Chao Wang, Lieqiong Kuang, Ze Tian, Xinfa Wang, Jinxing Tu, Hanzhong Wang, Xiaoling Dun
Ascorbic acid (AsA) is an important antioxidant for human health. The concept of "oil-vegetable-duel-purpose" can significantly enhance the economic benefits of the rapeseed industry. Rapeseed, when utilized as a vegetable, serves as a valuable food source of AsA. In this study, we integrated transcriptome and metabolome analyses, along with substrate feeding, to identify the L-galactose pathway as the primary source for AsA production, which is primarily regulated by light. Through seven different photoperiod treatments from 12 h/12 h (light/dark) to 24 h/0 h, we found that AsA content increased with longer photoperiods, as well as chlorophyll, carotenoids, and soluble sugars. However, an excessively long photoperiod led to photooxidative stress, which negatively affected biomass accumulation in rapeseed seedlings and subsequently impacted the total accumulation of AsA. Furthermore, different enzymes respond differently to different photoperiods. Analysis of the correlation between the expression levels of AsA biosynthesis-related genes and AsA content highlighted a dynamic balancing mechanism of AsA metabolism in response to different photoperiods. The study revealed that the 16 h/8 h photoperiod is optimal for long-term AsA accumulation in rapeseed seedlings. However, extending the photoperiod before harvest can enhance AsA content without compromising yield. These findings offer novel insights into an effective strategy for the biofortification of AsA in rapeseed.
{"title":"Effect of Photoperiod on Ascorbic Acid Metabolism Regulation and Accumulation in Rapeseed (<i>Brassica napus</i> L.) Seedlings.","authors":"Chao Wang, Lieqiong Kuang, Ze Tian, Xinfa Wang, Jinxing Tu, Hanzhong Wang, Xiaoling Dun","doi":"10.3390/antiox14020160","DOIUrl":"10.3390/antiox14020160","url":null,"abstract":"<p><p>Ascorbic acid (AsA) is an important antioxidant for human health. The concept of \"oil-vegetable-duel-purpose\" can significantly enhance the economic benefits of the rapeseed industry. Rapeseed, when utilized as a vegetable, serves as a valuable food source of AsA. In this study, we integrated transcriptome and metabolome analyses, along with substrate feeding, to identify the L-galactose pathway as the primary source for AsA production, which is primarily regulated by light. Through seven different photoperiod treatments from 12 h/12 h (light/dark) to 24 h/0 h, we found that AsA content increased with longer photoperiods, as well as chlorophyll, carotenoids, and soluble sugars. However, an excessively long photoperiod led to photooxidative stress, which negatively affected biomass accumulation in rapeseed seedlings and subsequently impacted the total accumulation of AsA. Furthermore, different enzymes respond differently to different photoperiods. Analysis of the correlation between the expression levels of AsA biosynthesis-related genes and AsA content highlighted a dynamic balancing mechanism of AsA metabolism in response to different photoperiods. The study revealed that the 16 h/8 h photoperiod is optimal for long-term AsA accumulation in rapeseed seedlings. However, extending the photoperiod before harvest can enhance AsA content without compromising yield. These findings offer novel insights into an effective strategy for the biofortification of AsA in rapeseed.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><p>Kefir-based fermentation products exhibit antioxidant and anti-inflammatory effects against oxidative stress, inflammation, platelet activation and aggregation, and other related manifestations, thereby preventing the onset and development of several chronic diseases. Specifically, water kefir, a symbiotic culture of various microorganisms used for the production of several bio-functional fermented products, has been proposed for its health-promoting properties. Thus, water kefir grains and its apple pomace-based fermentation beverage were studied for bioactive amphiphilic and lipophilic lipid compounds with antioxidant, antithrombotic, and anti-inflammatory properties. Total lipids (TL) were extracted and further separated into their total amphiphilic (TAC) and total lipophilic content (TLC), in which the total phenolic and carotenoid contents (TPC and TCC, respectively) and the fatty acid content of the polar lipids (PL) were quantified, while the antioxidant activity of both TAC and TLC were assessed in vitro, by the ABTS, DPPH, and FRAP bioassays, along with the anti-inflammatory and antithrombotic activity of TAC against human platelet aggregation induced by the thrombo-inflammatory mediator, platelet-activating factor (PAF) or standard platelet agonists like ADP.ATR-FTIR spectra facilitated the detection of specific structural, functional groups of phenolic, flavonoid, and carotenoid antioxidants, while LC-MS analysis revealed the presence of specific anti-inflammatory and antithrombotic PL bioactives bearing unsaturated fatty acids in their structures, with favorable omega-6 (<i>n</i>-6)/omega-3 (<i>n</i>-3)polyunsaturated fatty acids (PUFA), which further support the findings that the most potent antioxidant, anti-inflammatory and antithrombotic bioactivities were observed in the TAC extracts, in both water kefir grains and beverage cases. The detection of such bioactive components in both the uncultured water kefir grains and in the cultured beverage further supports the contribution of water kefir microorganisms to the bioactivity and the bio-functionality of the final fermented product. Nevertheless, the extracts of the beverage showed much stronger antioxidant, anti-inflammatory, and antithrombotic activities, which further suggests that during the culture process for producing this beverage, not only was the presence of bioactive compounds produced by kefir microflora present, but biochemical alterations during fermentation of bioactive components derived from apple pomace also seemed to have taken place, contributing to the higher bio-functionality observed in the apple pomace-water kefir-based beverage, even when compared to the unfermented apple pomace. The overall findings support further studies on the use of water kefir and/or apple pomace as viable sources of antioxidant, anti-inflammatory, and antithrombotic amphiphilic bioactive compounds for the production of novel health-promoting bio-functional fermented products.</
{"title":"Antioxidant, Antithrombotic and Anti-Inflammatory Properties of Amphiphilic Bioactives from Water Kefir Grains and Its Apple Pomace-Based Fermented Beverage.","authors":"Dimitra Papadopoulou, Vasiliki Chrysikopoulou, Aikaterini Rampaouni, Christos Plakidis, Anna Ofrydopoulou, Katie Shiels, Sushanta Kumar Saha, Alexandros Tsoupras","doi":"10.3390/antiox14020164","DOIUrl":"10.3390/antiox14020164","url":null,"abstract":"<p><p>Kefir-based fermentation products exhibit antioxidant and anti-inflammatory effects against oxidative stress, inflammation, platelet activation and aggregation, and other related manifestations, thereby preventing the onset and development of several chronic diseases. Specifically, water kefir, a symbiotic culture of various microorganisms used for the production of several bio-functional fermented products, has been proposed for its health-promoting properties. Thus, water kefir grains and its apple pomace-based fermentation beverage were studied for bioactive amphiphilic and lipophilic lipid compounds with antioxidant, antithrombotic, and anti-inflammatory properties. Total lipids (TL) were extracted and further separated into their total amphiphilic (TAC) and total lipophilic content (TLC), in which the total phenolic and carotenoid contents (TPC and TCC, respectively) and the fatty acid content of the polar lipids (PL) were quantified, while the antioxidant activity of both TAC and TLC were assessed in vitro, by the ABTS, DPPH, and FRAP bioassays, along with the anti-inflammatory and antithrombotic activity of TAC against human platelet aggregation induced by the thrombo-inflammatory mediator, platelet-activating factor (PAF) or standard platelet agonists like ADP.ATR-FTIR spectra facilitated the detection of specific structural, functional groups of phenolic, flavonoid, and carotenoid antioxidants, while LC-MS analysis revealed the presence of specific anti-inflammatory and antithrombotic PL bioactives bearing unsaturated fatty acids in their structures, with favorable omega-6 (<i>n</i>-6)/omega-3 (<i>n</i>-3)polyunsaturated fatty acids (PUFA), which further support the findings that the most potent antioxidant, anti-inflammatory and antithrombotic bioactivities were observed in the TAC extracts, in both water kefir grains and beverage cases. The detection of such bioactive components in both the uncultured water kefir grains and in the cultured beverage further supports the contribution of water kefir microorganisms to the bioactivity and the bio-functionality of the final fermented product. Nevertheless, the extracts of the beverage showed much stronger antioxidant, anti-inflammatory, and antithrombotic activities, which further suggests that during the culture process for producing this beverage, not only was the presence of bioactive compounds produced by kefir microflora present, but biochemical alterations during fermentation of bioactive components derived from apple pomace also seemed to have taken place, contributing to the higher bio-functionality observed in the apple pomace-water kefir-based beverage, even when compared to the unfermented apple pomace. The overall findings support further studies on the use of water kefir and/or apple pomace as viable sources of antioxidant, anti-inflammatory, and antithrombotic amphiphilic bioactive compounds for the production of novel health-promoting bio-functional fermented products.</","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fatma Bayram, Philipp Hegner, Anna-Maria Lauerer, Sönke Schildt, Dominik Wermers, Maria Johanna Baier, Julian Mustroph, Maria Tafelmeier, Zdenek Provaznik, Christof Schmid, Lars Siegfried Maier, Stefan Wagner, Michael Arzt, Simon Lebek
Heart failure and cardiovascular disease represent a significant burden on healthcare systems worldwide. Recent evidence associates an increased expression of the dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B) with an impaired cardiac function in mice. However, there remains a paucity of data on myocardial DYRK1B expression in patients with cardiovascular disease in the context of other comorbidities. In our study, we examined DYRK1B mRNA expression in human right atrial appendage biopsies from 159 patients undergoing elective coronary artery bypass surgery. Each patient was tested for sleep-disordered breathing the night prior to surgery. In this large representative study cohort with cardiovascular high-risk patients, we found that an impaired cardiac function as well as sleep-disordered breathing (SDB), including various oxidative stress parameters, were associated with an increased myocardial DYRK1B expression. A multivariate regression analysis revealed left ventricular ejection fraction and the presence of SDB as significant predictors of the myocardial DYRK1B expression independent of other clinical covariates. Based on these findings, DYRK1B represents a promising molecular target in patients with heart failure and reduced ejection fraction as well in patients with sleep-disordered breathing.
{"title":"Myocardial <i>DYRK1B</i> Expression Is Increased in Patients with Impaired Cardiac Contractility and Sleep-Disordered Breathing.","authors":"Fatma Bayram, Philipp Hegner, Anna-Maria Lauerer, Sönke Schildt, Dominik Wermers, Maria Johanna Baier, Julian Mustroph, Maria Tafelmeier, Zdenek Provaznik, Christof Schmid, Lars Siegfried Maier, Stefan Wagner, Michael Arzt, Simon Lebek","doi":"10.3390/antiox14020163","DOIUrl":"10.3390/antiox14020163","url":null,"abstract":"<p><p>Heart failure and cardiovascular disease represent a significant burden on healthcare systems worldwide. Recent evidence associates an increased expression of the dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B) with an impaired cardiac function in mice. However, there remains a paucity of data on myocardial <i>DYRK1B</i> expression in patients with cardiovascular disease in the context of other comorbidities. In our study, we examined <i>DYRK1B</i> mRNA expression in human right atrial appendage biopsies from 159 patients undergoing elective coronary artery bypass surgery. Each patient was tested for sleep-disordered breathing the night prior to surgery. In this large representative study cohort with cardiovascular high-risk patients, we found that an impaired cardiac function as well as sleep-disordered breathing (SDB), including various oxidative stress parameters, were associated with an increased myocardial <i>DYRK1B</i> expression. A multivariate regression analysis revealed left ventricular ejection fraction and the presence of SDB as significant predictors of the myocardial <i>DYRK1B</i> expression independent of other clinical covariates. Based on these findings, DYRK1B represents a promising molecular target in patients with heart failure and reduced ejection fraction as well in patients with sleep-disordered breathing.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alberto Ouro, Mónica Castro-Mosquera, Mariña Rodríguez-Arrizabalaga, Manuel Debasa-Mouce, Antía Custodia, Marta Aramburu-Núñez, Daniel Romaus-Sanjurjo, Josefina Casas, Isabel Lema, José Castillo, Rogelio Leira, Tomás Sobrino
Migraine is one of the most common neurological disorders and the second most disabling human condition. The molecular mechanisms of migraine have been linked to neuropeptide release, endothelial dysfunction, oxidative stress and inflammatory processes. Acid sphingomyelinase (aSMase) is a secreted enzyme that leads to sphingomyelin degradation to produce ceramide. Its activity has been associated with several molecular processes involved in migraine. Therefore, this cross-sectional study aims to study the potential role of aSMase in patients with episodic and chronic migraine. In this cross-sectional pilot study, serum samples from female healthy controls (n = 23), episodic migraine (EM) patients (n = 31), and chronic migraine (CM) patients (n = 28) were studied. The total serum levels of aSMase were determined by ELISA. In addition, the serum levels of sphingomyelin (SM), dihydro-sphingomyelin (dhSM), ceramide (Cer), and dihydro-ceramide (dhCer) were determined by mass spectrometry as biomarkers involved in the main molecular pathways associated with aSMase. aSMase serum levels were found significantly elevated in both EM (3.62 ± 1.25 ng/mL) and CM (3.07 ± 0.95 ng/mL) compared with controls (1.58 ± 0.72 ng/mL) (p < 0.0001). ROC analysis showed an area under the curve (AUC) of 0.94 (95% CI: 0.89-0.99, p < 0.0001) and 0.90 (95% CI: 0.81-0.99, p < 0.0001) for EM and CM compared to controls, respectively. Regarding other biomarkers associated with aSMase's pathways, total SM serum levels were significantly decreased in both EM (173,534 ± 39,096 pmol/mL, p < 0.01) and CM (158,459 ± 40,010 pmol/mL, p < 0.0001) compared to the control subjects (219,721 ± 36,950 pmol/mL). Elevated serum levels of aSMase were found in EM and CM patients compared to the control subjects. The decreased SM levels found in both EM and CM indicate that aSMase activity plays a role in migraine. Therefore, aSMase may constitute a new therapeutic target in migraine that should be further investigated.
{"title":"Elevated Serum Levels of Acid Sphingomyelinase in Female Patients with Episodic and Chronic Migraine.","authors":"Alberto Ouro, Mónica Castro-Mosquera, Mariña Rodríguez-Arrizabalaga, Manuel Debasa-Mouce, Antía Custodia, Marta Aramburu-Núñez, Daniel Romaus-Sanjurjo, Josefina Casas, Isabel Lema, José Castillo, Rogelio Leira, Tomás Sobrino","doi":"10.3390/antiox14020159","DOIUrl":"10.3390/antiox14020159","url":null,"abstract":"<p><p>Migraine is one of the most common neurological disorders and the second most disabling human condition. The molecular mechanisms of migraine have been linked to neuropeptide release, endothelial dysfunction, oxidative stress and inflammatory processes. Acid sphingomyelinase (aSMase) is a secreted enzyme that leads to sphingomyelin degradation to produce ceramide. Its activity has been associated with several molecular processes involved in migraine. Therefore, this cross-sectional study aims to study the potential role of aSMase in patients with episodic and chronic migraine. In this cross-sectional pilot study, serum samples from female healthy controls (n = 23), episodic migraine (EM) patients (n = 31), and chronic migraine (CM) patients (n = 28) were studied. The total serum levels of aSMase were determined by ELISA. In addition, the serum levels of sphingomyelin (SM), dihydro-sphingomyelin (dhSM), ceramide (Cer), and dihydro-ceramide (dhCer) were determined by mass spectrometry as biomarkers involved in the main molecular pathways associated with aSMase. aSMase serum levels were found significantly elevated in both EM (3.62 ± 1.25 ng/mL) and CM (3.07 ± 0.95 ng/mL) compared with controls (1.58 ± 0.72 ng/mL) (<i>p</i> < 0.0001). ROC analysis showed an area under the curve (AUC) of 0.94 (95% CI: 0.89-0.99, <i>p</i> < 0.0001) and 0.90 (95% CI: 0.81-0.99, <i>p</i> < 0.0001) for EM and CM compared to controls, respectively. Regarding other biomarkers associated with aSMase's pathways, total SM serum levels were significantly decreased in both EM (173,534 ± 39,096 pmol/mL, <i>p</i> < 0.01) and CM (158,459 ± 40,010 pmol/mL, <i>p</i> < 0.0001) compared to the control subjects (219,721 ± 36,950 pmol/mL). Elevated serum levels of aSMase were found in EM and CM patients compared to the control subjects. The decreased SM levels found in both EM and CM indicate that aSMase activity plays a role in migraine. Therefore, aSMase may constitute a new therapeutic target in migraine that should be further investigated.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diabetic patients experience hyperglycemia, which can affect multiple organs, including brain function, leading to disabling neurological complications. Hyperglycemia plays a key role in promoting neuroinflammation, the most common complication in diabetic individuals, through the activation of microglia. Attenuating hyperglycemia-related neuroinflammation in microglia may reduce diabetes-associated neurological comorbidities. Natural remedies containing phenolic compounds have shown efficacy in mitigating microglia-mediated neuroinflammation. The aim of this study was to investigate the potential of a Melissa officinalis L. (MO) phytocomplex, obtained from plant cell cultures and enriched in its main polyphenolic constituent, rosmarinic acid (RA), in attenuating hyperglycemia-induced neuroinflammation in microglia. A time-course morphological analysis of BV2 microglial cells exposed to high glucose (HG) levels showed a shift towards a proinflammatory phenotype, peaking after 48 h, which was reversed by pretreatment with MO. Biochemical assays revealed increased expression of the microglial marker CD11b (187%), activation of the NF-κB pathway (179%), expression of iNOS (225%), enhanced phosphorylation of ERK1/2 (180%), and increased expression of the proinflammatory cytokine IL-6 (173%). Pretreatment with MO prevented the aberrant expression of these proinflammatory mediators and restored SIRT1 levels. Exposure of neuronal SH-SY5Y cells to the conditioned medium from HG-exposed microglia significantly reduced cell viability. MO counteracted this effect, exhibiting neuroprotective activity. RA showed efficacy comparable to that of MO. In conclusion, MO and RA attenuated microglia-mediated oxidative imbalance and neuroinflammation under HG exposure by inhibiting the morphological shift toward a proinflammatory phenotype induced by HG and abrogating the subsequent activation of the downstream ERK1/2-NF-κB-iNOS pathway.
{"title":"High Rosmarinic Acid Content <i>Melissa officinalis</i> L. Phytocomplex Modulates Microglia Neuroinflammation Induced by High Glucose.","authors":"Giacomina Videtta, Chiara Sasia, Nicoletta Galeotti","doi":"10.3390/antiox14020161","DOIUrl":"10.3390/antiox14020161","url":null,"abstract":"<p><p>Diabetic patients experience hyperglycemia, which can affect multiple organs, including brain function, leading to disabling neurological complications. Hyperglycemia plays a key role in promoting neuroinflammation, the most common complication in diabetic individuals, through the activation of microglia. Attenuating hyperglycemia-related neuroinflammation in microglia may reduce diabetes-associated neurological comorbidities. Natural remedies containing phenolic compounds have shown efficacy in mitigating microglia-mediated neuroinflammation. The aim of this study was to investigate the potential of a <i>Melissa officinalis</i> L. (MO) phytocomplex, obtained from plant cell cultures and enriched in its main polyphenolic constituent, rosmarinic acid (RA), in attenuating hyperglycemia-induced neuroinflammation in microglia. A time-course morphological analysis of BV2 microglial cells exposed to high glucose (HG) levels showed a shift towards a proinflammatory phenotype, peaking after 48 h, which was reversed by pretreatment with MO. Biochemical assays revealed increased expression of the microglial marker CD11b (187%), activation of the NF-κB pathway (179%), expression of iNOS (225%), enhanced phosphorylation of ERK1/2 (180%), and increased expression of the proinflammatory cytokine IL-6 (173%). Pretreatment with MO prevented the aberrant expression of these proinflammatory mediators and restored SIRT1 levels. Exposure of neuronal SH-SY5Y cells to the conditioned medium from HG-exposed microglia significantly reduced cell viability. MO counteracted this effect, exhibiting neuroprotective activity. RA showed efficacy comparable to that of MO. In conclusion, MO and RA attenuated microglia-mediated oxidative imbalance and neuroinflammation under HG exposure by inhibiting the morphological shift toward a proinflammatory phenotype induced by HG and abrogating the subsequent activation of the downstream ERK1/2-NF-κB-iNOS pathway.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photoreceptor/retinal degeneration is the major cause of blindness. Induced and inherited mouse models of retinal degeneration are valuable tools for investigating disease mechanisms and developing therapeutic interventions. This study investigated the potential of the antioxidant resveratrol to relieve photoreceptor degeneration using mouse models. Clinical studies have shown a potential association between thyroid hormone (TH) signaling and age-related retinal degeneration. Excessive TH signaling induces oxidative stress/damage and photoreceptor death in mice. C57BL/6 (rod-dominant) and Nrl-/- (cone-dominant) mice at postnatal day 30 (P30) received triiodothyronine (T3) via drinking water (20 µg/mL) with or without concomitant treatment with resveratrol via drinking water (120 µg/mL) for 30 days, followed by evaluation of photoreceptor degeneration, oxidative damage, and retinal stress responses. In experiments using Leber congenital amaurosis model mice, mother Rpe65-/- and Rpe65-/-/Nrl-/- mice received resveratrol via drinking water (120 µg/mL) for 20 days and 10-13 days, respectively, beginning on the day when the pups were at P5, and pups were then evaluated for cone degeneration. Treatment with resveratrol significantly diminished the photoreceptor degeneration induced by T3 and preserved photoreceptors in Rpe65-deficient mice, manifested as preserved retinal morphology/outer nuclear layer thickness, increased cone density, reduced photoreceptor oxidative stress/damage and apoptosis, reduced upregulation of genes involved in cell death/inflammatory responses, and reduced macroglial cell activation. These findings demonstrate the role of oxidative stress in photoreceptor degeneration, associated with TH signaling and Rpe65 deficiency, and support the therapeutic potential of resveratrol/antioxidants in the management of retinal degeneration.
{"title":"Resveratrol Protects Photoreceptors in Mouse Models of Retinal Degeneration.","authors":"Shujuan Li, Hongwei Ma, Xi-Qin Ding","doi":"10.3390/antiox14020154","DOIUrl":"10.3390/antiox14020154","url":null,"abstract":"<p><p>Photoreceptor/retinal degeneration is the major cause of blindness. Induced and inherited mouse models of retinal degeneration are valuable tools for investigating disease mechanisms and developing therapeutic interventions. This study investigated the potential of the antioxidant resveratrol to relieve photoreceptor degeneration using mouse models. Clinical studies have shown a potential association between thyroid hormone (TH) signaling and age-related retinal degeneration. Excessive TH signaling induces oxidative stress/damage and photoreceptor death in mice. C57BL/6 (rod-dominant) and <i>Nrl<sup>-/-</sup></i> (cone-dominant) mice at postnatal day 30 (P30) received triiodothyronine (T3) via drinking water (20 µg/mL) with or without concomitant treatment with resveratrol via drinking water (120 µg/mL) for 30 days, followed by evaluation of photoreceptor degeneration, oxidative damage, and retinal stress responses. In experiments using Leber congenital amaurosis model mice, mother <i>Rpe65<sup>-/-</sup></i> and <i>Rpe65<sup>-/-</sup></i>/<i>Nrl<sup>-/-</sup></i> mice received resveratrol via drinking water (120 µg/mL) for 20 days and 10-13 days, respectively, beginning on the day when the pups were at P5, and pups were then evaluated for cone degeneration. Treatment with resveratrol significantly diminished the photoreceptor degeneration induced by T3 and preserved photoreceptors in <i>Rpe65</i>-deficient mice, manifested as preserved retinal morphology/outer nuclear layer thickness, increased cone density, reduced photoreceptor oxidative stress/damage and apoptosis, reduced upregulation of genes involved in cell death/inflammatory responses, and reduced macroglial cell activation. These findings demonstrate the role of oxidative stress in photoreceptor degeneration, associated with TH signaling and <i>Rpe65</i> deficiency, and support the therapeutic potential of resveratrol/antioxidants in the management of retinal degeneration.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851417/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uroš Čakar, Mirjana Čolović, Danijela Milenković, Maja Pagnacco, Jelena Maksimović, Danijela Krstić, Brižita Đorđević
The aim of this study was to investigate the antioxidant capacity of fruit wines and their protective effects against hydrogen peroxide-induced oxidative stress in rat synaptosomes in vitro. The wines were produced from strawberries and drupe fruits (i.e., plum, sweet cherry, peach, and apricot) through microvinification with a pure S. cerevisiae yeast culture. Fruit wines were produced with and without added sugar before the start of fermentation, whereas subvariants with and without pits were only applied to drupe fruit wines. First, synaptosomes were treated with the wines, while oxidative stress was induced with H2O2. Subsequently, the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and the content of malondialdehyde (MDA), an indicator of membrane injury, were determined. In addition, the Briggs-Rauscher reaction (BR) was used to evaluate the inhibition capacity against free radicals. All investigated fruit wines increased the activity of the studied antioxidant enzymes and decreased MDA content compared to the corresponding controls (synaptosomes treated with H2O2). After synaptosomal treatment with plum wine, the highest activities were observed for SOD (5.57 U/mg protein) and GPx (0.015 U/mg protein). Strawberry wine induced the highest CAT activity (0.047 U/mg protein) and showed the best ability to reduce lipid peroxidation, yielding the lowest MDA level (2.68 nmol/mg). Strawberry, plum, and sweet cherry wines were identified as samples with higher antioxidant activity in both principal component analysis (PCA) and hierarchical cluster analysis (HCA). Finally, plum wine exhibited the highest inhibitory activity in the BR reaction (397 s). The results suggest that fruit wines could be considered potential functional food due to their protective effects against oxidative stress.
{"title":"Strawberry and Drupe Fruit Wines Antioxidant Activity and Protective Effect Against Induced Oxidative Stress in Rat Synaptosomes.","authors":"Uroš Čakar, Mirjana Čolović, Danijela Milenković, Maja Pagnacco, Jelena Maksimović, Danijela Krstić, Brižita Đorđević","doi":"10.3390/antiox14020155","DOIUrl":"10.3390/antiox14020155","url":null,"abstract":"<p><p>The aim of this study was to investigate the antioxidant capacity of fruit wines and their protective effects against hydrogen peroxide-induced oxidative stress in rat synaptosomes in vitro. The wines were produced from strawberries and drupe fruits (i.e., plum, sweet cherry, peach, and apricot) through microvinification with a pure <i>S. cerevisiae</i> yeast culture. Fruit wines were produced with and without added sugar before the start of fermentation, whereas subvariants with and without pits were only applied to drupe fruit wines. First, synaptosomes were treated with the wines, while oxidative stress was induced with H<sub>2</sub>O<sub>2</sub>. Subsequently, the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and the content of malondialdehyde (MDA), an indicator of membrane injury, were determined. In addition, the Briggs-Rauscher reaction (BR) was used to evaluate the inhibition capacity against free radicals. All investigated fruit wines increased the activity of the studied antioxidant enzymes and decreased MDA content compared to the corresponding controls (synaptosomes treated with H<sub>2</sub>O<sub>2</sub>). After synaptosomal treatment with plum wine, the highest activities were observed for SOD (5.57 U/mg protein) and GPx (0.015 U/mg protein). Strawberry wine induced the highest CAT activity (0.047 U/mg protein) and showed the best ability to reduce lipid peroxidation, yielding the lowest MDA level (2.68 nmol/mg). Strawberry, plum, and sweet cherry wines were identified as samples with higher antioxidant activity in both principal component analysis (PCA) and hierarchical cluster analysis (HCA). Finally, plum wine exhibited the highest inhibitory activity in the BR reaction (397 s). The results suggest that fruit wines could be considered potential functional food due to their protective effects against oxidative stress.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The petals of flowering plants should retain unique antioxidants that have not been found in the fruits, as the petals need to stay open to attract pollinators against photooxidation and devise a solution to avoid eating attacks. We reported that the yellow petals of freesia cultivars (Freesia x hybrida) accumulated original apocarotenoids, mono- and di-neapolitanosyl crocetin. Here, in the yellow petals, we discovered eight novel flavonoids by their structural determination, including four 3'-caffeoylquercetin 3,7-glycosides, one 3'-caffeoylquercetin 3-glycoside, and three 4'-caffeoylkaempferol 3,7-glycosides. The 3-carbon sugar part was a minor hexose dimer [D-glucosyl-D-glucoside or D-glucosyl-L-rhamnoside] with the β1,2-linkage, while the 7-carbon was usually O-glycosylated with D-glucose, L-rhamnose, or D-glucuronic acid. Such caffeoyl-flavonol glycosides were also present in freesia white petals, regardless of the cultivars and wild species. When dihydroflavonols, the last common precursors between flavonols and anthocyanins, switch to the flavonol route, these caffeoyl-flavonol glycosides are likely to be synthesized via quercetin or kaempferol. All the eight flavonoids exerted in vitro antioxidant activities against both lipid peroxidation and radical generation. Specifically, 3'-caffeoylquercetin 3-sophoroside and its 7-glucuronide showed superior antioxidant activity. Freesia yellow and white flowers have been utilized as edible flowers, indicating the importance of evaluating the human benefits and risks of newly identified flavonoids.
{"title":"3'-Caffeoylquercetin Glycosides and 4'-Caffeoylkaempferol Glycosides-Novel Antioxidant Flavonoids Discovered in the Freesia Yellow Flowers.","authors":"Kazutoshi Shindo, Nozomi Iwamoto, Mayu Usami, Ayuna Saito, Miho Sato, Maho Sugaya, Nao Miyashita, Minoru Murahama, Yasuki Higashimura, Miho Takemura, Kazuo Furihata, Norihiko Misawa","doi":"10.3390/antiox14020158","DOIUrl":"10.3390/antiox14020158","url":null,"abstract":"<p><p>The petals of flowering plants should retain unique antioxidants that have not been found in the fruits, as the petals need to stay open to attract pollinators against photooxidation and devise a solution to avoid eating attacks. We reported that the yellow petals of freesia cultivars (<i>Freesia</i> x <i>hybrida</i>) accumulated original apocarotenoids, mono- and di-neapolitanosyl crocetin. Here, in the yellow petals, we discovered eight novel flavonoids by their structural determination, including four 3'-caffeoylquercetin 3,7-glycosides, one 3'-caffeoylquercetin 3-glycoside, and three 4'-caffeoylkaempferol 3,7-glycosides. The 3-carbon sugar part was a minor hexose dimer [D-glucosyl-D-glucoside or D-glucosyl-L-rhamnoside] with the β1,2-linkage, while the 7-carbon was usually O-glycosylated with D-glucose, L-rhamnose, or D-glucuronic acid. Such caffeoyl-flavonol glycosides were also present in freesia white petals, regardless of the cultivars and wild species. When dihydroflavonols, the last common precursors between flavonols and anthocyanins, switch to the flavonol route, these caffeoyl-flavonol glycosides are likely to be synthesized via quercetin or kaempferol. All the eight flavonoids exerted in vitro antioxidant activities against both lipid peroxidation and radical generation. Specifically, 3'-caffeoylquercetin 3-sophoroside and its 7-glucuronide showed superior antioxidant activity. Freesia yellow and white flowers have been utilized as edible flowers, indicating the importance of evaluating the human benefits and risks of newly identified flavonoids.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Citrus fruits, mainly grapefruit (Citrus x paradisi L.), are rich in bioactive compounds with potential antioxidant properties. This study investigated the antioxidant effects of naringin (NR) and ethanolic Citrus x paradisi L. peel (E) in reducing aluminum chloride (AlCl3)-induced oxidative stress in mice. Quantitative analysis using HPLC identified optimal extraction conditions, combination ultrasound and reflux extraction (UH50), resulting in high concentrations of naringin (49.13 mg/g) and naringenin (63.99 µg/g). Mice were treated with NR and E to evaluate their effects on key markers of oxidative stress: reduced glutathione (GSH), malondialdehyde (MDA), and catalase (CAT). The E effectively reduced MDA levels in blood, brain, and liver tissues, with a more substantial effect on controlling lipid peroxidation. In contrast, NR was more effective in restoring GSH levels and CAT activity, suggesting a broader enhancement of antioxidant defense. These findings provide information about specific mechanisms of NR and E and their therapeutic potential in managing oxidative stress and developing products with synergistic efficacy.
{"title":"Naringin vs. <i>Citrus x paradisi</i> L. Peel Extract: An <i>In Vivo</i> Journey into Oxidative Stress Modulation.","authors":"Jolita Stabrauskiene, Ilona Sadauskiene, Arunas Liekis, Zoja Mikniene, Jurga Bernatoniene","doi":"10.3390/antiox14020157","DOIUrl":"10.3390/antiox14020157","url":null,"abstract":"<p><p>Citrus fruits, mainly grapefruit (<i>Citrus x paradisi</i> L.), are rich in bioactive compounds with potential antioxidant properties. This study investigated the antioxidant effects of naringin (NR) and ethanolic <i>Citrus x paradisi</i> L. peel (E) in reducing aluminum chloride (AlCl<sub>3</sub>)-induced oxidative stress in mice. Quantitative analysis using HPLC identified optimal extraction conditions, combination ultrasound and reflux extraction (UH50), resulting in high concentrations of naringin (49.13 mg/g) and naringenin (63.99 µg/g). Mice were treated with NR and E to evaluate their effects on key markers of oxidative stress: reduced glutathione (GSH), malondialdehyde (MDA), and catalase (CAT). The E effectively reduced MDA levels in blood, brain, and liver tissues, with a more substantial effect on controlling lipid peroxidation. In contrast, NR was more effective in restoring GSH levels and CAT activity, suggesting a broader enhancement of antioxidant defense. These findings provide information about specific mechanisms of NR and E and their therapeutic potential in managing oxidative stress and developing products with synergistic efficacy.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High concentrations of non-esterified fatty acids (NEFA) in the blood contribute to various metabolic disorders and are linked to endometritis in dairy cows. Isorhamnetin (ISO), a flavonoid found in many plants, is known for its antioxidant, anti-inflammatory, and anti-obesity properties. This study systematically assessed NEFA-induced damage in bovine endometrial epithelial cells (bEECs) and investigated whether ISO alleviates NEFA-induced cell damage and its underlying molecular mechanisms. Our observations revealed that excessive NEFA inhibited proliferation and induced apoptosis in bEECs, accompanied by an increase in the expression of BAX and cleaved caspase-3. We further observed that NEFA could induce lipid accumulation, reactive oxygen species (ROS) generation, and the release of pro-inflammatory factors IL-1β, IL-6, and TNF-α in bEECs. RNA sequencing and Western blot analysis revealed that NEFA induced damage in bEECs by activating MAPK signaling pathway. Notably, ISO treatment ameliorated these effects induced by NEFA, as evidenced by decreased protein levels of BAX, cleaved caspase-3, and PPAR-γ, along with reductions in triglyceride content, ROS generation, and levels of IL-1β, IL-6, and TNF-α. Mechanistically, our experimental results demonstrated that ISO inhibited NEFA-induced activation of MAPK signaling. Overall, ISO shows promise for therapeutic development to address NEFA-related endometritis in dairy cows.
{"title":"Isorhamnetin Ameliorates Non-Esterified Fatty Acid-Induced Apoptosis, Lipid Accumulation, and Oxidative Stress in Bovine Endometrial Epithelial Cells via Inhibiting the MAPK Signaling Pathway.","authors":"Haimiao Lv, Lijuan Liu, Wenna Zou, Ying Yang, Yuan Li, Shengji Yang, Aixin Liang, Liguo Yang","doi":"10.3390/antiox14020156","DOIUrl":"10.3390/antiox14020156","url":null,"abstract":"<p><p>High concentrations of non-esterified fatty acids (NEFA) in the blood contribute to various metabolic disorders and are linked to endometritis in dairy cows. Isorhamnetin (ISO), a flavonoid found in many plants, is known for its antioxidant, anti-inflammatory, and anti-obesity properties. This study systematically assessed NEFA-induced damage in bovine endometrial epithelial cells (bEECs) and investigated whether ISO alleviates NEFA-induced cell damage and its underlying molecular mechanisms. Our observations revealed that excessive NEFA inhibited proliferation and induced apoptosis in bEECs, accompanied by an increase in the expression of BAX and cleaved caspase-3. We further observed that NEFA could induce lipid accumulation, reactive oxygen species (ROS) generation, and the release of pro-inflammatory factors IL-1β, IL-6, and TNF-α in bEECs. RNA sequencing and Western blot analysis revealed that NEFA induced damage in bEECs by activating MAPK signaling pathway. Notably, ISO treatment ameliorated these effects induced by NEFA, as evidenced by decreased protein levels of BAX, cleaved caspase-3, and PPAR-γ, along with reductions in triglyceride content, ROS generation, and levels of IL-1β, IL-6, and TNF-α. Mechanistically, our experimental results demonstrated that ISO inhibited NEFA-induced activation of MAPK signaling. Overall, ISO shows promise for therapeutic development to address NEFA-related endometritis in dairy cows.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}