首页 > 最新文献

Tribology Letters最新文献

英文 中文
In-Situ Observation and Discrete Element Simulation of Solid Graphite Lubrication Mechanism 固体石墨润滑机理的原位观测和离散元模拟
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-06-20 DOI: 10.1007/s11249-024-01881-1
Junchao Kong, Qiangqiang Zhang, Bing Xu, Gang Wang, Huifang Dong

Solid lubrication is a green manufacturing technology with high efficiency, which saves energy and material and thus it is suitable for extreme conditions in mechanical engineering fields such as aerospace and high temperature mold. In this study, a graphite layer of specified thickness was prepared on the end face of the upper specimen by the directional spray method. The effect of velocity and load on the friction characteristics of the graphite layer were investigated using a friction tester capable of real time observation of the friction interface. Subsequently, a 3D surface profilometer, SEM, and EDS were used to characterize the morphology and elemental composition of the worn surfaces. The results show that the lubrication performance of the graphite layer is most effective with a flatter worn surface (Sa and SZ are smaller) and higher carbon content when the velocity is 12.5 mm/s and the load is 4N. Meanwhile, force chains are short, numerous and lasting for a long time, while being uniformly distributed in all directions and velocity fluctuates greatly, with slowly decreased coordination numbers. This study aims to provide a reasonable explanation for the mechanisms by which velocity and load influence the lubrication effect of the powder layer.

固体润滑是一种绿色制造技术,具有高效、节能、节材等优点,适用于航空航天、高温模具等机械工程领域的极端条件。本研究采用定向喷涂法在上部试样的端面上制备了指定厚度的石墨层。使用摩擦测试仪实时观察摩擦界面,研究速度和载荷对石墨层摩擦特性的影响。随后,使用三维表面轮廓仪、扫描电镜和 EDS 表征了磨损表面的形态和元素组成。结果表明,当速度为 12.5 mm/s、载荷为 4N 时,磨损表面较平(Sa 和 SZ 较小)、碳含量较高的石墨层润滑性能最佳。同时,力链短而多,持续时间长,均匀分布于各个方向,速度波动大,配位数缓慢减少。本研究旨在合理解释速度和载荷对粉末层润滑效果的影响机制。
{"title":"In-Situ Observation and Discrete Element Simulation of Solid Graphite Lubrication Mechanism","authors":"Junchao Kong,&nbsp;Qiangqiang Zhang,&nbsp;Bing Xu,&nbsp;Gang Wang,&nbsp;Huifang Dong","doi":"10.1007/s11249-024-01881-1","DOIUrl":"10.1007/s11249-024-01881-1","url":null,"abstract":"<div><p>Solid lubrication is a green manufacturing technology with high efficiency, which saves energy and material and thus it is suitable for extreme conditions in mechanical engineering fields such as aerospace and high temperature mold. In this study, a graphite layer of specified thickness was prepared on the end face of the upper specimen by the directional spray method. The effect of velocity and load on the friction characteristics of the graphite layer were investigated using a friction tester capable of real time observation of the friction interface. Subsequently, a 3D surface profilometer, SEM, and EDS were used to characterize the morphology and elemental composition of the worn surfaces. The results show that the lubrication performance of the graphite layer is most effective with a flatter worn surface (S<sub>a</sub> and S<sub>Z</sub> are smaller) and higher carbon content when the velocity is 12.5 mm/s and the load is 4N. Meanwhile, force chains are short, numerous and lasting for a long time, while being uniformly distributed in all directions and velocity fluctuates greatly, with slowly decreased coordination numbers. This study aims to provide a reasonable explanation for the mechanisms by which velocity and load influence the lubrication effect of the powder layer.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Analysis of Shear-Dependent Mechanochemical Reaction Kinetics 依赖剪切力的机械化学反应动力学分析
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-06-12 DOI: 10.1007/s11249-024-01879-9
Resham Rana, Nicholas Hopper, François Sidoroff, Juliette Cayer-Barrioz, Denis Mazuyer, Wilfred T. Tysoe

This paper shows how the effect of combined normal and shear stresses on the rates of tribochemical reactions can be calculated using Evans-Polanyi (E-P) perturbation theory. The E-P approach is based on transition-state theory, where the rate of reaction is taken to be proportional to the concentration of activated complex. The equilibrium constant depends on the molar Gibbs free energy change between the initial- and transition-states, which, in turn, depends on the stresses. E-P theory has been used previously to successfully calculate the effects of normal stresses on reaction rates. In this case, ln(Rate) varies linearly with stress with a slope given by an activation volume, which broadly corresponds to the volume difference between the reactant and activated complex. An advantage of E-P theory is that it can calculate the influence of several perturbations, for example, the normal stress dependence of the shear stress during sliding. In this paper, E-P theory is used to calculate shear-induced, tribochemical reaction rates. The results depend on four elementary activation volumes for different contributions to the Gibbs free energy: two of them due to normal and shear stresses for sliding over the surface and two more for the surface reaction. The results of the calculations show that there is a linear dependence of ln(Rate) on the normal stress but that the coefficient of proportionality between the ln(Rate) and the normal stress now has contributions from all elementary-step activation volumes. Counterintuitively, the analysis predicts that the ln(Rate)-normal stress evolution tends, at zero normal stress, to an asymptotic rate constant that depends on sliding velocity and differs from the thermal reaction rate. The theoretical prediction is verified for the shear-induced decomposition of ethyl thiolate species adsorbed on a Cu(100) single crystal substrate that decomposes by C‒S bond cleavage. The theoretical analyses show that tribochemical reactions can be influenced by either just normal stresses or by a combination of normal and shear stresses, but that the latter effect is much greater. Finally, it is predicted that there should be a linear relationship between the activation energy and the logarithm of the pre-exponential factor of the asymptotic rate constant.

Graphical Abstract

本文展示了如何利用埃文斯-波兰尼(E-P)扰动理论计算法向应力和剪切应力对摩擦化学反应速率的影响。E-P 方法基于过渡态理论,反应速率与活化复合物的浓度成正比。平衡常数取决于初始状态和过渡状态之间的摩尔吉布斯自由能变化,而这又取决于应力。E-P 理论曾用于成功计算法向应力对反应速率的影响。在这种情况下,ln(速率)随应力呈线性变化,斜率由活化体积决定,活化体积大致相当于反应物和活化复合物之间的体积差。E-P 理论的一个优点是可以计算多种扰动的影响,例如滑动过程中剪应力与法向应力的关系。本文采用 E-P 理论计算剪切力引起的摩擦化学反应速率。计算结果取决于四个基本活化量对吉布斯自由能的不同贡献:其中两个是由于表面滑动时的法向应力和剪切应力引起的,另外两个是由于表面反应引起的。计算结果显示,ln(Rate) 与法向应力呈线性关系,但现在 ln(Rate)与法向应力之间的比例系数来自所有基本活化量。与直觉相反的是,分析预测 ln(Rate)-法向应力演变在法向应力为零时趋向于一个渐近速率常数,该速率常数取决于滑动速度,并与热反应速率不同。这一理论预测在吸附在 Cu(100)单晶基底上的硫醇酸乙酯物种的剪切诱导分解中得到了验证,该物种通过 C-S 键裂解而分解。理论分析表明,摩擦化学反应既可能只受法向应力的影响,也可能受法向应力和剪切应力的共同影响,但后者的影响要大得多。最后,根据预测,活化能与渐近速率常数的前指数因子的对数之间应存在线性关系。
{"title":"An Analysis of Shear-Dependent Mechanochemical Reaction Kinetics","authors":"Resham Rana,&nbsp;Nicholas Hopper,&nbsp;François Sidoroff,&nbsp;Juliette Cayer-Barrioz,&nbsp;Denis Mazuyer,&nbsp;Wilfred T. Tysoe","doi":"10.1007/s11249-024-01879-9","DOIUrl":"10.1007/s11249-024-01879-9","url":null,"abstract":"<div><p>This paper shows how the effect of combined normal and shear stresses on the rates of tribochemical reactions can be calculated using Evans-Polanyi (E-P) perturbation theory. The E-P approach is based on transition-state theory, where the rate of reaction is taken to be proportional to the concentration of activated complex. The equilibrium constant depends on the molar Gibbs free energy change between the initial- and transition-states, which, in turn, depends on the stresses. E-P theory has been used previously to successfully calculate the effects of normal stresses on reaction rates. In this case, ln(Rate) varies linearly with stress with a slope given by an activation volume, which broadly corresponds to the volume difference between the reactant and activated complex. An advantage of E-P theory is that it can calculate the influence of several perturbations, for example, the normal stress dependence of the shear stress during sliding. In this paper, E-P theory is used to calculate shear-induced, tribochemical reaction rates. The results depend on four elementary activation volumes for different contributions to the Gibbs free energy: two of them due to normal and shear stresses for sliding over the surface and two more for the surface reaction. The results of the calculations show that there is a linear dependence of ln(Rate) on the normal stress but that the coefficient of proportionality between the ln(Rate) and the normal stress now has contributions from all elementary-step activation volumes. Counterintuitively, the analysis predicts that the ln(Rate)-normal stress evolution tends, at zero normal stress, to an asymptotic rate constant that depends on sliding velocity and differs from the thermal reaction rate. The theoretical prediction is verified for the shear-induced decomposition of ethyl thiolate species adsorbed on a Cu(100) single crystal substrate that decomposes by C‒S bond cleavage. The theoretical analyses show that tribochemical reactions can be influenced by either just normal stresses or by a combination of normal and shear stresses, but that the latter effect is much greater. Finally, it is predicted that there should be a linear relationship between the activation energy and the logarithm of the pre-exponential factor of the asymptotic rate constant.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature Measurements at Tyre Tread Rubber on Sandpaper Oscillatory Sliding Contacts Using Acicular Grindable Thermocouples 使用针状可磨削热电偶测量砂纸振荡滑动触点上轮胎胎面橡胶的温度
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-06-11 DOI: 10.1007/s11249-024-01877-x
Oleksii Nosko, Yurii Tsybrii, Pablo Guillermo Torrelio Arias, Adolfo Senatore

The tribological performance of tyre–road contacts depends crucially on the contact temperature. This study investigates the reliability and accuracy of acicular grindable thermocouples possessing an original needle-shaped wearable part as applied to measuring temperature at the oscillatory sliding contact between a rubber tyre tread sample and a sandpaper. A linear oscillatory tribometer is used to imitate the sliding phase of tyre–road contact under mild friction conditions. It is shown that the acicular grindable thermocouple measurements are generally test–retest repeatable. Moreover, the thermocouple signal becomes more stable with increasing contact pressure. Compared to the conventional thermocouple technique, the acicular grindable thermocouple overestimates temperature at the rubber friction surface by about 23% due to involvements of its wearable part in friction with the sandpaper. The findings suggest an expansion of the acicular grindable thermocouple technique to full-scale experiments with tyres on the road.

轮胎与路面接触的摩擦学性能主要取决于接触温度。本研究调查了针状可磨热电偶的可靠性和准确性,该热电偶具有一个独创的针状易损件,可用于测量橡胶轮胎胎面样品和砂纸之间摆动滑动接触的温度。使用线性振荡摩擦仪来模拟轮胎在轻微摩擦条件下与路面接触的滑动阶段。结果表明,针状可磨热电偶的测量结果一般都具有测试重复性。此外,热电偶信号随着接触压力的增加而变得更加稳定。与传统的热电偶技术相比,针状可磨热电偶高估了橡胶摩擦表面的温度约 23%,原因是其易损部分参与了与砂纸的摩擦。研究结果表明,应将针状可磨热电偶技术推广到道路轮胎的全面实验中。
{"title":"Temperature Measurements at Tyre Tread Rubber on Sandpaper Oscillatory Sliding Contacts Using Acicular Grindable Thermocouples","authors":"Oleksii Nosko,&nbsp;Yurii Tsybrii,&nbsp;Pablo Guillermo Torrelio Arias,&nbsp;Adolfo Senatore","doi":"10.1007/s11249-024-01877-x","DOIUrl":"10.1007/s11249-024-01877-x","url":null,"abstract":"<div><p>The tribological performance of tyre–road contacts depends crucially on the contact temperature. This study investigates the reliability and accuracy of acicular grindable thermocouples possessing an original needle-shaped wearable part as applied to measuring temperature at the oscillatory sliding contact between a rubber tyre tread sample and a sandpaper. A linear oscillatory tribometer is used to imitate the sliding phase of tyre–road contact under mild friction conditions. It is shown that the acicular grindable thermocouple measurements are generally test–retest repeatable. Moreover, the thermocouple signal becomes more stable with increasing contact pressure. Compared to the conventional thermocouple technique, the acicular grindable thermocouple overestimates temperature at the rubber friction surface by about 23% due to involvements of its wearable part in friction with the sandpaper. The findings suggest an expansion of the acicular grindable thermocouple technique to full-scale experiments with tyres on the road.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01877-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141357492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additives Depletion by Water Contamination and Its Influences on Engine Oil Performance 水污染对添加剂的损耗及其对发动机油性能的影响
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-06-10 DOI: 10.1007/s11249-024-01876-y
A. Al Sheikh Omar, F. Motamen Salehi, U. Farooq, A. Morina

Water enters engine oil in different ways and moves in the lubrication system causing an increase in wear, oil degradation and additives depletion. It has been proposed that water in the lubricants can transfer from dissolved to free phase leading to additives depletion in the oil. Different additives in the lubricants can easily latch to water molecules forming reverse micelles. The separation of reverse micelles from the oil causes additives depletion. This experimental and analytical study aims to investigate how the separation of free water above the saturation level can diminish the efficiency of additives in engine oils. The effect of varied levels of water on oil performance and its additives was investigated in this study. A new saturation method was used to determine the water saturation level in engine oil at different temperatures. The results reveal a decrease in additive concentration with increased separation of free water from the oil. Free water separation from engine oil is expected to reclaim the tribological performance, however, the results demonstrate that tribological performance after the separation of free water from the oil has been affected. The study showed not only does the removal of free water diminish the efficiency of additives due to additives depletion (≈ 10 wt%), but also the remaining dissolved water which is ≈ 2600 ppm can also affect wear and tribofilm chemistry. The results prove that two main mechanisms influence oil performance expressed as additives depletion by free water and remaining dissolved water.

水以不同的方式进入发动机机油,并在润滑系统中移动,导致磨损加剧、机油降解和添加剂耗尽。有人提出,润滑油中的水可以从溶解相转移到游离相,从而导致机油中添加剂的损耗。润滑油中的不同添加剂很容易吸附在水分子上形成反向胶束。反胶束从油中分离出来会导致添加剂损耗。本实验和分析研究旨在探讨超过饱和水平的游离水分离如何降低发动机油中添加剂的效率。本研究调查了不同水平的水对机油性能及其添加剂的影响。采用了一种新的饱和方法来确定不同温度下发动机油中的水饱和度。结果显示,随着机油中游离水分离度的增加,添加剂浓度也随之降低。从发动机油中分离游离水有望恢复摩擦学性能,但结果表明,从油中分离游离水后,摩擦学性能受到了影响。研究表明,清除游离水不仅会因添加剂耗竭(≈ 10 wt%)而降低添加剂的效率,而且剩余的溶解水(≈ 2600 ppm)也会影响磨损和三膜化学性质。结果证明,影响机油性能的主要机制有两种,即添加剂被游离水耗尽和剩余溶解水。
{"title":"Additives Depletion by Water Contamination and Its Influences on Engine Oil Performance","authors":"A. Al Sheikh Omar,&nbsp;F. Motamen Salehi,&nbsp;U. Farooq,&nbsp;A. Morina","doi":"10.1007/s11249-024-01876-y","DOIUrl":"10.1007/s11249-024-01876-y","url":null,"abstract":"<div><p>Water enters engine oil in different ways and moves in the lubrication system causing an increase in wear, oil degradation and additives depletion. It has been proposed that water in the lubricants can transfer from dissolved to free phase leading to additives depletion in the oil. Different additives in the lubricants can easily latch to water molecules forming reverse micelles. The separation of reverse micelles from the oil causes additives depletion. This experimental and analytical study aims to investigate how the separation of free water above the saturation level can diminish the efficiency of additives in engine oils. The effect of varied levels of water on oil performance and its additives was investigated in this study. A new saturation method was used to determine the water saturation level in engine oil at different temperatures. The results reveal a decrease in additive concentration with increased separation of free water from the oil. Free water separation from engine oil is expected to reclaim the tribological performance, however, the results demonstrate that tribological performance after the separation of free water from the oil has been affected. The study showed not only does the removal of free water diminish the efficiency of additives due to additives depletion (≈ 10 wt%), but also the remaining dissolved water which is ≈ 2600 ppm can also affect wear and tribofilm chemistry. The results prove that two main mechanisms influence oil performance expressed as additives depletion by free water and remaining dissolved water.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01876-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141365302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coarse-Grained Molecular Dynamics Simulations of Nanoscale Roughness Effects on Oil Film Delamination 粗粒度分子动力学模拟纳米级粗糙度对油膜分层的影响
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-06-08 DOI: 10.1007/s11249-024-01872-2
Shizhe Deng, Atsushi Kubo, Yoshikazu Todaka, Yoshinori Shiihara, Masatoshi Mitsuhara, Yoshitaka Umeno

In boundary lubrication, the detachment of lubricant molecules from a solid surface is likely to occur due to the presence of high compressive normal stress combined with shear stress exerted on the solid–liquid interface. This phenomenon often results in a delamination behavior at the interface. We aim to investigate the nanoscale roughness effect on the oil film delamination from sliding iron surfaces with grain boundaries by coarse-grained molecular dynamics simulations. As a result, the oil film delamination was effectively suppressed in higher roughness. Two distinct mechanisms of delamination were found depending on surface roughness when the critical normal stress is exceeded. High roughness enhanced the ability to prevent complete slip but had negligible influence on partial slip.

Graphical Abstract

在边界润滑中,由于固液界面上存在高压缩法向应力和剪应力,润滑剂分子很可能从固体表面脱离。这种现象通常会导致界面出现分层行为。我们旨在通过粗粒度分子动力学模拟研究纳米级粗糙度对带有晶界的滑动铁表面油膜分层的影响。结果发现,在粗糙度较高的情况下,油膜脱层现象被有效抑制。当超过临界法向应力时,发现两种不同的分层机制取决于表面粗糙度。高粗糙度增强了防止完全滑移的能力,但对部分滑移的影响微乎其微。
{"title":"Coarse-Grained Molecular Dynamics Simulations of Nanoscale Roughness Effects on Oil Film Delamination","authors":"Shizhe Deng,&nbsp;Atsushi Kubo,&nbsp;Yoshikazu Todaka,&nbsp;Yoshinori Shiihara,&nbsp;Masatoshi Mitsuhara,&nbsp;Yoshitaka Umeno","doi":"10.1007/s11249-024-01872-2","DOIUrl":"10.1007/s11249-024-01872-2","url":null,"abstract":"<div><p>In boundary lubrication, the detachment of lubricant molecules from a solid surface is likely to occur due to the presence of high compressive normal stress combined with shear stress exerted on the solid–liquid interface. This phenomenon often results in a delamination behavior at the interface. We aim to investigate the nanoscale roughness effect on the oil film delamination from sliding iron surfaces with grain boundaries by coarse-grained molecular dynamics simulations. As a result, the oil film delamination was effectively suppressed in higher roughness. Two distinct mechanisms of delamination were found depending on surface roughness when the critical normal stress is exceeded. High roughness enhanced the ability to prevent complete slip but had negligible influence on partial slip.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01872-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141368531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thickener Behaviour in Rolling Elastohydrodynamic Lubrication Contacts 增稠剂在滚动弹性流体动力润滑接触中的行为
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-06-04 DOI: 10.1007/s11249-024-01874-0
Michal Okal, David Kostal, Kazumi Sakai, Ivan Krupka, Martin Hartl

This paper focuses on the study of thickener behaviour in elastohydrodynamic contacts using fluorescence microscopy and optical interferometry. A standard Ball-on-disc configuration tribometer was used as well as a newly developed Ball-on-ring configuration tribometer mimicking the conditions in a 6314 deep groove ball bearing. Three types of custom-made greases were used with the same base oil and Coumarin 6 fluorescent dye on the thickener. These greases contained no additives and were of the lithium complex and alicyclic di-urea type. It was confirmed that the behaviour of the grease was directly influenced by both the structure and type of thickener, and the differences were successfully observed by fluorescence microscopy. The concentration of thickener was found to change due to the formation or breakdown of the deposited thickener layer on the track. At low speeds, the alicyclic di-urea forms a thickener layer on the track that is more pronounced than the lubricating film formed by the base oil alone. The thickener layer formation also occurs at higher speeds when fully flooded conditions are beneficial in building the layer. Experiments with a Ball-on-ring tribometer show that the natural replenishment of the real contact geometry is more effective than on a Ball-on-disc tribometer, but the formation of the thickener layer on the track is more limited than in a Ball-on-disc tribometer with artificial replenishment. At higher velocities, a smaller but stable layer is formed where the layer does not change much from a certain velocity.

本文主要利用荧光显微镜和光学干涉测量法研究增稠剂在弹性流体动力接触中的行为。使用了标准的球对盘配置摩擦仪以及新开发的球对环配置摩擦仪,模拟 6314 深沟球轴承中的条件。使用了三种定制润滑脂,基础油和稠化剂上的香豆素 6 荧光染料相同。这些润滑脂不含任何添加剂,属于锂络合物和脂环二脲类型。结果证实,润滑脂的性能直接受到稠化剂的结构和类型的影响,并成功地通过荧光显微镜观察到了差异。研究发现,增稠剂的浓度会随着轨道上增稠剂沉积层的形成或破坏而发生变化。在低速行驶时,脂环二脲在轨道上形成的增稠剂层比仅由基础油形成的润滑膜更为明显。在较高速度下,当完全充水的条件有利于形成增稠层时,增稠层也会形成。用滚珠-圆环摩擦磨损试验机进行的实验表明,实际接触几何形状的自然补充比滚珠-圆盘摩擦磨损试验机更有效,但与人工补充的滚珠-圆盘摩擦磨损试验机相比,在轨道上形成的增稠剂层更有限。在较高的速度下,会形成一个较小但稳定的层,该层在一定速度下变化不大。
{"title":"Thickener Behaviour in Rolling Elastohydrodynamic Lubrication Contacts","authors":"Michal Okal,&nbsp;David Kostal,&nbsp;Kazumi Sakai,&nbsp;Ivan Krupka,&nbsp;Martin Hartl","doi":"10.1007/s11249-024-01874-0","DOIUrl":"10.1007/s11249-024-01874-0","url":null,"abstract":"<div><p>This paper focuses on the study of thickener behaviour in elastohydrodynamic contacts using fluorescence microscopy and optical interferometry. A standard Ball-on-disc configuration tribometer was used as well as a newly developed Ball-on-ring configuration tribometer mimicking the conditions in a 6314 deep groove ball bearing. Three types of custom-made greases were used with the same base oil and Coumarin 6 fluorescent dye on the thickener. These greases contained no additives and were of the lithium complex and alicyclic di-urea type. It was confirmed that the behaviour of the grease was directly influenced by both the structure and type of thickener, and the differences were successfully observed by fluorescence microscopy. The concentration of thickener was found to change due to the formation or breakdown of the deposited thickener layer on the track. At low speeds, the alicyclic di-urea forms a thickener layer on the track that is more pronounced than the lubricating film formed by the base oil alone. The thickener layer formation also occurs at higher speeds when fully flooded conditions are beneficial in building the layer. Experiments with a Ball-on-ring tribometer show that the natural replenishment of the real contact geometry is more effective than on a Ball-on-disc tribometer, but the formation of the thickener layer on the track is more limited than in a Ball-on-disc tribometer with artificial replenishment. At higher velocities, a smaller but stable layer is formed where the layer does not change much from a certain velocity.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01874-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Friction Behavior and Abnormal Conditions of Non-contact Mechanical Seal Based on Acoustic Emission 基于声发射的非接触式机械密封摩擦行为和异常条件研究
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-06-02 DOI: 10.1007/s11249-024-01873-1
Jinxin Chen, Junjie Lu, Yaochun Hou, Xuexing Ding, Wei Zhang

The main cause of failure in sealing friction pairs, friction wear, has presented analytical challenges due to rapidly changing and complex friction frequency characteristics. This has led to a focus on surface morphology treatment rather than direct measurement techniques in research. In this context, the present study adopted Acoustic Emission (AE) technology for direct monitoring of friction pairs, aiming to identify friction response signals during their transient contact and abrasion stages. Employing time–frequency analysis, the research delineated the state evolution of AE characteristics during the entire operational cycle of the friction pair, from start to stop. It has established the time–frequency information of AE signals in relation to the surface state of the sealing friction pair and deciphered the correlation between the friction AE signals and the surface state alterations of the friction pair. The study showed that the frequency of friction-induced signals in seals is 270 ± 40 kHz. The transition speeds for the friction pair’s state, moving from boundary lubrication to mixed lubrication and then to fluid dynamic lubrication, were identified as 200 rpm and 1000 rpm, respectively. Additionally, an escalation in signal activity was observed in dry friction scenarios and when surface defects were present in the friction pair, markedly exceeding the activity in conditions of no wear. This relationship between the friction signals and the operational state of the seal facilitates precise assessments of wear and operational integrity, underpinning the theoretical aspects of periodic wear in seal tribology.

密封摩擦副失效的主要原因是摩擦磨损,由于摩擦频率特性变化快且复杂,这给分析带来了挑战。这就导致研究重点集中在表面形态处理上,而不是直接测量技术上。在这种情况下,本研究采用声发射(AE)技术对摩擦副进行直接监测,旨在识别摩擦副在瞬态接触和磨损阶段的摩擦响应信号。研究采用时频分析法,描绘了摩擦副从启动到停止的整个运行周期内声学特征的状态演变。研究建立了与密封摩擦副表面状态相关的 AE 信号时频信息,并破译了摩擦 AE 信号与摩擦副表面状态变化之间的相关性。研究表明,密封件摩擦诱发信号的频率为 270 ± 40 kHz。摩擦副状态从边界润滑到混合润滑再到流体动态润滑的过渡速度分别为 200 rpm 和 1000 rpm。此外,在干摩擦情况下以及摩擦副存在表面缺陷时,观察到信号活动升级,明显超过无磨损情况下的活动。摩擦信号与密封件运行状态之间的这种关系有助于对磨损和运行完整性进行精确评估,为密封摩擦学中的周期性磨损提供了理论依据。
{"title":"Study on the Friction Behavior and Abnormal Conditions of Non-contact Mechanical Seal Based on Acoustic Emission","authors":"Jinxin Chen,&nbsp;Junjie Lu,&nbsp;Yaochun Hou,&nbsp;Xuexing Ding,&nbsp;Wei Zhang","doi":"10.1007/s11249-024-01873-1","DOIUrl":"10.1007/s11249-024-01873-1","url":null,"abstract":"<div><p>The main cause of failure in sealing friction pairs, friction wear, has presented analytical challenges due to rapidly changing and complex friction frequency characteristics. This has led to a focus on surface morphology treatment rather than direct measurement techniques in research. In this context, the present study adopted Acoustic Emission (AE) technology for direct monitoring of friction pairs, aiming to identify friction response signals during their transient contact and abrasion stages. Employing time–frequency analysis, the research delineated the state evolution of AE characteristics during the entire operational cycle of the friction pair, from start to stop. It has established the time–frequency information of AE signals in relation to the surface state of the sealing friction pair and deciphered the correlation between the friction AE signals and the surface state alterations of the friction pair. The study showed that the frequency of friction-induced signals in seals is 270 ± 40 kHz. The transition speeds for the friction pair’s state, moving from boundary lubrication to mixed lubrication and then to fluid dynamic lubrication, were identified as 200 rpm and 1000 rpm, respectively. Additionally, an escalation in signal activity was observed in dry friction scenarios and when surface defects were present in the friction pair, markedly exceeding the activity in conditions of no wear. This relationship between the friction signals and the operational state of the seal facilitates precise assessments of wear and operational integrity, underpinning the theoretical aspects of periodic wear in seal tribology.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Synchronous Sensing Method of Measuring Lubricating Oil Film Thickness and Temperature by Using Eddy Current Effect 利用涡流效应测量润滑油膜厚度和温度的同步传感方法
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-05-28 DOI: 10.1007/s11249-024-01870-4
Xiuqi Yuan, Hongkai Li, Tong Zhang, Zihan Li, Shaohua Zhang

The eddy current method can be well applied in the lubricating oil film thickness measurement, due to its excellent performance, such as high-precision, non-destructive and strong environmental adaptability in situ. Generally, the temperature variation would cause a failure of the lubricating oil, therefore it is necessary to detect synchronously the oil film temperature for controlling an effective lubrication state, meanwhile it also affects the measurement performance of an eddy current sensor. In this study, a high-precision detection method of measuring the thickness and temperature of lubricating oil film by using the eddy current effect is proposed. Firstly, an oil film thickness detection model with an eddy current coil is established by coupling electromagnetic field and temperature field, and the effect of temperature variation on film thickness measurement is revealed. It is found that the coil inductance and film thickness have a good linear relationship within a certain range, so do the coil resistance and temperature. Then, a signal conversion module of detection circuit is designed, and a decoupling algorithm on extracting the two characteristic components (thickness and temperature) is proposed by separating the real and imaginary parts of the output voltage. Finally, according to a series of calculation and analysis, the fitting relationship between the real and imaginary parts of voltage and the temperature and thickness of oil film is established, which improves film thickness measurement accuracy and temperature stability, meanwhile achieve a synchronous sensing of oil film thickness and temperature.

Graphical Abstract

电涡流法因其高精度、无损伤、现场环境适应性强等优异性能,在润滑油膜厚度测量中得到了很好的应用。一般来说,温度变化会导致润滑油失效,因此需要同步检测油膜温度以控制有效的润滑状态,同时这也会影响电涡流传感器的测量性能。本研究提出了一种利用涡流效应测量润滑油膜厚度和温度的高精度检测方法。首先,通过耦合电磁场和温度场,建立了一个带有涡流线圈的油膜厚度检测模型,并揭示了温度变化对油膜厚度测量的影响。研究发现,线圈电感与油膜厚度在一定范围内有良好的线性关系,线圈电阻与温度也有良好的线性关系。然后,设计了检测电路的信号转换模块,并通过分离输出电压的实部和虚部,提出了提取两个特征分量(厚度和温度)的解耦算法。最后,通过一系列计算和分析,建立了电压实部和虚部与油膜温度和厚度的拟合关系,提高了油膜厚度测量精度和温度稳定性,同时实现了油膜厚度和温度的同步传感。
{"title":"A Synchronous Sensing Method of Measuring Lubricating Oil Film Thickness and Temperature by Using Eddy Current Effect","authors":"Xiuqi Yuan,&nbsp;Hongkai Li,&nbsp;Tong Zhang,&nbsp;Zihan Li,&nbsp;Shaohua Zhang","doi":"10.1007/s11249-024-01870-4","DOIUrl":"10.1007/s11249-024-01870-4","url":null,"abstract":"<div><p>The eddy current method can be well applied in the lubricating oil film thickness measurement, due to its excellent performance, such as high-precision, non-destructive and strong environmental adaptability in situ. Generally, the temperature variation would cause a failure of the lubricating oil, therefore it is necessary to detect synchronously the oil film temperature for controlling an effective lubrication state, meanwhile it also affects the measurement performance of an eddy current sensor. In this study, a high-precision detection method of measuring the thickness and temperature of lubricating oil film by using the eddy current effect is proposed. Firstly, an oil film thickness detection model with an eddy current coil is established by coupling electromagnetic field and temperature field, and the effect of temperature variation on film thickness measurement is revealed. It is found that the coil inductance and film thickness have a good linear relationship within a certain range, so do the coil resistance and temperature. Then, a signal conversion module of detection circuit is designed, and a decoupling algorithm on extracting the two characteristic components (thickness and temperature) is proposed by separating the real and imaginary parts of the output voltage. Finally, according to a series of calculation and analysis, the fitting relationship between the real and imaginary parts of voltage and the temperature and thickness of oil film is established, which improves film thickness measurement accuracy and temperature stability, meanwhile achieve a synchronous sensing of oil film thickness and temperature.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Running-in Period During Sliding Wear of Austenitic Steels 奥氏体钢滑动磨损过程中的磨合期
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-05-28 DOI: 10.1007/s11249-024-01867-z
O. A. Zambrano, B. Iglesias-Guerrero, S. A. Rodríguez, J. J. Coronado

The running-in period during dry sliding wear might determine the evolution to steady-state wear behaviour. To this end, the running-in period during sliding wear of austenitic stainless steel, AISI 316L stainless steel, and Hadfield steel were studied through the testing pin (flat-ended)-on-disk configuration. The effects of the normal load, sliding speed, and alloy type were assessed, and the specific wear rate and strain hardening characteristics were determined. The wear rate was correlated with wear mechanism, friction coefficient, hardening, and roughness to characterize the changes occurring during the running-in period. These changes could influence the responses of these materials to wear during the steady-state period. The stabilization of the specific wear rate and hardness was noted to align with the end of the running-in period.

Graphical Abstract

干滑动磨损期间的磨合期可能会决定磨损行为向稳态的演变。为此,我们通过测试针(平头)-圆盘配置,研究了奥氏体不锈钢、AISI 316L 不锈钢和哈德菲尔德钢在滑动磨损过程中的磨合期。评估了法向载荷、滑动速度和合金类型的影响,并确定了具体的磨损率和应变硬化特征。磨损率与磨损机理、摩擦系数、硬化和粗糙度相关联,以描述磨合期内发生的变化。这些变化可能会影响这些材料在稳态期间对磨损的反应。特定磨损率和硬度的稳定与磨合期的结束相一致。
{"title":"Running-in Period During Sliding Wear of Austenitic Steels","authors":"O. A. Zambrano,&nbsp;B. Iglesias-Guerrero,&nbsp;S. A. Rodríguez,&nbsp;J. J. Coronado","doi":"10.1007/s11249-024-01867-z","DOIUrl":"10.1007/s11249-024-01867-z","url":null,"abstract":"<div><p>The running-in period during dry sliding wear might determine the evolution to steady-state wear behaviour. To this end, the running-in period during sliding wear of austenitic stainless steel, AISI 316L stainless steel, and Hadfield steel were studied through the testing pin (flat-ended)-on-disk configuration. The effects of the normal load, sliding speed, and alloy type were assessed, and the specific wear rate and strain hardening characteristics were determined. The wear rate was correlated with wear mechanism, friction coefficient, hardening, and roughness to characterize the changes occurring during the running-in period. These changes could influence the responses of these materials to wear during the steady-state period. The stabilization of the specific wear rate and hardness was noted to align with the end of the running-in period.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01867-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Lubricated Rolling/Sliding Tribotesting on Hydrogen Trapping in 100Cr6 Bearing Steel 润滑滚动/滑动摩擦试验对 100Cr6 轴承钢中氢捕集的影响
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-05-28 DOI: 10.1007/s11249-024-01871-3
Lisa-Marie Weniger, Birhan Sefer, Leonardo Pelcastre, Pia Åkerfeldt, Jens Hardell

As hydrogen reduces the fatigue life of 100Cr6 bearing steel significantly, extensive research on the interaction of hydrogen with 100Cr6 is necessary. This study investigated the influence of rolling/sliding tribotesting performed on a micro-pitting-rig on the hydrogen absorption and trapping behaviour of 100Cr6 bearing steel. Thermal desorption mass spectrometry was used to compare the hydrogen desorption spectra of 100Cr6 samples after tribological tests and static heated oil-immersion tests to untested reference samples. The approach was chosen to further understand the influence of both microstructural deformation as well as steel-oil contact on the hydrogen absorption and trapping behaviour of 100Cr6. The tribological test showed a stable friction behaviour and mild wear which was dominated by local plastic deformation of surface asperities. Despite the mild wear, a change in de-trapping temperatures was found for tribotested samples compared to oil-immersed and untested reference samples. This finding indicates that even mild tribotesting conditions alter the hydrogen trapping behaviour of 100Cr6 bearing steel.

由于氢会显著降低 100Cr6 轴承钢的疲劳寿命,因此有必要对氢与 100Cr6 的相互作用进行广泛研究。本研究调查了在微点蚀钻机上进行的滚动/滑动磨擦试验对 100Cr6 轴承钢吸氢和捕氢行为的影响。采用热解吸质谱法比较了 100Cr6 试样在摩擦学测试和静态加热油浸泡测试后与未测试参考试样的氢解吸光谱。选择这种方法是为了进一步了解微结构变形以及钢-油接触对 100Cr6 吸氢和捕氢行为的影响。摩擦学测试表明,摩擦行为稳定,磨损轻微,主要是表面尖角的局部塑性变形。尽管磨损轻微,但与浸油和未测试的参考样品相比,经过摩擦测试的样品的脱捕温度发生了变化。这一发现表明,即使是温和的摩擦试验条件也会改变 100Cr6 轴承钢的氢捕集行为。
{"title":"Influence of Lubricated Rolling/Sliding Tribotesting on Hydrogen Trapping in 100Cr6 Bearing Steel","authors":"Lisa-Marie Weniger,&nbsp;Birhan Sefer,&nbsp;Leonardo Pelcastre,&nbsp;Pia Åkerfeldt,&nbsp;Jens Hardell","doi":"10.1007/s11249-024-01871-3","DOIUrl":"10.1007/s11249-024-01871-3","url":null,"abstract":"<div><p>As hydrogen reduces the fatigue life of 100Cr6 bearing steel significantly, extensive research on the interaction of hydrogen with 100Cr6 is necessary. This study investigated the influence of rolling/sliding tribotesting performed on a micro-pitting-rig on the hydrogen absorption and trapping behaviour of 100Cr6 bearing steel. Thermal desorption mass spectrometry was used to compare the hydrogen desorption spectra of 100Cr6 samples after tribological tests and static heated oil-immersion tests to untested reference samples. The approach was chosen to further understand the influence of both microstructural deformation as well as steel-oil contact on the hydrogen absorption and trapping behaviour of 100Cr6. The tribological test showed a stable friction behaviour and mild wear which was dominated by local plastic deformation of surface asperities. Despite the mild wear, a change in de-trapping temperatures was found for tribotested samples compared to oil-immersed and untested reference samples. This finding indicates that even mild tribotesting conditions alter the hydrogen trapping behaviour of 100Cr6 bearing steel.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01871-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tribology Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1