Jongkyu Kim, Yoon-Seok Chun, Namkyu Yoon, Byungkwon Kim, Kiin Choi, Sae-Kwang Ku, Namju Lee
Thymoquinone (TQ), a bioactive compound derived from black cumin seeds, is renowned for its potent anti-obesity and anti-diabetic properties. Due to the stability challenges of TQ, it has predominantly been utilized in oil formulations. This study aimed to enhance the stability of TQ and investigated the impact of consuming insoluble fiber from black cumin seeds on restoring antioxidant function compromised by diabetes and improving hyperglycemia management. We evaluated the restorative effects of a 35-day administration of black cumin seed extract (BCS) on antioxidant function impaired by streptozotocin (STZ)-induced diabetes, alongside structural and functional alterations in the pancreas, liver, and kidneys. The results demonstrated significant improvements in organ weight, particularly in pancreatic tissue. Moreover, BCS administration markedly suppressed the expression of key genes associated with pancreatic dysfunction and damage, including caspase-3, transforming growth factor-beta 1 (TGF-β1), and interleukin-1 beta (IL-1β). Through oral glucose tolerance tests (OGTTs), BCS was found to effectively regulate chronic hyperglycemia and exhibit potential for managing acute hyperglycemia. These findings suggest that BCS not only addresses both glycemic and non-glycemic complications of diabetes but also offers a safe, long-term solution. Consequently, BCS emerges as a promising therapeutic agent for hyperglycemia management, including in prediabetic stages.
{"title":"Effects of Black Cumin Seed Extract on Pancreatic Islet β-Cell Proliferation and Hypoglycemic Activity in Streptozotocin-Induced Diabetic Rats.","authors":"Jongkyu Kim, Yoon-Seok Chun, Namkyu Yoon, Byungkwon Kim, Kiin Choi, Sae-Kwang Ku, Namju Lee","doi":"10.3390/antiox14020174","DOIUrl":"10.3390/antiox14020174","url":null,"abstract":"<p><p>Thymoquinone (TQ), a bioactive compound derived from black cumin seeds, is renowned for its potent anti-obesity and anti-diabetic properties. Due to the stability challenges of TQ, it has predominantly been utilized in oil formulations. This study aimed to enhance the stability of TQ and investigated the impact of consuming insoluble fiber from black cumin seeds on restoring antioxidant function compromised by diabetes and improving hyperglycemia management. We evaluated the restorative effects of a 35-day administration of black cumin seed extract (BCS) on antioxidant function impaired by streptozotocin (STZ)-induced diabetes, alongside structural and functional alterations in the pancreas, liver, and kidneys. The results demonstrated significant improvements in organ weight, particularly in pancreatic tissue. Moreover, BCS administration markedly suppressed the expression of key genes associated with pancreatic dysfunction and damage, including caspase-3, transforming growth factor-beta 1 (TGF-β1), and interleukin-1 beta (IL-1β). Through oral glucose tolerance tests (OGTTs), BCS was found to effectively regulate chronic hyperglycemia and exhibit potential for managing acute hyperglycemia. These findings suggest that BCS not only addresses both glycemic and non-glycemic complications of diabetes but also offers a safe, long-term solution. Consequently, BCS emerges as a promising therapeutic agent for hyperglycemia management, including in prediabetic stages.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vikas Vikas, Weibing Yang, Brian C Wilson, Timothy C Zhu, Robert H Hadfield
The effectiveness of photodynamic therapy (PDT) for cancer treatment relies on the generation of cytotoxic singlet oxygen (1O2) in type II PDT. Hence, monitoring of 1O2 generation during PDT enables optimal treatment delivery to the tumor target with reduced off-target effects. Direct 1O2 observation by measuring its luminescence at 1270 nm remains challenging due to the very weak signal. This study presents 1O2 luminescence measurements using a time-resolved singlet oxygen luminescence detection system (TSOLD) applied to protoporphyrin IX (PpIX) in different solvents (ethanol and acetone) and biological media (bovine serum albumin and agarose-based solid phantom). The compact experimental setup includes a nanosecond diode laser with a function generator, a cuvette with photosensitizer solution, optical filtering and mirrors, an InGaAs single-photon avalanche diode detector, and time-tagger electronics. Increasing the concentration of PpIX in these media from 1 to 10 µg/g resulted in a 3-5 × increase in the 1O2 luminescence signal. Furthermore, increasing light scattering in the sample using Intralipid from 0.1 to 1% led to a decrease in the 1O2 luminescence signal and lifetime. These results confirm the marked effect of the microenvironment on the 1O2 signal and, hence, on the photodynamic efficacy.
{"title":"Analysis of Singlet Oxygen Luminescence Generated By Protoporphyrin IX.","authors":"Vikas Vikas, Weibing Yang, Brian C Wilson, Timothy C Zhu, Robert H Hadfield","doi":"10.3390/antiox14020176","DOIUrl":"10.3390/antiox14020176","url":null,"abstract":"<p><p>The effectiveness of photodynamic therapy (PDT) for cancer treatment relies on the generation of cytotoxic singlet oxygen (<sup>1</sup>O<sub>2</sub>) in type II PDT. Hence, monitoring of <sup>1</sup>O<sub>2</sub> generation during PDT enables optimal treatment delivery to the tumor target with reduced off-target effects. Direct <sup>1</sup>O<sub>2</sub> observation by measuring its luminescence at 1270 nm remains challenging due to the very weak signal. This study presents <sup>1</sup>O<sub>2</sub> luminescence measurements using a time-resolved singlet oxygen luminescence detection system (TSOLD) applied to protoporphyrin IX (PpIX) in different solvents (ethanol and acetone) and biological media (bovine serum albumin and agarose-based solid phantom). The compact experimental setup includes a nanosecond diode laser with a function generator, a cuvette with photosensitizer solution, optical filtering and mirrors, an InGaAs single-photon avalanche diode detector, and time-tagger electronics. Increasing the concentration of PpIX in these media from 1 to 10 µg/g resulted in a 3-5 × increase in the <sup>1</sup>O<sub>2</sub> luminescence signal. Furthermore, increasing light scattering in the sample using Intralipid from 0.1 to 1% led to a decrease in the <sup>1</sup>O<sub>2</sub> luminescence signal and lifetime. These results confirm the marked effect of the microenvironment on the <sup>1</sup>O<sub>2</sub> signal and, hence, on the photodynamic efficacy.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bartolo Tamburini, Diana Di Liberto, Giovanni Pratelli, Chiara Rizzo, Lidia La Barbera, Marianna Lauricella, Daniela Carlisi, Antonella Maggio, Antonio Palumbo Piccionello, Antonella D'Anneo, Nadia Caccamo, Giuliana Guggino
Rheumatoid arthritis (RA) is a long-term systemic autoimmune disorder that causes joint inflammation, swelling, pain, bone erosion, and deformities. Recent findings emphasize the anti-inflammatory and antioxidant properties of bioactive natural compounds, such as polyphenols extracted from plants and fruits, and their possible synergistic effect when used in combination with current therapies to improve the prognosis and symptoms of inflammatory rheumatic diseases. Here, we report that Sicilian extra virgin olive oil polyphenol-enriched extracts (PE-EVOOs) reduce intracellular reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β), in peripheral mononuclear cells (PBMCs) obtained from both RA patients and healthy subjects (HSs) treated with lipopolysaccharides (LPS) as a control. HPLC-ESI-MS analysis highlighted that PE-EVOOs are rich in different polyphenolic compounds responsible for many of the observed biological effects. At molecular levels, Western blotting analyses revealed that PE-EVOO treatment is associated with the downregulation of the phosphorylated and active form of the inflammatory transcription factor NF-κB and the pro-inflammatory enzyme cyclooxygenase 2 (COX2). In addition, PE-EVOOs upregulated the transcription factor Nrf2 and its target antioxidant enzyme catalase and manganese superoxide dismutase (MnSOD). Collectively, these results suggest a possible use of PE-EVOOs as potential adjuvants for the treatment of RA.
{"title":"Extra Virgin Olive Oil Polyphenol-Enriched Extracts Exert Antioxidant and Anti-Inflammatory Effects on Peripheral Blood Mononuclear Cells from Rheumatoid Arthritis Patients.","authors":"Bartolo Tamburini, Diana Di Liberto, Giovanni Pratelli, Chiara Rizzo, Lidia La Barbera, Marianna Lauricella, Daniela Carlisi, Antonella Maggio, Antonio Palumbo Piccionello, Antonella D'Anneo, Nadia Caccamo, Giuliana Guggino","doi":"10.3390/antiox14020171","DOIUrl":"10.3390/antiox14020171","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a long-term systemic autoimmune disorder that causes joint inflammation, swelling, pain, bone erosion, and deformities. Recent findings emphasize the anti-inflammatory and antioxidant properties of bioactive natural compounds, such as polyphenols extracted from plants and fruits, and their possible synergistic effect when used in combination with current therapies to improve the prognosis and symptoms of inflammatory rheumatic diseases. Here, we report that Sicilian extra virgin olive oil polyphenol-enriched extracts (PE-EVOOs) reduce intracellular reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β), in peripheral mononuclear cells (PBMCs) obtained from both RA patients and healthy subjects (HSs) treated with lipopolysaccharides (LPS) as a control. HPLC-ESI-MS analysis highlighted that PE-EVOOs are rich in different polyphenolic compounds responsible for many of the observed biological effects. At molecular levels, Western blotting analyses revealed that PE-EVOO treatment is associated with the downregulation of the phosphorylated and active form of the inflammatory transcription factor NF-κB and the pro-inflammatory enzyme cyclooxygenase 2 (COX2). In addition, PE-EVOOs upregulated the transcription factor Nrf2 and its target antioxidant enzyme catalase and manganese superoxide dismutase (MnSOD). Collectively, these results suggest a possible use of PE-EVOOs as potential adjuvants for the treatment of RA.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinícius Lopes Cantuária, Cíntia Maria Rodrigues, Isabella Rocha Dias, Vinícius de Oliveira Ottone, Bruna Oliveira Costa, Lourdes Fernanda Godinho, Gabriela Silva, Marco Antônio Alves Schetino, Etel Rocha-Vieira, Marco Fabrício Dias-Peixoto, Kinulpe Honorato-Sampaio
This study investigates the cardioprotective effects of intense caloric restriction (ICR) from birth in ovariectomized rats, a model of estrogen deficiency mimicking menopause. Our findings demonstrate that ICR significantly improved both basal and post-ischemic cardiac function, even in the absence of estrogens. The restricted animals exhibited enhanced cardiac contractility and relaxation, particularly after ischemia/reperfusion (I/R) injury, with superior functional recovery compared to control groups. Notably, ICR reduced key cardiometabolic risk factors, including blood pressure, heart rate, and adiposity, while improving glucose tolerance and insulin sensitivity. Additionally, while mitochondrial biogenesis remained unaffected, ICR preserved mitochondrial integrity by reducing the number of damaged mitochondria. This was linked to a reduction in oxidative stress, as evidenced by lower reactive oxygen species (ROS) production in the hearts of restricted animals. These results suggest that ICR offers a protective effect against cardiovascular dysfunction induced by estrogen depletion, potentially through enhanced antioxidant defenses and mitochondrial protection.
{"title":"Intense Caloric Restriction from Birth Protects the Heart Against Ischemia/Reperfusion Injury and Reduces Reactive Oxygen Species in Ovariectomized Rats.","authors":"Vinícius Lopes Cantuária, Cíntia Maria Rodrigues, Isabella Rocha Dias, Vinícius de Oliveira Ottone, Bruna Oliveira Costa, Lourdes Fernanda Godinho, Gabriela Silva, Marco Antônio Alves Schetino, Etel Rocha-Vieira, Marco Fabrício Dias-Peixoto, Kinulpe Honorato-Sampaio","doi":"10.3390/antiox14020169","DOIUrl":"10.3390/antiox14020169","url":null,"abstract":"<p><p>This study investigates the cardioprotective effects of intense caloric restriction (ICR) from birth in ovariectomized rats, a model of estrogen deficiency mimicking menopause. Our findings demonstrate that ICR significantly improved both basal and post-ischemic cardiac function, even in the absence of estrogens. The restricted animals exhibited enhanced cardiac contractility and relaxation, particularly after ischemia/reperfusion (I/R) injury, with superior functional recovery compared to control groups. Notably, ICR reduced key cardiometabolic risk factors, including blood pressure, heart rate, and adiposity, while improving glucose tolerance and insulin sensitivity. Additionally, while mitochondrial biogenesis remained unaffected, ICR preserved mitochondrial integrity by reducing the number of damaged mitochondria. This was linked to a reduction in oxidative stress, as evidenced by lower reactive oxygen species (ROS) production in the hearts of restricted animals. These results suggest that ICR offers a protective effect against cardiovascular dysfunction induced by estrogen depletion, potentially through enhanced antioxidant defenses and mitochondrial protection.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Obesity represents a complex interplay between genetics, nutrition, and lifestyle. This study aimed to elucidate the intricate relationship between genetic variants, energy intake, and bioactive compounds in influencing obesity risk, particularly in low energy intake, to reveal how dietary intake modulates molecular-level interactions. We analyzed 53,117 participants stratified by obesity status and energy intake levels. Genome-wide association studies explored the genetic variants associated with obesity risk in low-energy- and high-energy-intake subgroups. Advanced computational approaches, including molecular docking, k-means clustering, and uniform manifold approximation and projection (UMAP), were employed to analyze interactions between missense variants and natural compounds. Ten genetic variants were significantly associated with obesity, particularly in participants with low energy intake. The most prominent variants included brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265). Molecular docking identified 152 bioactive compounds with strong binding affinity to BDNF Val66Met, including 107 compounds binding to both wild and mutant types. Citrus fruits and green vegetables showed selective binding to the mutant type. Antioxidant nutrient intake (anthocyanins, isoflavonoids, vitamins C and E, selenium) was higher in lean versus obese individuals in the high-energy-intake group. Alcohol consumption and selenium intake modulated polygenic risk scores' influence on obesity risk in high-energy-intake individuals. Notably, citrus fruit intake correlated with lower BMI across all BDNF rs6265 genotypes. In conclusion, energy intake-specific genetic associations with obesity and identifies potential bioactive compounds for targeted interventions. The findings suggest that antioxidant nutrient intake, particularly from citrus fruits, may help manage obesity risk, especially in individuals with specific genetic variants.
{"title":"Energy Intake-Dependent Genetic Associations with Obesity Risk: BDNF Val66Met Polymorphism and Interactions with Dietary Bioactive Compounds.","authors":"Ting Zhang, Sunmin Park","doi":"10.3390/antiox14020170","DOIUrl":"10.3390/antiox14020170","url":null,"abstract":"<p><p>Obesity represents a complex interplay between genetics, nutrition, and lifestyle. This study aimed to elucidate the intricate relationship between genetic variants, energy intake, and bioactive compounds in influencing obesity risk, particularly in low energy intake, to reveal how dietary intake modulates molecular-level interactions. We analyzed 53,117 participants stratified by obesity status and energy intake levels. Genome-wide association studies explored the genetic variants associated with obesity risk in low-energy- and high-energy-intake subgroups. Advanced computational approaches, including molecular docking, k-means clustering, and uniform manifold approximation and projection (UMAP), were employed to analyze interactions between missense variants and natural compounds. Ten genetic variants were significantly associated with obesity, particularly in participants with low energy intake. The most prominent variants included brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265). Molecular docking identified 152 bioactive compounds with strong binding affinity to BDNF Val66Met, including 107 compounds binding to both wild and mutant types. Citrus fruits and green vegetables showed selective binding to the mutant type. Antioxidant nutrient intake (anthocyanins, isoflavonoids, vitamins C and E, selenium) was higher in lean versus obese individuals in the high-energy-intake group. Alcohol consumption and selenium intake modulated polygenic risk scores' influence on obesity risk in high-energy-intake individuals. Notably, citrus fruit intake correlated with lower BMI across all <i>BDNF</i> rs6265 genotypes. In conclusion, energy intake-specific genetic associations with obesity and identifies potential bioactive compounds for targeted interventions. The findings suggest that antioxidant nutrient intake, particularly from citrus fruits, may help manage obesity risk, especially in individuals with specific genetic variants.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fumonisin B1 (FB1) is an important toxin which poses global concerns in terms of food safety. Curcumin (Cur), a natural polyphenolic compound, has strong antioxidant and anti-inflammatory effects. Meanwhile, the mechanisms underlying the mitigation of FB1-induced toxicity by Cur are not fully understood, limiting its potential application as a novel feed additive to prevent FB1 toxicity. In this study, porcine kidney cells (PK-15) were used as an experimental model, utilizing mRNA and miRNA transcriptome technologies. The results revealed that Cur upregulated miR-1249 and inhibited the target gene Ern1 in the PK-15 cells, thereby suppressing the IRE1/MKK7/JNK/CASPASE3 endoplasmic reticulum (ER) stress pathway and alleviating FB1-induced cell apoptosis. Cell transfection experiments confirmed that Cur effectively attenuated the apoptosis induced by ER stress following transfection with a miR-1249 inhibitor. Similarly, transfection with a miR-1249 mimic alleviated the ER stress and FB1-induced PK-15 cell apoptosis. These findings reveal that Cur mitigates FB1-induced ER stress and significantly reduces apoptotic damage in porcine kidney cells.
{"title":"Curcumin Attenuates Fumonisin B1-Induced PK-15 Cell Apoptosis by Upregulating miR-1249 Expression to Inhibit the IRE1/MKK7/JNK/CASPASE3 Signaling Pathway.","authors":"Jia Chen, Dongwei Xiong, Miao Long","doi":"10.3390/antiox14020168","DOIUrl":"10.3390/antiox14020168","url":null,"abstract":"<p><p>Fumonisin B1 (FB1) is an important toxin which poses global concerns in terms of food safety. Curcumin (Cur), a natural polyphenolic compound, has strong antioxidant and anti-inflammatory effects. Meanwhile, the mechanisms underlying the mitigation of FB1-induced toxicity by Cur are not fully understood, limiting its potential application as a novel feed additive to prevent FB1 toxicity. In this study, porcine kidney cells (PK-15) were used as an experimental model, utilizing mRNA and miRNA transcriptome technologies. The results revealed that Cur upregulated miR-1249 and inhibited the target gene <i>Ern1</i> in the PK-15 cells, thereby suppressing the IRE1/MKK7/JNK/CASPASE3 endoplasmic reticulum (ER) stress pathway and alleviating FB1-induced cell apoptosis. Cell transfection experiments confirmed that Cur effectively attenuated the apoptosis induced by ER stress following transfection with a miR-1249 inhibitor. Similarly, transfection with a miR-1249 mimic alleviated the ER stress and FB1-induced PK-15 cell apoptosis. These findings reveal that Cur mitigates FB1-induced ER stress and significantly reduces apoptotic damage in porcine kidney cells.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Kwiatkowska, Agnieszka Mickiewicz, Aleksandra Krzesińska, Agnieszka Kuchta, Maciej Jankowski, Marcin Gruchała, Marcin Fijałkowski
The bicuspid aortic valve (BAV) is commonly associated with the early degeneration of the aortic valve. Up to 45% of BAV patients over the age of 50 develop aortic stenosis (AS). Although published data indicate a robust interplay between lipids and calcific AS in tricuspid aortic valve patients, the studies on the BAV population are lacking. We aimed to evaluate the association between selected lipid markers and the occurrence of AS in BAV patients. Methods: The study included 76 adults (21 female) with a BAV diagnosed by echocardiography, divided by age and AS diagnosis. Biochemical parameters concentrations in serum were measured: high density lipoprotein cholesterol (HDL-C) levels by standard enzymatic colorimetric tests, low density lipoprotein cholesterol (LDL-C) levels by the Friedewald formula, apolipoprotein A-I (Apo AI) and apolipoprotein B (Apo B) serum concentration by the nephelometric method, and paraoxonase-1 activity (PON-1 ASE) and arylesterase activity (PON-1 ARE) based on paraoxon and phenyl acetate hydrolysis. Results: A total of 54 patients (15 female) were more than 45 years old and 22 (6 female) were 45 or less years old. BAV patients with AS aged ≤45 had higher levels of Apo B, compared to those without AS [110.5 (102-132) vs. 95.6 (77-101) mg/d; p 0.044]. Similarly, Apo B/Apo AI ratio was higher in BAV patients with AS aged ≤45, compared to those without AS [(0.8 (0.7-1) vs. 0.6 (0.5-0.7); p 0.029]. In the group aged ≤45, Apo B showed a positive correlation with the aortic valve peak transvalvular velocity (AV Vmax) measurement (R Spearman 0.6, p 0.004). We found also that, among young BAV patients, those with AS had a lower level of PON-1 ARE compared to the cohort without AS [63.4 (52-80) vs. 85.3 (70-102); p 0.012]. We did not find any differences in lipid parameters in patients aged >45. Conclusions The metabolic link between Apo B level and Apo B/AI ratio with AS presence in BAV patients under 45 years of age suggests a significant impact of these parameters on the earlier development of AS in the BAV population. Molecules associated with high density lipoprotein and its antioxidant function, such as PON1, are valuable markers for AS development, compared to HDL-C and LDL-C levels.
{"title":"The Role of Paraoxonase-1 Activity, Apolipoprotein B Levels, and Apolipoprotein B/Apolipoprotein A-I Ratio as Risk Markers for Aortic Stenosis in Patients with a Bicuspid Aortic Valve.","authors":"Maria Kwiatkowska, Agnieszka Mickiewicz, Aleksandra Krzesińska, Agnieszka Kuchta, Maciej Jankowski, Marcin Gruchała, Marcin Fijałkowski","doi":"10.3390/antiox14020167","DOIUrl":"10.3390/antiox14020167","url":null,"abstract":"<p><p>The bicuspid aortic valve (BAV) is commonly associated with the early degeneration of the aortic valve. Up to 45% of BAV patients over the age of 50 develop aortic stenosis (AS). Although published data indicate a robust interplay between lipids and calcific AS in tricuspid aortic valve patients, the studies on the BAV population are lacking. We aimed to evaluate the association between selected lipid markers and the occurrence of AS in BAV patients. Methods: The study included 76 adults (21 female) with a BAV diagnosed by echocardiography, divided by age and AS diagnosis. Biochemical parameters concentrations in serum were measured: high density lipoprotein cholesterol (HDL-C) levels by standard enzymatic colorimetric tests, low density lipoprotein cholesterol (LDL-C) levels by the Friedewald formula, apolipoprotein A-I (Apo AI) and apolipoprotein B (Apo B) serum concentration by the nephelometric method, and paraoxonase-1 activity (PON-1 ASE) and arylesterase activity (PON-1 ARE) based on paraoxon and phenyl acetate hydrolysis. Results: A total of 54 patients (15 female) were more than 45 years old and 22 (6 female) were 45 or less years old. BAV patients with AS aged ≤45 had higher levels of Apo B, compared to those without AS [110.5 (102-132) vs. 95.6 (77-101) mg/d; <i>p</i> 0.044]. Similarly, Apo B/Apo AI ratio was higher in BAV patients with AS aged ≤45, compared to those without AS [(0.8 (0.7-1) vs. 0.6 (0.5-0.7); <i>p</i> 0.029]. In the group aged ≤45, Apo B showed a positive correlation with the aortic valve peak transvalvular velocity (AV Vmax) measurement (R Spearman 0.6, <i>p</i> 0.004). We found also that, among young BAV patients, those with AS had a lower level of PON-1 ARE compared to the cohort without AS [63.4 (52-80) vs. 85.3 (70-102); <i>p</i> 0.012]. We did not find any differences in lipid parameters in patients aged >45. Conclusions The metabolic link between Apo B level and Apo B/AI ratio with AS presence in BAV patients under 45 years of age suggests a significant impact of these parameters on the earlier development of AS in the BAV population. Molecules associated with high density lipoprotein and its antioxidant function, such as PON1, are valuable markers for AS development, compared to HDL-C and LDL-C levels.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valeriu Mihai But, Vasile Rus, Tamás Ilyés, Mădălina Luciana Gherman, Ioana Cristina Stănescu, Sorana D Bolboacă, Adriana Elena Bulboacă
Diabetes mellitus is a metabolic disorder associated with oxidative stress, inflammation, and coagulation disturbances, which contribute to microvascular and macrovascular complications. We evaluated the therapeutic effects of lavender oil (Lavandula angustifolia) in a streptozotocin (STZ)-induced rat model of type 1 diabetes mellitus (T1DM) with experimentally induced thrombosis. Sixty male Wistar rats were divided into control, thrombosis, diabetes, thrombosis-diabetes, and lavender oil pretreatment groups (100 and 200 mg/kg body weight [bw]). Lavender oil exhibited dose-dependent benefits, with the 200 mg/kg bw dose leading to significant reductions in proinflammatory cytokines (e.g., tumor necrosis factor α (TNF-α); regulated upon activation, normal T cell expressed and secreted (RANTES); and monocyte chemoattractant protein-1 (MCP-1)) and oxidative stress, along with improved glycemic control, the partial restoration of C-peptide levels, and the attenuation of matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9) activity (p < 0.0001). Histopathological and coagulation analyses confirmed its organ-protective and antithrombotic effects, including reduced tissue damage, vascular inflammation, and thrombus formation, and prolonged bleeding and clotting times. Our findings suggest that lavender oil exhibits dose-dependent antioxidant, anti-inflammatory, hypoglycemic, and organ-protective effects, indicating its potential as a complementary therapy for managing inflammation in T1DM with or without thrombosis.
{"title":"Therapeutic Effects of Lavender Oil on Streptozotocin-Induced Diabetes Mellitus and Experimental Thrombosis.","authors":"Valeriu Mihai But, Vasile Rus, Tamás Ilyés, Mădălina Luciana Gherman, Ioana Cristina Stănescu, Sorana D Bolboacă, Adriana Elena Bulboacă","doi":"10.3390/antiox14020166","DOIUrl":"10.3390/antiox14020166","url":null,"abstract":"<p><p>Diabetes mellitus is a metabolic disorder associated with oxidative stress, inflammation, and coagulation disturbances, which contribute to microvascular and macrovascular complications. We evaluated the therapeutic effects of lavender oil (<i>Lavandula angustifolia</i>) in a streptozotocin (STZ)-induced rat model of type 1 diabetes mellitus (T1DM) with experimentally induced thrombosis. Sixty male Wistar rats were divided into control, thrombosis, diabetes, thrombosis-diabetes, and lavender oil pretreatment groups (100 and 200 mg/kg body weight [bw]). Lavender oil exhibited dose-dependent benefits, with the 200 mg/kg bw dose leading to significant reductions in proinflammatory cytokines (e.g., tumor necrosis factor α (TNF-α); regulated upon activation, normal T cell expressed and secreted (RANTES); and monocyte chemoattractant protein-1 (MCP-1)) and oxidative stress, along with improved glycemic control, the partial restoration of C-peptide levels, and the attenuation of matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9) activity (<i>p</i> < 0.0001). Histopathological and coagulation analyses confirmed its organ-protective and antithrombotic effects, including reduced tissue damage, vascular inflammation, and thrombus formation, and prolonged bleeding and clotting times. Our findings suggest that lavender oil exhibits dose-dependent antioxidant, anti-inflammatory, hypoglycemic, and organ-protective effects, indicating its potential as a complementary therapy for managing inflammation in T1DM with or without thrombosis.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Gao, Dandan Wang, Qian Wang, Jinfeng Wang, Shuhui Li, Tianqi Wang, Xiaowen Hu, Chunling Wan
Many psychiatric disorders are associated with major cognitive deficits. However, it is uncertain whether these deficits develop as a result of psychiatric disorders and what shared risk factors might mediate this relationship. Here, we utilized the Mendelian randomization (MR) analysis to investigate the complex causal relationship between nine major psychiatric disorders and three cognitive phenotypes, while also examining the potential mediating role of oxidative stress as a shared biological underpinning. Schizophrenia (SZ), major depressive disorder (MDD), and attention deficit hyperactivity disorder (ADHD) showed a decreasing effect on cognitive performance, intelligence, and education, while bipolar disorder (BPD) increased educational attainment. MR-Clust results exhibit the shared genetic basis between SZ and other psychiatric disorders in relation to cognitive function. Furthermore, when oxidative stress was considered as a potential mediating factor, the associations between SZ and the three dimensions of cognition, as well as between MDD and intelligence and ADHD and intelligence, exhibited larger effect sizes than the overall. Mediation MR analysis also supported the causal effects between psychiatric disorders and cognition via oxidative stress traits, including carotene, vitamin E, bilirubin, and uric acid. Finally, summary-based MR identified 29 potential causal associations of oxidative stress genes with both cognitive performance and psychiatric disorders. Our findings highlight the importance of considering oxidative stress in understanding and potentially treating cognitive impairments associated with psychiatric conditions.
{"title":"Causal Impacts of Psychiatric Disorders on Cognition and the Mediating Effect of Oxidative Stress: A Mendelian Randomization Study.","authors":"Yan Gao, Dandan Wang, Qian Wang, Jinfeng Wang, Shuhui Li, Tianqi Wang, Xiaowen Hu, Chunling Wan","doi":"10.3390/antiox14020162","DOIUrl":"10.3390/antiox14020162","url":null,"abstract":"<p><p>Many psychiatric disorders are associated with major cognitive deficits. However, it is uncertain whether these deficits develop as a result of psychiatric disorders and what shared risk factors might mediate this relationship. Here, we utilized the Mendelian randomization (MR) analysis to investigate the complex causal relationship between nine major psychiatric disorders and three cognitive phenotypes, while also examining the potential mediating role of oxidative stress as a shared biological underpinning. Schizophrenia (SZ), major depressive disorder (MDD), and attention deficit hyperactivity disorder (ADHD) showed a decreasing effect on cognitive performance, intelligence, and education, while bipolar disorder (BPD) increased educational attainment. MR-Clust results exhibit the shared genetic basis between SZ and other psychiatric disorders in relation to cognitive function. Furthermore, when oxidative stress was considered as a potential mediating factor, the associations between SZ and the three dimensions of cognition, as well as between MDD and intelligence and ADHD and intelligence, exhibited larger effect sizes than the overall. Mediation MR analysis also supported the causal effects between psychiatric disorders and cognition via oxidative stress traits, including carotene, vitamin E, bilirubin, and uric acid. Finally, summary-based MR identified 29 potential causal associations of oxidative stress genes with both cognitive performance and psychiatric disorders. Our findings highlight the importance of considering oxidative stress in understanding and potentially treating cognitive impairments associated with psychiatric conditions.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nebojša Zečević, Aleksandra Veselinović, Milan Perović, Aleksandar Stojsavljević
Background: Zinc (Zn) is an essential metal that plays a critical role in normal testicular development, spermatogenesis, prevention of sperm degradation, and overall male fertility. This review aims to offer a comprehensive and current overview of seminal plasma Zn levels in fertile men worldwide. It also aims to compare Zn levels in seminal plasma and blood (serum/plasma) between infertile men (cases) and fertile men (controls), examine the impact of Zn on sperm quality and the reproductive hormone, and highlight the effects of Zn supplementation therapy in male infertility.
Methods: To achieve these goals, peer-reviewed studies from 2000 to 2024 were interrogated with regard to strict inclusion/exclusion criteria and were then thoroughly reviewed and analyzed.
Results: Our findings indicate that maintaining optimal seminal plasma Zn levels is crucial, as low Zn levels are linked to impaired spermatogenesis and male infertility, while high Zn levels can cause oxidative stress and other changes that contribute to infertility. Seminal plasma Zn levels from 100 to 200 mg/L among fertile men worldwide can be roughly considered safe. Comparative analysis showed that a greater number of studies reported lower levels of seminal Zn in cases than in controls. Research into the impact of Zn levels in seminal plasma has shown that, although the results are not yet conclusive, altered (non-normal) Zn levels could influence semen parameters-particularly motility, morphology, and sperm count-and the level of the reproductive hormone, testosterone. Zinc-deficient infertile men could benefit from supplement therapy.
Conclusions: Assessment of seminal plasma Zn levels in infertile men could provide valuable information and aid in diagnosis and treatment planning.
{"title":"Association Between Zinc Levels and the Impact of Its Deficiency on Idiopathic Male Infertility: An Up-to-Date Review.","authors":"Nebojša Zečević, Aleksandra Veselinović, Milan Perović, Aleksandar Stojsavljević","doi":"10.3390/antiox14020165","DOIUrl":"10.3390/antiox14020165","url":null,"abstract":"<p><strong>Background: </strong>Zinc (Zn) is an essential metal that plays a critical role in normal testicular development, spermatogenesis, prevention of sperm degradation, and overall male fertility. This review aims to offer a comprehensive and current overview of seminal plasma Zn levels in fertile men worldwide. It also aims to compare Zn levels in seminal plasma and blood (serum/plasma) between infertile men (cases) and fertile men (controls), examine the impact of Zn on sperm quality and the reproductive hormone, and highlight the effects of Zn supplementation therapy in male infertility.</p><p><strong>Methods: </strong>To achieve these goals, peer-reviewed studies from 2000 to 2024 were interrogated with regard to strict inclusion/exclusion criteria and were then thoroughly reviewed and analyzed.</p><p><strong>Results: </strong>Our findings indicate that maintaining optimal seminal plasma Zn levels is crucial, as low Zn levels are linked to impaired spermatogenesis and male infertility, while high Zn levels can cause oxidative stress and other changes that contribute to infertility. Seminal plasma Zn levels from 100 to 200 mg/L among fertile men worldwide can be roughly considered safe. Comparative analysis showed that a greater number of studies reported lower levels of seminal Zn in cases than in controls. Research into the impact of Zn levels in seminal plasma has shown that, although the results are not yet conclusive, altered (non-normal) Zn levels could influence semen parameters-particularly motility, morphology, and sperm count-and the level of the reproductive hormone, testosterone. Zinc-deficient infertile men could benefit from supplement therapy.</p><p><strong>Conclusions: </strong>Assessment of seminal plasma Zn levels in infertile men could provide valuable information and aid in diagnosis and treatment planning.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}