首页 > 最新文献

Antioxidants最新文献

英文 中文
Phytochemical and Bioactivity Evaluation of Bee Pollen and Androecia of Castanea, Salix, and Quercus Species. 蓖麻、沙柳和柞树花粉和雄花的植物化学和生物活性评估
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-31 DOI: 10.3390/antiox14010040
Nisa Beril Sen, Irena Vovk, Hasan Kırmızıbekmez, Etil Guzelmeric

Qualitative and quantitative differences in the chemical composition between bee pollen originated from Castanea sativa (Türkiye and Slovenia), Salix spp. (Türkiye and Slovenia), and Quercus spp. (Türkiye) and androecia of Castanea sativa, Salix alba, and Quercus pubescens (apetalous trees) were evaluated for the first time by new high-performance thin-layer chromatography (HPTLC) and ultra-performance liquid chromatography (UPLC) methods using marker compounds. N1,N5,N10-tricaffeoylspermidine was isolated, and its structure was elucidated by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). It was the main and the marker compound common to bee pollen (≈3-41 mg/g) and androecia (≈3-6 mg/g) samples. To the best of our knowledge, this is the first report of the identification of N1,N5,N10-tricaffeoylspermidine in bee pollen originated from Salix spp. and androecia of C. sativa, S. alba, and Q. pubescens. The botanical origins of bee pollen were determined via phytochemical profiling using HPTLC-image analyses showing that bee pollen from the same botanical source had almost identical profiles regardless of collection location, geographical differences, and the bee race. In vitro tests and HPTLC-effect-directed analyses (EDAs) were performed to assess antioxidant and xanthine oxidase (XO) inhibitory activities of bee pollen, androecia, and N1,N5,N10-tricaffeoylspermidine. HPTLC-EDA combined with image analyses was used for comparing the activities of bee pollen, androecia, N1,N5,N10-tricaffeoylspermidine, and also other marker compounds (quercetin, myricitrin, hyperoside, quercitrin, isoquercitrin, and rutin). The remarkable bioactivity of N1,N5,N10-tricaffeoylspermidine was for the first time evaluated by HPTLC-EDA and in vitro tests. This is the first study performing HPTLC-XO inhibitory activity analyses on the HPTLC NH2 F254S plates. Further bioactivity studies on botanically and chemically well-characterized bee pollen samples are needed to aid in the use of bee pollen-containing supplements in the prevention and treatment of diseases.

{"title":"Phytochemical and Bioactivity Evaluation of Bee Pollen and Androecia of <i>Castanea</i>, <i>Salix</i>, and <i>Quercus</i> Species.","authors":"Nisa Beril Sen, Irena Vovk, Hasan Kırmızıbekmez, Etil Guzelmeric","doi":"10.3390/antiox14010040","DOIUrl":"10.3390/antiox14010040","url":null,"abstract":"<p><p>Qualitative and quantitative differences in the chemical composition between bee pollen originated from <i>Castanea sativa</i> (Türkiye and Slovenia), <i>Salix</i> spp. (Türkiye and Slovenia), and <i>Quercus</i> spp. (Türkiye) and androecia of <i>Castanea sativa</i>, <i>Salix alba</i>, and <i>Quercus pubescens</i> (apetalous trees) were evaluated for the first time by new high-performance thin-layer chromatography (HPTLC) and ultra-performance liquid chromatography (UPLC) methods using marker compounds. <i>N</i><sup>1</sup>,<i>N</i><sup>5</sup>,<i>N</i><sup>10</sup>-tricaffeoylspermidine was isolated, and its structure was elucidated by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). It was the main and the marker compound common to bee pollen (≈3-41 mg/g) and androecia (≈3-6 mg/g) samples. To the best of our knowledge, this is the first report of the identification of <i>N</i><sup>1</sup>,<i>N</i><sup>5</sup>,<i>N</i><sup>10</sup>-tricaffeoylspermidine in bee pollen originated from <i>Salix</i> spp. and androecia of <i>C. sativa</i>, <i>S. alba</i>, and <i>Q. pubescens</i>. The botanical origins of bee pollen were determined via phytochemical profiling using HPTLC-image analyses showing that bee pollen from the same botanical source had almost identical profiles regardless of collection location, geographical differences, and the bee race. <i>In vitro</i> tests and HPTLC-effect-directed analyses (EDAs) were performed to assess antioxidant and xanthine oxidase (XO) inhibitory activities of bee pollen, androecia, and <i>N</i><sup>1</sup>,<i>N</i><sup>5</sup>,<i>N</i><sup>10</sup>-tricaffeoylspermidine. HPTLC-EDA combined with image analyses was used for comparing the activities of bee pollen, androecia, <i>N</i><sup>1</sup>,<i>N</i><sup>5</sup>,<i>N</i><sup>10</sup>-tricaffeoylspermidine, and also other marker compounds (quercetin, myricitrin, hyperoside, quercitrin, isoquercitrin, and rutin). The remarkable bioactivity of <i>N</i><sup>1</sup>,<i>N</i><sup>5</sup>,<i>N</i><sup>10</sup>-tricaffeoylspermidine was for the first time evaluated by HPTLC-EDA and <i>in vitro</i> tests. This is the first study performing HPTLC-XO inhibitory activity analyses on the HPTLC NH<sub>2</sub> F<sub>254S</sub> plates. Further bioactivity studies on botanically and chemically well-characterized bee pollen samples are needed to aid in the use of bee pollen-containing supplements in the prevention and treatment of diseases.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering Oxidative Stress in Cardiovascular Disease Progression: A Blueprint for Mechanistic Understanding and Therapeutic Innovation.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-31 DOI: 10.3390/antiox14010038
Zhaoshan Zhang, Jiawei Guo

Oxidative stress plays a pivotal role in the pathogenesis and progression of cardiovascular diseases (CVDs). This review focuses on the signaling pathways of oxidative stress during the development of CVDs, delving into the molecular regulatory networks underlying oxidative stress in various disease stages, particularly apoptosis, inflammation, fibrosis, and metabolic imbalance. By examining the dual roles of oxidative stress and the influences of sex differences on oxidative stress levels and cardiovascular disease susceptibility, this study offers a comprehensive understanding of the pathogenesis of cardiovascular diseases. The study integrates key findings from current research in three comprehensive ways. First, it outlines the major CVDs associated with oxidative stress and their respective signaling pathways, emphasizing oxidative stress's central role in cardiovascular pathology. Second, it summarizes the cardiovascular protective effects, mechanisms of action, and animal models of various antioxidants, offering insights into future drug development. Third, it discusses the applications, advantages, limitations, and potential molecular targets of gene therapy in CVDs, providing a foundation for novel therapeutic strategies. These tables underscore the systematic and integrative nature of this study while offering a theoretical basis for precision treatment for CVDs. A major contribution of this study is the systematic review of the differential effects of oxidative stress across different stages of CVDs, in addition to the proposal of innovative, multi-level intervention strategies, which open new avenues for precision treatment of the cardiovascular system.

{"title":"Deciphering Oxidative Stress in Cardiovascular Disease Progression: A Blueprint for Mechanistic Understanding and Therapeutic Innovation.","authors":"Zhaoshan Zhang, Jiawei Guo","doi":"10.3390/antiox14010038","DOIUrl":"10.3390/antiox14010038","url":null,"abstract":"<p><p>Oxidative stress plays a pivotal role in the pathogenesis and progression of cardiovascular diseases (CVDs). This review focuses on the signaling pathways of oxidative stress during the development of CVDs, delving into the molecular regulatory networks underlying oxidative stress in various disease stages, particularly apoptosis, inflammation, fibrosis, and metabolic imbalance. By examining the dual roles of oxidative stress and the influences of sex differences on oxidative stress levels and cardiovascular disease susceptibility, this study offers a comprehensive understanding of the pathogenesis of cardiovascular diseases. The study integrates key findings from current research in three comprehensive ways. First, it outlines the major CVDs associated with oxidative stress and their respective signaling pathways, emphasizing oxidative stress's central role in cardiovascular pathology. Second, it summarizes the cardiovascular protective effects, mechanisms of action, and animal models of various antioxidants, offering insights into future drug development. Third, it discusses the applications, advantages, limitations, and potential molecular targets of gene therapy in CVDs, providing a foundation for novel therapeutic strategies. These tables underscore the systematic and integrative nature of this study while offering a theoretical basis for precision treatment for CVDs. A major contribution of this study is the systematic review of the differential effects of oxidative stress across different stages of CVDs, in addition to the proposal of innovative, multi-level intervention strategies, which open new avenues for precision treatment of the cardiovascular system.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antioxidant and Laxative Effects of Methanol Extracts of Green Pine Cones (Pinus densiflora) in Sprague-Dawley Rats with Loperamide-Induced Constipation.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-31 DOI: 10.3390/antiox14010037
Hee-Jin Song, Ayun Seol, Jumin Park, Ji-Eun Kim, Tae-Ryeol Kim, Ki-Ho Park, Eun-Seo Park, Su-Jeong Lim, Su-Ha Wang, Ji-Eun Sung, Youngwoo Choi, Heeseob Lee, Dae-Youn Hwang

Oxidative stress is the key cause of the etiopathogenesis of several diseases associated with constipation. This study examined whether the green pine cone can improve the symptoms of constipation based on the antioxidant activities. The changes in the key parameters for the antioxidant activity and laxative effects were examined in the loperamide (Lop)-induced constipation of Sprague-Dawley (SD) rats after being treated with the methanol extracts of green pine cone (MPC, unripe fruits of Pinus densiflora). MPC contained several bioactive compounds, including diterpenoid compounds such as dehydroabietic acid, taxodone, and ferruginol. In addition, it exhibited high scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals. These effects of MPC successfully reflected the improvement in nicotinamide adenine dinucleotide phosphate oxidase (NADP) H oxidase transcription, superoxide dismutase (SOD) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation levels in the mid colon of Lop+MPC-treated SD rats. Furthermore, significant improvements in the stool parameters, gastrointestinal (GI) transit, intestine length, and histopathological structure of the mid colon were detected in the Lop-induced constipation rats after MPC treatment. The other parameters, including the regulators for the adherens junction (AJ) and tight junction (TJ), and GI hormone secretion for laxative effects, were improved significantly in Lop+MPC-treated SD rats. These effects were also verified in Lop+MPC-treated primary rat intestine smooth muscle cells (pRISMCs) through analyses for antioxidant defense mechanisms. Overall, the finding of this study offers novel scientific evidence that MPC could be considered as a significant laxative for chronic constipation based on its antioxidant activity.

{"title":"Antioxidant and Laxative Effects of Methanol Extracts of Green Pine Cones (<i>Pinus densiflora</i>) in Sprague-Dawley Rats with Loperamide-Induced Constipation.","authors":"Hee-Jin Song, Ayun Seol, Jumin Park, Ji-Eun Kim, Tae-Ryeol Kim, Ki-Ho Park, Eun-Seo Park, Su-Jeong Lim, Su-Ha Wang, Ji-Eun Sung, Youngwoo Choi, Heeseob Lee, Dae-Youn Hwang","doi":"10.3390/antiox14010037","DOIUrl":"10.3390/antiox14010037","url":null,"abstract":"<p><p>Oxidative stress is the key cause of the etiopathogenesis of several diseases associated with constipation. This study examined whether the green pine cone can improve the symptoms of constipation based on the antioxidant activities. The changes in the key parameters for the antioxidant activity and laxative effects were examined in the loperamide (Lop)-induced constipation of Sprague-Dawley (SD) rats after being treated with the methanol extracts of green pine cone (MPC, unripe fruits of <i>Pinus densiflora</i>). MPC contained several bioactive compounds, including diterpenoid compounds such as dehydroabietic acid, taxodone, and ferruginol. In addition, it exhibited high scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals. These effects of MPC successfully reflected the improvement in nicotinamide adenine dinucleotide phosphate oxidase (NADP) H oxidase transcription, superoxide dismutase (SOD) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation levels in the mid colon of Lop+MPC-treated SD rats. Furthermore, significant improvements in the stool parameters, gastrointestinal (GI) transit, intestine length, and histopathological structure of the mid colon were detected in the Lop-induced constipation rats after MPC treatment. The other parameters, including the regulators for the adherens junction (AJ) and tight junction (TJ), and GI hormone secretion for laxative effects, were improved significantly in Lop+MPC-treated SD rats. These effects were also verified in Lop+MPC-treated primary rat intestine smooth muscle cells (pRISMCs) through analyses for antioxidant defense mechanisms. Overall, the finding of this study offers novel scientific evidence that MPC could be considered as a significant laxative for chronic constipation based on its antioxidant activity.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Redox Process in Red Blood Cells: Balancing Oxidants and Antioxidants.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-31 DOI: 10.3390/antiox14010036
Dala N Daraghmeh, Rafik Karaman

Red blood cells (RBCs) are a vital component of the body's oxygen supply system. In addition to being pro-oxidants, they are also essential components of the body's antioxidant defense mechanism. RBCs are susceptible to both endogenous and exogenous sources of oxidants. Oxyhemoglobin autoxidation is the primary source of endogenous RBC oxidant production, which produces superoxide radicals and hydrogen peroxide. Potent exogenous oxidants from other blood cells and the surrounding endothelium can also enter RBCs. Both enzymatic (like glutathione peroxidase) and non-enzymatic (like glutathione) mechanisms can neutralize oxidants. These systems are generally referred to as oxidant scavengers or antioxidants, and they work to neutralize these harmful molecules (i.e., oxidants). While their antioxidative capabilities are essential to their physiological functions and delivering oxygen to tissues, their pro-oxidant behavior plays a part in several human pathologies. The redox-related changes in RBCs can have an impact on their function and fate. The balance between pro-oxidants and antioxidants determines the oxidative status of cells, which affects signal transduction, differentiation, and proliferation. When pro-oxidant activity exceeds antioxidative capacity, oxidative stress occurs, leading to cytotoxicity. This type of stress has been linked to various pathologies, including hemolytic anemia. This review compiles the most recent literature investigating the connections between RBC redox biochemistry, antioxidants, and diverse disorders.

{"title":"The Redox Process in Red Blood Cells: Balancing Oxidants and Antioxidants.","authors":"Dala N Daraghmeh, Rafik Karaman","doi":"10.3390/antiox14010036","DOIUrl":"10.3390/antiox14010036","url":null,"abstract":"<p><p>Red blood cells (RBCs) are a vital component of the body's oxygen supply system. In addition to being pro-oxidants, they are also essential components of the body's antioxidant defense mechanism. RBCs are susceptible to both endogenous and exogenous sources of oxidants. Oxyhemoglobin autoxidation is the primary source of endogenous RBC oxidant production, which produces superoxide radicals and hydrogen peroxide. Potent exogenous oxidants from other blood cells and the surrounding endothelium can also enter RBCs. Both enzymatic (like glutathione peroxidase) and non-enzymatic (like glutathione) mechanisms can neutralize oxidants. These systems are generally referred to as oxidant scavengers or antioxidants, and they work to neutralize these harmful molecules (i.e., oxidants). While their antioxidative capabilities are essential to their physiological functions and delivering oxygen to tissues, their pro-oxidant behavior plays a part in several human pathologies. The redox-related changes in RBCs can have an impact on their function and fate. The balance between pro-oxidants and antioxidants determines the oxidative status of cells, which affects signal transduction, differentiation, and proliferation. When pro-oxidant activity exceeds antioxidative capacity, oxidative stress occurs, leading to cytotoxicity. This type of stress has been linked to various pathologies, including hemolytic anemia. This review compiles the most recent literature investigating the connections between RBC redox biochemistry, antioxidants, and diverse disorders.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation, Characterization, Antibacterial Activity, Antioxidant Activity, and Safety Evaluation of Camphora longepaniculata Essential Oil Nanoemulsions Through High-Pressure Homogenization.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-30 DOI: 10.3390/antiox14010033
Yue Yan, Changhe Wei, Xin Liu, Xin Zhao, Shanmei Zhao, Shuai Tong, Guoyou Ren, Qin Wei

The volatility, instability, and water insolubility of Camphora longepaniculata essential oil (CLEO) limit its practical applications in the food, pharmaceutical, and cosmetics industries. CLEO nanoemulsions (CLNEs) were formulated and characterized to overcome the aforementioned issues. The volatile compounds of CLEO were identified by gas chromatography-mass spectrometry. CLNEs were prepared using EL-40 (5%, w/w) as the surfactant via the high-pressure homogenization method. The formation of nanoemulsions was verified by Fourier transform infrared spectroscopy and transmission electron microscopy. Homogenized nanoemulsions had smaller particle sizes of 39.99 ± 0.47 nm and exhibited enhanced stability. The nanostructured CLEO showed an antibacterial effect against Escherichia coli and Staphylococcus aureus. The antibacterial mechanism was explored through bacterial morphology and intracellular lysate leakage. CLNEs disrupted the structure of bacterial cells and impaired the permeability of cell membranes, resulting in the leakage of bacterial intracellular contents. The nanoemulsions exhibited superior radical scavenging ability compared to the pure oil. Furthermore, evaluations of the cellular safety of the CLNEs demonstrated that the survival rate of exposed HOECs was greater than 90%, with an apoptosis rate of less than 10% in a concentration range. The results demonstrated that nanoemulsification improved the stability, solubility in aqueous media, and bioavailability of CLEO, thereby broadening its potential industrial applications as a natural antibacterial and antioxidant agent.

{"title":"Formulation, Characterization, Antibacterial Activity, Antioxidant Activity, and Safety Evaluation of <i>Camphora longepaniculata</i> Essential Oil Nanoemulsions Through High-Pressure Homogenization.","authors":"Yue Yan, Changhe Wei, Xin Liu, Xin Zhao, Shanmei Zhao, Shuai Tong, Guoyou Ren, Qin Wei","doi":"10.3390/antiox14010033","DOIUrl":"10.3390/antiox14010033","url":null,"abstract":"<p><p>The volatility, instability, and water insolubility of <i>Camphora longepaniculata</i> essential oil (CLEO) limit its practical applications in the food, pharmaceutical, and cosmetics industries. CLEO nanoemulsions (CLNEs) were formulated and characterized to overcome the aforementioned issues. The volatile compounds of CLEO were identified by gas chromatography-mass spectrometry. CLNEs were prepared using EL-40 (5%, <i>w</i>/<i>w</i>) as the surfactant via the high-pressure homogenization method. The formation of nanoemulsions was verified by Fourier transform infrared spectroscopy and transmission electron microscopy. Homogenized nanoemulsions had smaller particle sizes of 39.99 ± 0.47 nm and exhibited enhanced stability. The nanostructured CLEO showed an antibacterial effect against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. The antibacterial mechanism was explored through bacterial morphology and intracellular lysate leakage. CLNEs disrupted the structure of bacterial cells and impaired the permeability of cell membranes, resulting in the leakage of bacterial intracellular contents. The nanoemulsions exhibited superior radical scavenging ability compared to the pure oil. Furthermore, evaluations of the cellular safety of the CLNEs demonstrated that the survival rate of exposed HOECs was greater than 90%, with an apoptosis rate of less than 10% in a concentration range. The results demonstrated that nanoemulsification improved the stability, solubility in aqueous media, and bioavailability of CLEO, thereby broadening its potential industrial applications as a natural antibacterial and antioxidant agent.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic Approaches to Investigate the Anti-Aging Effects of Blueberry Anthocyanins in a Caenorhabditis Elegans Aging Model.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-30 DOI: 10.3390/antiox14010035
Jie Ding, Jiahui Liu, Qingqi Guo, Na Zhang

This study investigates the anti-aging effects of various concentrations of blueberry anthocyanins (BA) on the lifespan and health-related phenotypes of Caenorhabditis elegans. Blueberry anthocyanins were administered at concentrations of 50.0 μg/mL, 200.0 μg/mL, and 500.0 μg/mL, and their effects on nematode lifespan, locomotion, pharyngeal pumping rate, and the accumulation of lipofuscin and reactive oxygen species (ROS) were examined. Transcriptomic analysis was conducted to explore the regulatory effects of BA on anti-aging molecular pathways and key genes in C. elegans. Results showed a significant, dose-dependent extension of lifespan, improvement in locomotion and pharyngeal pumping rate, and reduction in lipofuscin and ROS accumulation. Transcriptomic analysis revealed that BA activated anti-aging pathways such as FOXO, IIS, and PI3K/Akt, upregulating critical genes like daf-16. These findings highlight the potential of blueberry anthocyanins as promising anti-aging agents through multiple physiological and molecular mechanisms.

{"title":"Transcriptomic Approaches to Investigate the Anti-Aging Effects of Blueberry Anthocyanins in a Caenorhabditis Elegans Aging Model.","authors":"Jie Ding, Jiahui Liu, Qingqi Guo, Na Zhang","doi":"10.3390/antiox14010035","DOIUrl":"10.3390/antiox14010035","url":null,"abstract":"<p><p>This study investigates the anti-aging effects of various concentrations of blueberry anthocyanins (BA) on the lifespan and health-related phenotypes of Caenorhabditis elegans. Blueberry anthocyanins were administered at concentrations of 50.0 μg/mL, 200.0 μg/mL, and 500.0 μg/mL, and their effects on nematode lifespan, locomotion, pharyngeal pumping rate, and the accumulation of lipofuscin and reactive oxygen species (ROS) were examined. Transcriptomic analysis was conducted to explore the regulatory effects of BA on anti-aging molecular pathways and key genes in <i>C. elegans</i>. Results showed a significant, dose-dependent extension of lifespan, improvement in locomotion and pharyngeal pumping rate, and reduction in lipofuscin and ROS accumulation. Transcriptomic analysis revealed that BA activated anti-aging pathways such as FOXO, IIS, and PI3K/Akt, upregulating critical genes like <i>daf-16</i>. These findings highlight the potential of blueberry anthocyanins as promising anti-aging agents through multiple physiological and molecular mechanisms.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Nicotinamide Mononucleotide Reduces Oxidative Stress and Improves Steroidogenesis in Granulosa Cells Associated with Sheep Prolificacy via Activating AMPK Pathway.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-30 DOI: 10.3390/antiox14010034
Yu Cai, Hua Yang, Hui Xu, Shanglai Li, Bingru Zhao, Zhibo Wang, Xiaolei Yao, Feng Wang, Yanli Zhang

Oxidative stress is a significant factor in the death of granulosa cells (GCs), leading to follicular atresia and consequently limiting the number of dominant follicles that can mature and ovulate within each follicular wave. Follicular fluid contains a diverse array of metabolites that play crucial roles in regulating GCs' proliferation and oocyte maturation, which are essential for follicle development and female fertility. However, the mechanisms behind metabolite heterogeneity and its effects on GCs' function remain poorly understood. Here, we identified elevated nicotinamide levels in the follicular fluid of high-prolificacy sheep, correlated with oxidative stress in GCs, by an integrated analysis. In vitro experiments demonstrated that supplementation with β-nicotinamide mononucleotide (NMN) significantly increased the levels of nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) in GCs. NMN treatment effectively reduced Lipopolysaccharide (LPS)-induced apoptosis and mitigated mitochondrial dysfunction, while also decreasing the production of reactive oxygen species (ROS), thereby enhancing the activity of the antioxidant defense system. Importantly, NMN treatment improved the impairments in steroid hormone levels induced by LPS. Mechanistically, the protective effects of NMN against GCs function were mediated via the AMPK/mTOR pathway. Collectively, our findings elucidate the metabolic characteristics associated with sheep prolificacy and demonstrate that NMN effectively protects GCs from LPS-induced dysfunction and enhances ovarian responsiveness via the AMPK/mTOR pathway. These findings also position NMN as a potential novel metabolic biomarker in enhancing ovarian function.

{"title":"β-Nicotinamide Mononucleotide Reduces Oxidative Stress and Improves Steroidogenesis in Granulosa Cells Associated with Sheep Prolificacy via Activating AMPK Pathway.","authors":"Yu Cai, Hua Yang, Hui Xu, Shanglai Li, Bingru Zhao, Zhibo Wang, Xiaolei Yao, Feng Wang, Yanli Zhang","doi":"10.3390/antiox14010034","DOIUrl":"10.3390/antiox14010034","url":null,"abstract":"<p><p>Oxidative stress is a significant factor in the death of granulosa cells (GCs), leading to follicular atresia and consequently limiting the number of dominant follicles that can mature and ovulate within each follicular wave. Follicular fluid contains a diverse array of metabolites that play crucial roles in regulating GCs' proliferation and oocyte maturation, which are essential for follicle development and female fertility. However, the mechanisms behind metabolite heterogeneity and its effects on GCs' function remain poorly understood. Here, we identified elevated nicotinamide levels in the follicular fluid of high-prolificacy sheep, correlated with oxidative stress in GCs, by an integrated analysis. In vitro experiments demonstrated that supplementation with β-nicotinamide mononucleotide (NMN) significantly increased the levels of nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) in GCs. NMN treatment effectively reduced Lipopolysaccharide (LPS)-induced apoptosis and mitigated mitochondrial dysfunction, while also decreasing the production of reactive oxygen species (ROS), thereby enhancing the activity of the antioxidant defense system. Importantly, NMN treatment improved the impairments in steroid hormone levels induced by LPS. Mechanistically, the protective effects of NMN against GCs function were mediated via the AMPK/mTOR pathway. Collectively, our findings elucidate the metabolic characteristics associated with sheep prolificacy and demonstrate that NMN effectively protects GCs from LPS-induced dysfunction and enhances ovarian responsiveness via the AMPK/mTOR pathway. These findings also position NMN as a potential novel metabolic biomarker in enhancing ovarian function.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological Effects of Antioxidant Mycosporine-Glycine in Alleviating Ultraviolet B-Induced Skin Photodamage: Insights from Metabolomic and Transcriptomic Analyses.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-29 DOI: 10.3390/antiox14010030
Kai Wang, Ling Qin, Huan Lin, Mengke Yao, Junhan Cao, Qing Zhang, Changfeng Qu, Yingying He, Jinlai Miao, Ming Liu

Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, 30 female ICR mice were divided into four groups: a control group and three Ultraviolet B (UVB)-exposed groups treated with saline or M-Gly via intraperitoneal injection for 30 days. At the end of the experiment, UVB exposure caused erythema, wrinkling, collagen degradation, and mast cell infiltration in mouse dorsal skin. M-Gly treatment improved skin appearance and reduced mast cell numbers, while also elevating antioxidant levels, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Furthermore, M-Gly reduced inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β, typically upregulated after UVB exposure. M-Gly also protected skin collagen by upregulating type I procollagen and decreasing MMP-1 levels. Skin metabolomic profiling identified 34 differentially abundant metabolites, and transcriptomic analysis revealed 752 differentially expressed genes. The combined metabolomic and transcriptomic data indicate that M-Gly's protective effects may involve the regulation of ion transport, cellular repair, metabolic stability, collagen preservation, and the Nrf2/HO-1 pathway. These findings highlight M-Gly's potential as an endogenous antioxidant for protecting skin from UVB-induced damage.

{"title":"Pharmacological Effects of Antioxidant Mycosporine-Glycine in Alleviating Ultraviolet B-Induced Skin Photodamage: Insights from Metabolomic and Transcriptomic Analyses.","authors":"Kai Wang, Ling Qin, Huan Lin, Mengke Yao, Junhan Cao, Qing Zhang, Changfeng Qu, Yingying He, Jinlai Miao, Ming Liu","doi":"10.3390/antiox14010030","DOIUrl":"10.3390/antiox14010030","url":null,"abstract":"<p><p>Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, 30 female ICR mice were divided into four groups: a control group and three Ultraviolet B (UVB)-exposed groups treated with saline or M-Gly via intraperitoneal injection for 30 days. At the end of the experiment, UVB exposure caused erythema, wrinkling, collagen degradation, and mast cell infiltration in mouse dorsal skin. M-Gly treatment improved skin appearance and reduced mast cell numbers, while also elevating antioxidant levels, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Furthermore, M-Gly reduced inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β, typically upregulated after UVB exposure. M-Gly also protected skin collagen by upregulating type I procollagen and decreasing MMP-1 levels. Skin metabolomic profiling identified 34 differentially abundant metabolites, and transcriptomic analysis revealed 752 differentially expressed genes. The combined metabolomic and transcriptomic data indicate that M-Gly's protective effects may involve the regulation of ion transport, cellular repair, metabolic stability, collagen preservation, and the Nrf2/HO-1 pathway. These findings highlight M-Gly's potential as an endogenous antioxidant for protecting skin from UVB-induced damage.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Extraction of Phenolic Compounds from Aronia melanocarpa Using Deep Eutectic Solvents and Antioxidant Activity Investigation.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-29 DOI: 10.3390/antiox14010031
Maja Molnar, Martina Jakovljević Kovač, Lidija Jakobek, Lovro Mihajlović, Valentina Pavić

This study explores the green extraction of phenolic antioxidants from Aronia melanocarpa fruit using choline-chloride-based deep eutectic solvents (DESs) as an eco-friendly alternative to conventional solvents. Sixteen DESs, prepared by combining choline chloride with various hydrogen bond donors, were characterized for their physical properties, including viscosity, polarity, and pH, and applied to extract phenolics from Aronia melanocarpa. High-performance liquid chromatography (HPLC) quantified key phenolic compounds, including neochlorogenic and chlorogenic acid, quercetin derivatives, and cyanidin derivatives, as well as total phenolic acids, flavanols, and anthocyanins. The results revealed that DES composition and physical properties significantly influenced extraction efficiency and antioxidant activity. Additionally, the intrinsic antioxidant activity of DESs contributed substantially to the overall activity of the extracts, particularly in DESs containing organic acids or thiourea. Choline chloride/tartaric acid DES demonstrated the highest total phenolic content, attributed to its high viscosity and strongly acidic pH, while choline chloride/thiourea DES, with low viscosity and slightly acidic pH, exhibited the greatest antioxidant activity. This study highlights how tailoring DES formulations can optimize the extraction of target compounds while accounting for the solvent's intrinsic properties. The findings support the potential application of DESs as environmentally friendly solvents in the food, pharmaceutical, and cosmetic industries.

{"title":"Green Extraction of Phenolic Compounds from <i>Aronia melanocarpa</i> Using Deep Eutectic Solvents and Antioxidant Activity Investigation.","authors":"Maja Molnar, Martina Jakovljević Kovač, Lidija Jakobek, Lovro Mihajlović, Valentina Pavić","doi":"10.3390/antiox14010031","DOIUrl":"10.3390/antiox14010031","url":null,"abstract":"<p><p>This study explores the green extraction of phenolic antioxidants from <i>Aronia melanocarpa</i> fruit using choline-chloride-based deep eutectic solvents (DESs) as an eco-friendly alternative to conventional solvents. Sixteen DESs, prepared by combining choline chloride with various hydrogen bond donors, were characterized for their physical properties, including viscosity, polarity, and pH, and applied to extract phenolics from <i>Aronia melanocarpa</i>. High-performance liquid chromatography (HPLC) quantified key phenolic compounds, including neochlorogenic and chlorogenic acid, quercetin derivatives, and cyanidin derivatives, as well as total phenolic acids, flavanols, and anthocyanins. The results revealed that DES composition and physical properties significantly influenced extraction efficiency and antioxidant activity. Additionally, the intrinsic antioxidant activity of DESs contributed substantially to the overall activity of the extracts, particularly in DESs containing organic acids or thiourea. Choline chloride/tartaric acid DES demonstrated the highest total phenolic content, attributed to its high viscosity and strongly acidic pH, while choline chloride/thiourea DES, with low viscosity and slightly acidic pH, exhibited the greatest antioxidant activity. This study highlights how tailoring DES formulations can optimize the extraction of target compounds while accounting for the solvent's intrinsic properties. The findings support the potential application of DESs as environmentally friendly solvents in the food, pharmaceutical, and cosmetic industries.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Ginseng Supplementation on Exercise Endurance as a Support for Cardiovascular Disease Management: A Systematic Review and Meta-Analysis.
IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-29 DOI: 10.3390/antiox14010032
Angelika Szymańska, Anna Nowak, Anna Lipert, Ewa Kochan

Ginseng has multi-directional pharmacological properties. Some data suggest that ginseng can enhance physical endurance, which, in turn, leads to protection of the cardiovascular system. However, not all experiments are conclusive. For this reason, the main aim of this research was to perform a meta-analysis and review of studies published between the years 2013 and 2023 concerning the ginseng effect on physical performance in animal and human models. Medline, Pubmed, and ClinicalKey electronic databases were used to analyze data. The search strategy included the following criteria: ginseng and exercise; ginseng supplementation; and ginseng supplements. The results suggest that ginseng supplementation may have a positive effect on CK levels in animal studies. Similar observations were stated in relation to serum lactate and BUN. Furthermore, a human study showed a significant increase in exercise time to exhaustion and VO2 max after supplementation. The review of the literature and conducted meta-analysis identified that ginseng supplementation may have a positive effect on exercise endurance. Due to the fact that most of the current studies were based on animal models, further research on human models is needed to identify the most effective dosage or form of applied ginseng to be a supportive element in CVD management.

{"title":"Effect of Ginseng Supplementation on Exercise Endurance as a Support for Cardiovascular Disease Management: A Systematic Review and Meta-Analysis.","authors":"Angelika Szymańska, Anna Nowak, Anna Lipert, Ewa Kochan","doi":"10.3390/antiox14010032","DOIUrl":"10.3390/antiox14010032","url":null,"abstract":"<p><p>Ginseng has multi-directional pharmacological properties. Some data suggest that ginseng can enhance physical endurance, which, in turn, leads to protection of the cardiovascular system. However, not all experiments are conclusive. For this reason, the main aim of this research was to perform a meta-analysis and review of studies published between the years 2013 and 2023 concerning the ginseng effect on physical performance in animal and human models. Medline, Pubmed, and ClinicalKey electronic databases were used to analyze data. The search strategy included the following criteria: ginseng and exercise; ginseng supplementation; and ginseng supplements. The results suggest that ginseng supplementation may have a positive effect on CK levels in animal studies. Similar observations were stated in relation to serum lactate and BUN. Furthermore, a human study showed a significant increase in exercise time to exhaustion and VO2 max after supplementation. The review of the literature and conducted meta-analysis identified that ginseng supplementation may have a positive effect on exercise endurance. Due to the fact that most of the current studies were based on animal models, further research on human models is needed to identify the most effective dosage or form of applied ginseng to be a supportive element in CVD management.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Antioxidants
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1