首页 > 最新文献

Tribology Letters最新文献

英文 中文
Test and Identification Analysis of Wear Response Signal of Contact Interface of Rotary Seal 旋转密封接触界面磨损响应信号的测试和识别分析
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-30 DOI: 10.1007/s11249-024-01902-z
Junjie Lu, Shize Zheng, Xuechang Zhang, Yaochun Hou

The wear state of mechanical seal friction pair directly determines the reliability of mechanical seal. In this paper, the mapping mechanism between contact wear response and acoustic emission (AE) signals of friction pair is indicatively proposed, and the relationship between wear frequency and time-averaged wear is explored. First of all, AE sensors were arranged on the Multi-function tribometer Rtec MFT-5000, static and dynamic friction tests were carried out on the contact form of M106K-WC (graphite-cemented carbide) and WC–WC, the AE signals are collected, and the wear amounts of the two groups of friction pairs were measured; then, the friction and wear signals are separated and reprocessed by time–frequency analysis. The results show that the static wear response frequency (SWRF) of M106K-WC is about 70 ± 10 kHz, the SWRF of WC–WC is about 90 ± 10 kHz, and the dynamic wear response frequency (DWRF) of WC–WC is about 175 ± 10 kHz; the root mean square (RMS) values of DWRF amplitudes is positively correlated with the wear amounts. According to the research results, it is inferred that there is a difference between the signal frequency in the quasi-static wear process and the dynamic wear process, there is a great correlation between the wear frequency and the material pair, and the working condition has little influence on the wear frequency. The mapping relationship between AE signal and time-averaged wear of friction pair is revealed.

机械密封摩擦副的磨损状态直接决定了机械密封的可靠性。本文提出了摩擦副接触磨损响应与声发射(AE)信号之间的映射机制,并探讨了磨损频率与时间平均磨损之间的关系。首先,在多功能摩擦磨损仪 Rtec MFT-5000 上布置声发射传感器,对 M106K-WC(石墨增强硬质合金)和 WC-WC 的接触形式进行静态和动态摩擦试验,采集声发射信号,测量两组摩擦副的磨损量;然后,分离摩擦磨损信号,并通过时频分析进行再处理。结果表明,M106K-WC 的静态磨损响应频率(SWRF)约为 70 ± 10 kHz,WC-WC 的 SWRF 约为 90 ± 10 kHz,WC-WC 的动态磨损响应频率(DWRF)约为 175 ± 10 kHz;DWRF 振幅的均方根值与磨损量呈正相关。根据研究结果推断,准静态磨损过程与动态磨损过程中的信号频率存在差异,磨损频率与材料对之间存在较大相关性,工况对磨损频率的影响较小。揭示了 AE 信号与摩擦副时间平均磨损之间的映射关系。
{"title":"Test and Identification Analysis of Wear Response Signal of Contact Interface of Rotary Seal","authors":"Junjie Lu,&nbsp;Shize Zheng,&nbsp;Xuechang Zhang,&nbsp;Yaochun Hou","doi":"10.1007/s11249-024-01902-z","DOIUrl":"10.1007/s11249-024-01902-z","url":null,"abstract":"<div><p>The wear state of mechanical seal friction pair directly determines the reliability of mechanical seal. In this paper, the mapping mechanism between contact wear response and acoustic emission (AE) signals of friction pair is indicatively proposed, and the relationship between wear frequency and time-averaged wear is explored. First of all, AE sensors were arranged on the Multi-function tribometer Rtec MFT-5000, static and dynamic friction tests were carried out on the contact form of M106K-WC (graphite-cemented carbide) and WC–WC, the AE signals are collected, and the wear amounts of the two groups of friction pairs were measured; then, the friction and wear signals are separated and reprocessed by time–frequency analysis. The results show that the static wear response frequency (SWRF) of M106K-WC is about 70 ± 10 kHz, the SWRF of WC–WC is about 90 ± 10 kHz, and the dynamic wear response frequency (DWRF) of WC–WC is about 175 ± 10 kHz; the root mean square (RMS) values of DWRF amplitudes is positively correlated with the wear amounts. According to the research results, it is inferred that there is a difference between the signal frequency in the quasi-static wear process and the dynamic wear process, there is a great correlation between the wear frequency and the material pair, and the working condition has little influence on the wear frequency. The mapping relationship between AE signal and time-averaged wear of friction pair is revealed.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-Situ Observation of Ice-Adhesion Interface Under Tangential Loading: Anti-Icing Mechanism of Hydrophilic PPEGMA Polymer Brush 切向加载下冰-粘附界面的原位观测:亲水性 PPEGMA 聚合物刷的抗冰机制
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-26 DOI: 10.1007/s11249-024-01886-w
Hikaru Okubo, Kento Hase, Ken Tamamoto, Yoshinobu Tsujii, Ken Nakano

Techniques preventing icing and ice accumulation on surfaces are required to solve snow- and ice-induced accidents and disasters. Recently, hydrophilic polymers have attracted attention as a passive anti-icing method. This study examined the ice-adhesion properties of the hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate] (PPEGMA) concentrated polymer brush (CPB). A custom-built apparatus was developed to obtain the ice-adhesion strength and visualize the dynamics of the ice-adhesion interface under tangential loading. The ice-adhesion interface for a PPEGMA-CPB-coated glass substrate was investigated by comparing it with the bare glass substrate. As a result, the CPB exhibited a low ice-adhesion strength of less than 100 kPa, the dependencies of which on the drive speed and temperature indicate a high-viscous liquid-like layer at the interface, even below the melting point of water, leading to the smooth onset of sliding due to its self-lubricity without any rupture events (including precursory events) observed for the bare glass.

要解决冰雪引发的事故和灾难,就必须采用防止表面结冰和积冰的技术。最近,亲水性聚合物作为一种被动防冰方法引起了人们的关注。本研究考察了亲水性聚[聚(乙二醇)甲基醚甲基丙烯酸酯](PPEGMA)浓缩聚合物刷(CPB)的附冰性能。为了获得冰粘附强度并观察切向加载下冰粘附界面的动态变化,开发了一种定制仪器。通过与裸玻璃基底进行比较,研究了涂有 PPEGMA-CPB 的玻璃基底的冰粘界面。结果表明,CPB 的冰粘强度较低,小于 100 kPa,其与驱动速度和温度的相关性表明,在界面上有一个高粘度液态层,甚至低于水的熔点,由于其自润滑特性,滑动开始时非常平稳,没有发生裸玻璃上观察到的任何破裂事件(包括前兆事件)。
{"title":"In-Situ Observation of Ice-Adhesion Interface Under Tangential Loading: Anti-Icing Mechanism of Hydrophilic PPEGMA Polymer Brush","authors":"Hikaru Okubo,&nbsp;Kento Hase,&nbsp;Ken Tamamoto,&nbsp;Yoshinobu Tsujii,&nbsp;Ken Nakano","doi":"10.1007/s11249-024-01886-w","DOIUrl":"10.1007/s11249-024-01886-w","url":null,"abstract":"<div><p>Techniques preventing icing and ice accumulation on surfaces are required to solve snow- and ice-induced accidents and disasters. Recently, hydrophilic polymers have attracted attention as a passive anti-icing method. This study examined the ice-adhesion properties of the hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate] (PPEGMA) concentrated polymer brush (CPB). A custom-built apparatus was developed to obtain the ice-adhesion strength and visualize the dynamics of the ice-adhesion interface under tangential loading. The ice-adhesion interface for a PPEGMA-CPB-coated glass substrate was investigated by comparing it with the bare glass substrate. As a result, the CPB exhibited a low ice-adhesion strength of less than 100 kPa, the dependencies of which on the drive speed and temperature indicate a high-viscous liquid-like layer at the interface, even below the melting point of water, leading to the smooth onset of sliding due to its self-lubricity without any rupture events (including precursory events) observed for the bare glass.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01886-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Range and Reliability of the Spacer Layer Imaging Method 提高间隔层成像方法的范围和可靠性
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-24 DOI: 10.1007/s11249-024-01890-0
Alexander MacLaren, Parker LaMascus, Robert W. Carpick

The spacer layer imaging method (SLIM) is widely used to measure the thickness of additive and lubricant films, in lubricant development and evaluation, and for fundamental research into elastohydrodynamic lubrication and tribofilm formation mechanisms. The film thickness measurement, as implemented on several popular tribometers, provides powerful, non-destructive in-situ mapping of film topography with nanometre-scale height sensitivity. However, the results can be highly sensitive to experimental procedure, machine condition, and image analysis, in some cases reporting unphysical film thickness trends. The prevailing image analysis techniques make it challenging to interrogate these errors, often hiding their multivariate nonlinear behaviour from the user by spatial averaging. Herein, several common ‘silent errors’ in the SLIM measurement, including colour matching to incorrect fringe orders, and colour drift due to the optical properties of the system or film itself, are discussed, with examples. A robust suite of novel a priori and a posteriori methods to address these issues, and to improve the accuracy and reliability of the measurement, are also presented, including a novel, computationally inexpensive circle-finding algorithm for automated image processing. In combination, these methods allow reliable mapping of films up to at least 800 nm in thickness, representing a significant milestone for the utility of SLIM applied to elastohydrodynamic contact.

Graphical abstract

间隔层成像法 (SLIM) 广泛用于测量添加剂和润滑油薄膜的厚度、润滑油开发和评估,以及弹性流体动力润滑和三膜形成机制的基础研究。薄膜厚度测量是在几种常用的摩擦磨损仪上实现的,它提供了强大的、非破坏性的、具有纳米级高度灵敏度的薄膜形貌原位绘图。然而,测量结果对实验过程、机器条件和图像分析非常敏感,在某些情况下会报告出不符合实际的薄膜厚度趋势。现有的图像分析技术很难对这些误差进行分析,通常会通过空间平均法向用户隐藏这些误差的多变量非线性行为。在此,我们以实例讨论了 SLIM 测量中常见的几种 "无声误差",包括与不正确的条纹阶数相匹配的颜色,以及系统或薄膜本身的光学特性导致的颜色漂移。此外,还介绍了一整套新颖的先验和后验方法来解决这些问题,并提高测量的准确性和可靠性,其中包括一种用于自动图像处理的计算成本低廉的新颖找圈算法。结合这些方法,可以对厚度至少达 800 nm 的薄膜进行可靠的测绘,是将 SLIM 应用于弹性流体力学接触的一个重要里程碑。
{"title":"Enhancing the Range and Reliability of the Spacer Layer Imaging Method","authors":"Alexander MacLaren,&nbsp;Parker LaMascus,&nbsp;Robert W. Carpick","doi":"10.1007/s11249-024-01890-0","DOIUrl":"10.1007/s11249-024-01890-0","url":null,"abstract":"<div><p>The spacer layer imaging method (SLIM) is widely used to measure the thickness of additive and lubricant films, in lubricant development and evaluation, and for fundamental research into elastohydrodynamic lubrication and tribofilm formation mechanisms. The film thickness measurement, as implemented on several popular tribometers, provides powerful, non-destructive in-situ mapping of film topography with nanometre-scale height sensitivity. However, the results can be highly sensitive to experimental procedure, machine condition, and image analysis, in some cases reporting unphysical film thickness trends. The prevailing image analysis techniques make it challenging to interrogate these errors, often hiding their multivariate nonlinear behaviour from the user by spatial averaging. Herein, several common ‘silent errors’ in the SLIM measurement, including colour matching to incorrect fringe orders, and colour drift due to the optical properties of the system or film itself, are discussed, with examples. A robust suite of novel <i>a priori</i> and <i>a posteriori</i> methods to address these issues, and to improve the accuracy and reliability of the measurement, are also presented, including a novel, computationally inexpensive circle-finding algorithm for automated image processing. In combination, these methods allow reliable mapping of films up to at least 800 nm in thickness, representing a significant milestone for the utility of SLIM applied to elastohydrodynamic contact.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01890-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Dependency of Friction on Temperature and Sliding Velocity in Low Dimensional Systems with Different Atom Electronegativity 不同原子电负性低维体系中摩擦力对温度和滑动速度的依赖性
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-21 DOI: 10.1007/s11249-024-01895-9
Jie Gao, Jianjun Wang, Chong Qiao, Yu Jia, Bo N. J. Persson

Using the molecular dynamics simulations we study sliding friction of two-dimensional systems with atom electronegative difference. We show that systems with large atom electronegative difference exhibit larger friction than systems with similar structures but less polarity. We demonstrate that the sliding friction along polar paths gives larger friction than along nonpolar paths, and exhibits stronger stick–slip behavior. Due to inertia and thermal effects the sliding path deviates from the minimum-energy path. We show that the electronegative friction is reduced by thermal fluctuations and that it depends linearly on the logarithm of the sliding velocity. Our findings will supply insight into the nature of the friction in low dimensional systems, which could facilitate the design of nanodevices.

我们利用分子动力学模拟研究了具有原子电负性差异的二维系统的滑动摩擦力。我们发现,原子电负性差异较大的体系比结构相似但极性较小的体系表现出更大的摩擦力。我们证明,沿极性路径的滑动摩擦比沿非极性路径的滑动摩擦大,并表现出更强的粘滑行为。由于惯性和热效应,滑动路径偏离了最小能量路径。我们的研究表明,电负摩擦力会因热量波动而减小,并与滑动速度的对数成线性关系。我们的研究结果将有助于深入了解低维系统中摩擦的性质,从而促进纳米器件的设计。
{"title":"The Dependency of Friction on Temperature and Sliding Velocity in Low Dimensional Systems with Different Atom Electronegativity","authors":"Jie Gao,&nbsp;Jianjun Wang,&nbsp;Chong Qiao,&nbsp;Yu Jia,&nbsp;Bo N. J. Persson","doi":"10.1007/s11249-024-01895-9","DOIUrl":"10.1007/s11249-024-01895-9","url":null,"abstract":"<div><p>Using the molecular dynamics simulations we study sliding friction of two-dimensional systems with atom electronegative difference. We show that systems with large atom electronegative difference exhibit larger friction than systems with similar structures but less polarity. We demonstrate that the sliding friction along polar paths gives larger friction than along nonpolar paths, and exhibits stronger stick–slip behavior. Due to inertia and thermal effects the sliding path deviates from the minimum-energy path. We show that the electronegative friction is reduced by thermal fluctuations and that it depends linearly on the logarithm of the sliding velocity. Our findings will supply insight into the nature of the friction in low dimensional systems, which could facilitate the design of nanodevices.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Archard’s Wear Model: An Energy-Based Approach 改进阿卡德磨损模型:基于能量的方法
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-20 DOI: 10.1007/s11249-024-01888-8
Jamal Choudhry, Andreas Almqvist, Roland Larsson

Archard’s wear law encounters challenges in accurately predicting wear damage and volumes, particularly in complex situations like asperity–asperity collisions. A modified model is proposed and validated, showcasing its ability to predict wear in adhesive contacts with better accuracy than the original Archard’s wear law. The model introduces an improved wear coefficient linked to deformation energy, creating a spatially varying relationship between wear volume and load and imparting a non-linear characteristic to the problem. The improved wear model is coupled with the Boundary Element Method (BEM), assuming that the interacting surfaces are semi-infinite and flat. The deformation energy is calculated from the normal contact pressure and displacements, which are the common outputs of BEM. By relying solely on these outputs, the model can efficiently predict the correct shape and volume of the adhesive wear particle, without resorting to large and often slow models. An important observation is that the wear coefficient is expected to increase based on the accumulated deformation energy along the direction of frictional force. This approach enhances the model’s capability to capture complex wear mechanisms, providing a more accurate representation of real-world scenarios.

阿卡德磨损定律在准确预测磨损损害和磨损量方面遇到了挑战,尤其是在非晶体-非晶体碰撞等复杂情况下。我们提出并验证了一个修正模型,该模型能够预测粘合剂接触中的磨损,其准确性优于原始的阿卡德磨损定律。该模型引入了与变形能量相关的改进型磨损系数,在磨损量和载荷之间建立了空间变化关系,并为问题带来了非线性特征。改进后的磨损模型与边界元素法(BEM)相结合,假设相互作用的表面是半无限的平面。通过法向接触压力和位移(BEM 的常见输出)计算变形能量。通过完全依赖这些输出,该模型可以有效地预测粘合磨损颗粒的正确形状和体积,而无需求助于大型且通常速度较慢的模型。一个重要的观察结果是,基于沿摩擦力方向累积的变形能量,磨损系数有望增加。这种方法增强了模型捕捉复杂磨损机制的能力,更准确地反映了真实世界的情况。
{"title":"Improving Archard’s Wear Model: An Energy-Based Approach","authors":"Jamal Choudhry,&nbsp;Andreas Almqvist,&nbsp;Roland Larsson","doi":"10.1007/s11249-024-01888-8","DOIUrl":"10.1007/s11249-024-01888-8","url":null,"abstract":"<div><p>Archard’s wear law encounters challenges in accurately predicting wear damage and volumes, particularly in complex situations like asperity–asperity collisions. A modified model is proposed and validated, showcasing its ability to predict wear in adhesive contacts with better accuracy than the original Archard’s wear law. The model introduces an improved wear coefficient linked to deformation energy, creating a spatially varying relationship between wear volume and load and imparting a non-linear characteristic to the problem. The improved wear model is coupled with the Boundary Element Method (BEM), assuming that the interacting surfaces are semi-infinite and flat. The deformation energy is calculated from the normal contact pressure and displacements, which are the common outputs of BEM. By relying solely on these outputs, the model can efficiently predict the correct shape and volume of the adhesive wear particle, without resorting to large and often slow models. An important observation is that the wear coefficient is expected to increase based on the accumulated deformation energy along the direction of frictional force. This approach enhances the model’s capability to capture complex wear mechanisms, providing a more accurate representation of real-world scenarios.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01888-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elastohydrodynamic Traction and Film Thickness at High Speeds 高速时的弹流牵引力和薄膜厚度
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-18 DOI: 10.1007/s11249-024-01894-w
Alexander MacLaren, Amir Kadiric

A renewed interest in elastohydrodynamic lubrication (EHL) phenomena at high speeds, for which thermal effects strongly influence both traction and film thickness, has grown out of the challenges presented by high-speed geared transmissions in electric vehicles. This study uses a new ball-on-disc set-up employing the well-known ultra-thin-film interferometry technique to simultaneously measure EHL film thickness and traction at entrainment speeds up to 20 m/s and slide-roll ratios up to 100%. The effect of fluid composition is examined for Group I, II and III mineral oils, for two polyalphaolefins in Group IV, and for the traction fluid Santotrac 50. The effect of viscosity in the range 4–180 mPa.s is investigated by varying bulk fluid temperature. At high speeds, both film thickness and traction are considerably lower than predicted by conventional EHL theory. The contact is seen to be fully-flooded for all conditions tested. The widely-used thermal EHL correction of Gupta is shown to overcorrect for the film thickness reduction even at modest SRRs. Finally, the influence of the sliding direction on traction and film thickness is discussed for this set-up, and a thermal model is proposed to explain the observed behaviour.

Graphical abstract

由于电动汽车中的高速齿轮传动装置所带来的挑战,人们对高速状态下的弹性流体动力润滑(EHL)现象重新产生了兴趣。本研究采用了一种新的盘上球装置,采用著名的超薄膜干涉测量技术,在夹带速度高达 20 米/秒和滑辊比高达 100%的情况下同时测量 EHL 薄膜厚度和牵引力。对第 I、II 和 III 组矿物油、第 IV 组的两种聚α烯烃以及牵引流体 Santotrac 50 的流体成分影响进行了研究。通过改变散装液体的温度,研究了粘度在 4-180 mPa.s 范围内的影响。在高速运转时,薄膜厚度和牵引力都大大低于传统 EHL 理论的预测值。在所有测试条件下,接触面都被完全淹没。古普塔(Gupta)广泛使用的热 EHL 修正方法表明,即使在适度的 SRR 条件下,也会过度修正薄膜厚度的减少。最后,讨论了滑动方向对牵引力和薄膜厚度的影响,并提出了一个热模型来解释观察到的行为。
{"title":"Elastohydrodynamic Traction and Film Thickness at High Speeds","authors":"Alexander MacLaren,&nbsp;Amir Kadiric","doi":"10.1007/s11249-024-01894-w","DOIUrl":"10.1007/s11249-024-01894-w","url":null,"abstract":"<div><p>A renewed interest in elastohydrodynamic lubrication (EHL) phenomena at high speeds, for which thermal effects strongly influence both traction and film thickness, has grown out of the challenges presented by high-speed geared transmissions in electric vehicles. This study uses a new ball-on-disc set-up employing the well-known ultra-thin-film interferometry technique to simultaneously measure EHL film thickness and traction at entrainment speeds up to 20 m/s and slide-roll ratios up to 100%. The effect of fluid composition is examined for Group I, II and III mineral oils, for two polyalphaolefins in Group IV, and for the traction fluid Santotrac 50. The effect of viscosity in the range 4–180 mPa.s is investigated by varying bulk fluid temperature. At high speeds, both film thickness and traction are considerably lower than predicted by conventional EHL theory. The contact is seen to be fully-flooded for all conditions tested. The widely-used thermal EHL correction of Gupta is shown to overcorrect for the film thickness reduction even at modest SRRs. Finally, the influence of the sliding direction on traction and film thickness is discussed for this set-up, and a thermal model is proposed to explain the observed behaviour.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01894-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Performance of TOR Lubricants in Humid Environments and Under Dew Conditions 评估 TOR 润滑油在潮湿环境和露水条件下的性能
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-16 DOI: 10.1007/s11249-024-01889-7
Simon Skurka, Radovan Galas, Milan Omasta, Haohao Ding, Wen-Jian Wang, Ivan Krupka, Martin Hartl

Top-of-rail (TOR) lubricants are commonly used for friction control in railway operations. They aim to lower friction and reduce noise and wear while ensuring sufficient transmission of traction/braking forces. However, the wheel–rail interface is an open system, so the conditions may suddenly change due to the weather, and different contaminants may enter the contact and influence the performance of these lubricants. Thus, this study examined the effect of humidity and dew on two commercial products, as these conditions often occur on the track. A methodology based on a creep curves measurement approach was used to assess product performance under various scenarios. All measurements were conducted on a universal tribometer in the ball-on-disc configuration covered with a climate chamber. The results show a strong influence of dew on the tested products, as dew lowered their performance parameters and caused low adhesion problems. Possible mechanisms of water–oil interaction and formation of oxidic third body layers were discussed. The main findings indicate that TOR lubricants may cause traction/braking problems if used in dew conditions. The present study may be helpful in optimising friction management methods in the future.

Graphical Abstract

轨顶(TOR)润滑油通常用于铁路运营中的摩擦控制。它们旨在降低摩擦、减少噪音和磨损,同时确保牵引力/制动力的充分传递。然而,轮轨界面是一个开放系统,因此条件可能会因天气而突然改变,不同的污染物可能会进入接触面并影响这些润滑剂的性能。因此,本研究考察了湿度和露水对两种商用产品的影响,因为这些情况经常出现在轨道上。研究采用了一种基于蠕变曲线测量方法的方法来评估各种情况下的产品性能。所有测量都是在一个球盘配置的通用摩擦磨损试验机上进行的,试验机上覆盖了一个气候室。结果表明,露水对测试产品的影响很大,因为露水降低了产品的性能参数,并造成附着力低的问题。讨论了水油相互作用和氧化第三体层形成的可能机制。主要研究结果表明,如果在露水条件下使用 TOR 润滑油,可能会导致牵引/制动问题。本研究可能有助于今后优化摩擦管理方法。
{"title":"Assessing the Performance of TOR Lubricants in Humid Environments and Under Dew Conditions","authors":"Simon Skurka,&nbsp;Radovan Galas,&nbsp;Milan Omasta,&nbsp;Haohao Ding,&nbsp;Wen-Jian Wang,&nbsp;Ivan Krupka,&nbsp;Martin Hartl","doi":"10.1007/s11249-024-01889-7","DOIUrl":"10.1007/s11249-024-01889-7","url":null,"abstract":"<div><p>Top-of-rail (TOR) lubricants are commonly used for friction control in railway operations. They aim to lower friction and reduce noise and wear while ensuring sufficient transmission of traction/braking forces. However, the wheel–rail interface is an open system, so the conditions may suddenly change due to the weather, and different contaminants may enter the contact and influence the performance of these lubricants. Thus, this study examined the effect of humidity and dew on two commercial products, as these conditions often occur on the track. A methodology based on a creep curves measurement approach was used to assess product performance under various scenarios. All measurements were conducted on a universal tribometer in the ball-on-disc configuration covered with a climate chamber. The results show a strong influence of dew on the tested products, as dew lowered their performance parameters and caused low adhesion problems. Possible mechanisms of water–oil interaction and formation of oxidic third body layers were discussed. The main findings indicate that TOR lubricants may cause traction/braking problems if used in dew conditions. The present study may be helpful in optimising friction management methods in the future.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01889-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic Force Microscopy of Transfer Film Development 转移膜显影的原子力显微镜观察
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-16 DOI: 10.1007/s11249-024-01893-x
Kathryn E. Shaffer, Edward J. McCumiskey, Brandon A. Krick, Jeffrey J. Ewin, Curtis R. Taylor, Christopher P. Junk, Gregory S. Blackman, W. Gregory Sawyer, Angela A. Pitenis

Atomic force microscopy (AFM) provides the opportunity to perform fundamental and mechanistic observations of complex, dynamic, and transient systems and ultimately link material microstructure and its evolution during tribological interactions. This investigation focuses on the evolution of a dynamic fluoropolymer tribofilm formed during sliding of polytetrafluoroethylene (PTFE) mixed with 5 wt% alpha-phase alumina particles against 304L stainless steel. Sliding was periodically interrupted for AFM topography scans. The average film roughness, the average friction coefficient, and polymer wear rate based on sample height recession were recorded as a function of increasing sliding cycles. Topographical maps suggested tribofilm nucleates in grooves of the steel countersample, spreads, and develops into a uniform film through sliding. Prominent nanoscale features were visible around 10,000 sliding cycles and thereafter. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed good correlations between these features and aluminum-rich domains, suggesting the presence of alumina particles on the surface.

原子力显微镜(AFM)提供了对复杂、动态和瞬态系统进行基础和机理观察的机会,并最终将摩擦学相互作用过程中的材料微观结构及其演变联系起来。本研究的重点是聚四氟乙烯(PTFE)与 5 wt% α-相氧化铝颗粒混合后与 304L 不锈钢滑动过程中形成的动态含氟聚合物三膜的演变。定期中断滑动以进行原子力显微镜形貌扫描。随着滑动周期的增加,记录了平均薄膜粗糙度、平均摩擦系数和基于样品高度衰退的聚合物磨损率。地形图显示,三膜在钢制反样品的凹槽中成核、扩散,并通过滑动形成一层均匀的薄膜。在 10,000 次滑动周期左右及其后,可以看到明显的纳米级特征。扫描电子显微镜和能量色散 X 射线光谱显示,这些特征与富铝域之间存在良好的相关性,表明表面存在氧化铝颗粒。
{"title":"Atomic Force Microscopy of Transfer Film Development","authors":"Kathryn E. Shaffer,&nbsp;Edward J. McCumiskey,&nbsp;Brandon A. Krick,&nbsp;Jeffrey J. Ewin,&nbsp;Curtis R. Taylor,&nbsp;Christopher P. Junk,&nbsp;Gregory S. Blackman,&nbsp;W. Gregory Sawyer,&nbsp;Angela A. Pitenis","doi":"10.1007/s11249-024-01893-x","DOIUrl":"10.1007/s11249-024-01893-x","url":null,"abstract":"<div><p>Atomic force microscopy (AFM) provides the opportunity to perform fundamental and mechanistic observations of complex, dynamic, and transient systems and ultimately link material microstructure and its evolution during tribological interactions. This investigation focuses on the evolution of a dynamic fluoropolymer tribofilm formed during sliding of polytetrafluoroethylene (PTFE) mixed with 5 wt% alpha-phase alumina particles against 304L stainless steel. Sliding was periodically interrupted for AFM topography scans. The average film roughness, the average friction coefficient, and polymer wear rate based on sample height recession were recorded as a function of increasing sliding cycles. Topographical maps suggested tribofilm nucleates in grooves of the steel countersample, spreads, and develops into a uniform film through sliding. Prominent nanoscale features were visible around 10,000 sliding cycles and thereafter. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed good correlations between these features and aluminum-rich domains, suggesting the presence of alumina particles on the surface.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01893-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Molecular Dynamics Study on the Adhesive Contact with Effect of Tangential Forces 切向力影响下的粘合接触分子动力学研究
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-13 DOI: 10.1007/s11249-024-01891-z
Jin-Shan He, Gan-Yun Huang, Yue-Sheng Wang, Liao-Liang Ke

Adhesive contact with the effect of tangential force may have important implications in friction and wear performances of small-sized devices and joining technologies. In the present work, adhesive contact involving tangential loading but before gross slip between spherical objects has been simulated through molecular dynamics (MD) to reveal the interaction between adhesion and the applied forces. When only the normal force is present, the results on force–displacement relationship and interfacial traction have been presented to compare with the predictions of Johnson–Kendall–Roberts (JKR), Maugis–Dugdale (M–D) and the Double–Hertz (D–H) models with the purpose of evaluating their applicability. In the presence of additional tangential forces, their interaction with adhesion has been studied in depth through loading and unloading. Distribution of the shear traction at the interface which is different from that in the existent models has been obtained. Those altogether may help to develop reasonable continuum models for adhesive contact under inclined forces.

切向力作用下的粘合接触可能会对小型设备和连接技术的摩擦和磨损性能产生重要影响。在本研究中,我们通过分子动力学(MD)模拟了球形物体之间涉及切向加载但尚未发生严重滑移的粘合接触,以揭示粘合力与外加力之间的相互作用。在只存在法向力的情况下,模拟结果与约翰逊-肯德尔-罗伯茨(JKR)、毛吉斯-杜格代尔(M-D)和双赫兹(D-H)模型的预测结果进行了比较,以评估它们的适用性。在存在额外切向力的情况下,通过加载和卸载深入研究了它们与附着力的相互作用。结果发现,界面上剪切牵引力的分布与现有模型不同。这些结果有助于为倾斜力作用下的粘附接触建立合理的连续模型。
{"title":"A Molecular Dynamics Study on the Adhesive Contact with Effect of Tangential Forces","authors":"Jin-Shan He,&nbsp;Gan-Yun Huang,&nbsp;Yue-Sheng Wang,&nbsp;Liao-Liang Ke","doi":"10.1007/s11249-024-01891-z","DOIUrl":"10.1007/s11249-024-01891-z","url":null,"abstract":"<div><p>Adhesive contact with the effect of tangential force may have important implications in friction and wear performances of small-sized devices and joining technologies. In the present work, adhesive contact involving tangential loading but before gross slip between spherical objects has been simulated through molecular dynamics (MD) to reveal the interaction between adhesion and the applied forces. When only the normal force is present, the results on force–displacement relationship and interfacial traction have been presented to compare with the predictions of Johnson–Kendall–Roberts (JKR), Maugis–Dugdale (M–D) and the Double–Hertz (D–H) models with the purpose of evaluating their applicability. In the presence of additional tangential forces, their interaction with adhesion has been studied in depth through loading and unloading. Distribution of the shear traction at the interface which is different from that in the existent models has been obtained. Those altogether may help to develop reasonable continuum models for adhesive contact under inclined forces.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Thickener Behaviour in Rolling Elastohydrodynamic Lubrication Contacts 更正:轧制流体动力润滑接触中的增稠剂行为
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-12 DOI: 10.1007/s11249-024-01887-9
Michal Okal, David Kostal, Kazumi Sakai, Ivan Krupka, Martin Hartl
{"title":"Correction to: Thickener Behaviour in Rolling Elastohydrodynamic Lubrication Contacts","authors":"Michal Okal,&nbsp;David Kostal,&nbsp;Kazumi Sakai,&nbsp;Ivan Krupka,&nbsp;Martin Hartl","doi":"10.1007/s11249-024-01887-9","DOIUrl":"10.1007/s11249-024-01887-9","url":null,"abstract":"","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01887-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tribology Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1