emerging from the Cell Exterior.","authors":"Joe Chin-Hun Kuo, Matthew J Paszek","doi":"10.1146/annurev-cellbio-120219-054401","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120219-054401","url":null,"abstract":"<p><p>Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858597/pdf/nihms-1775676.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39489257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}